

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XF

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10kbcgna-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G1C	
			32-pin	48-pin
32 KB	2 KB	5.5 KB ^{Note}	R5F10JBC, R5F10KBC	R5F10JGC, R5F10KGC

Note This is about 4.5 KB when the self-programming function is used.

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

1.2 List of Part Numbers

Pin count	Package	USB Function	Fields of Application ^{Note}	Part Number
32 pins	32-pin plastic HWQFN	Host/Function controller	А	R5F10JBCANA#U0, R5F10JBCANA#W0
	(5 × 5 , 0.5 mm pitch)		G	R5F10JBCGNA#U0, R5F10JBCGNA#W0
		Function controller only	А	R5F10KBCANA#U0, R5F10KBCANA#W0
			G	R5F10KBCGNA#U0, R5F10KBCGNA#W0
	32-pin plastic LQFP	Host/Function controller	А	R5F10JBCAFP#V0, R5F10JBCAFP#X0
	(7 × 7 , 0.8 mm pitch)		G	R5F10JBCGFP#V0, R5F10JBCGFP#X0
		Function controller only	А	R5F10KBCAFP#V0, R5F10KBCAFP#X0
			G	R5F10KBCGFP#V0, R5F10KBCGFP#X0
48 pins	48-pin plastic LFQFP	Host/Function controller	А	R5F10JGCAFB#V0, R5F10JGCAFB#X0
	(7 × 7 , 0.5 mm pitch)		G	R5F10JGCGFB#V0, R5F10JGCGFB#X0
		Function controller only	А	R5F10KGCAFB#V0, R5F10KGCAFB#X0s
			G	R5F10JGCANA#U0, R5F10JGCANA#W0
	48-pin plastic HWQFN	Host/Function controller	А	R5F10JGCANA#U0, R5F10JGCANA#W0
	(7 × 7 , 0.5 mm pitch)		G	R5F10JGCGNA#U0, R5F10JGCGNA#W0
		Function controller only	А	R5F10KGCANA#U0, R5F10KGCANA#W0
			G	R5F10KGCGNA#U0, R5F10KGCGNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G1C.

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.

1.6 Outline of Functions

[32-pin, 48-pin products]

Item		Item	32	2-pin	48-pin		
			R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC	
Co	ode flash	memory (KB)	32 KB		32 KB		
Dat	ata flash r	memory (KB)	2 KB		2 KB		
RA	AM (KB)		5.5 KB Note 1		5.5 KB Note 1		
Me	emory spa	ace	1 MB				
Ma sys clo	stem	High-speed system clock	HS (High-speed main)	scillation, external main mode: 1 to 20 MHz (V⊳ mode: 1 to 16 MHz (V⊳		K)	
		High-speed on-chip oscillator		' to 5.5 V), 1 to 16 MHz	(V _{DD} = 2.4 to 5.5 V)		
		PLL clock	6, 12, 24 MHz ^{Note 2} :	VDD = 2.4 to 5.5 V			
Sul	ıbsystem	clock		-	XT1 (crystal) oscillation 32.768 kHz (TYP.): Vot		
Lov	w-speed	on-chip oscillator	On-chip oscillation (W	atchdog timer/Real-time	clock/12-bit interval timer	clock)	
			15 kHz (TYP.): VDD = 2	2.4 to 5.5 V			
Ge	eneral-pu	rpose register	8 bits $ imes$ 32 registers (8	bits \times 8 registers \times 4 ba	anks)		
Mir	nimum in	struction execution time	0.04167 μ s (High-speed on-chip oscillator: fHoco = 48 MHz /fiH = 24 MHz operation)				
			0.04167 μ s (PLL clock: fPLL = 48 MHz /fiH = 24 MHz ^{Note 2} operation)				
			0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)				
			$- 30.5 \ \mu s \ (Subsystem \ clock: \ f_{SUB} = 32.768 \ kHoperation)$				
Ins	struction s	set	 Multiplication (8 bit 	for/logical operation (8/1 s \times 8 bits)	6 bits) iet, reset, test, and Boolea	n operation), etc.	
I/O) port	Total	22		38		
		CMOS I/O	16 (N-ch O.D. I/O [VDD	withstand voltage]: 5)	28 (N-ch O.D. I/O [VDD	withstand voltage]:	
		CMOS input	3		5		
		CMOS output		-	1		
	N-ch open-drain I/O (6 V tolerance)		3		4		
Tim	mer	16-bit timer	4 channel				
		Watchdog timer	1 channel				
		Real-time clock (RTC)	1 channel Note 3				
		12-bit Interval timer (IT)	1 channel				
		Timer output	4 channels (PWM outp	ut: 3) ^{Note 4}			
		RTC output	_		1		
					• 1 Hz (subsystem cloc	k: four = 32 768 kH	

Notes 1. In the case of the 5.5 KB, this is about 4.5 KB when the self-programming function is used.

2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

- **3.** In 32-pin products, this channel can only be used for the constant-period interrupt function based on the low-speed on-chip oscillator clock (fiL).
- 4. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, Iow ^{Note 1}	Iol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			20.0 ^{Note} 2	mA
		Per pin for P60 to P63	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			20.0 ^{Note} 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			70.0	mA
		P130, P140 (When duty $\leq 70\%$ ^{Note 3}) Total of P14 to P17, P30, P31, P50, P51, P60 to P63, P70 to P75 (When duty $\leq 70\%$ ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4V \le V_{\text{DD}} \le 5.5 \text{ V}$			150.0	mA
	IOL2	Per pin for P20 to P27	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS	fносо = 48 MHz	Basic	V _{DD} = 5.0 V		1.7		mA
Current Note 1	mode	(High-speed main) mode	f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA	
			Note 6		Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f _{HOCO} = 24 MHz ^{Note 5}	Normal	V _{DD} = 5.0 V		2.3	3.2	mA
				f⊪ = 12 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.3	3.2	mA
				fHOCO = 12 MHz ^{Note 5}	Normal	V _{DD} = 5.0 V		1.6	2.0	mA
				f⊪ = 6 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.6	2.0	mA
				fHOCO = 6 MHz Note	Normal	V _{DD} = 5.0 V		1.2	1.5	mA
				⁵ f⊮ = 3 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.2	1.5	mA
			HS	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
			(High-speed	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
			main) mode Note 6	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	4.8	mA
			f _{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		1.9	2.7	mA	
			V _{DD} = 5.0 V		Resonator connection		1.9	2.7	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		1.9	2.7	mA	
			V _{DD} = 3.0 V		Resonator connection		1.9	2.7	mA	
			HS (High-speed main) mode (PLL operation) Note 6	fpll = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	5.9	mA
					operation	V _{DD} = 3.0 V		4.0	5.9	mA
				f _{PLL} = 48 MHz, f _{CLK} = 12 MHz ^{Note 2}	Normal	V _{DD} = 5.0 V		2.6	3.6	mA
					operation	V _{DD} = 3.0 V		2.6	3.6	mA
				f _{PLL} = 48 MHz,	Normal	V _{DD} = 5.0 V		1.9	2.4	mA
				fclk = 6 MHz ^{Note 2}	operation	V _{DD} = 3.0 V		1.9	2.4	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Resonator connection		4.1	4.9	μA
			clock operation	Note 4 T _A = −40°C	operation	Square wave input		4.2	5.0	μA
				f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		4.1	4.9	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
			Note 4 T _A = +50°C	operation	Resonator connection		4.3	5.6	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	6.3	μA
				Note 4 T _A = +70°C	operation	Resonator connection		4.3	6.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.8	7.7	μA
				Note 4	operation	Resonator connection		4.0	7.8	μA μA
				T _A = +85°C						μα (

(Notes and Remarks are listed on the next page.)

Parameter	Symbol		Conditions			MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz			0.22		μA
A/D converter	IADC Notes 1,	When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF ^{Note} 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operating current	_{FSP} Notes 1, 9				2.00	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.20	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.06	mA
current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	1.62	mA
		CSI operation			0.70	0.84	mA

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkCY1	tксү1 ≥ 4/fcLк	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167			ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2 – 12			ns
	t ĸ∟1	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2 – 18			ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2 – 38			ns
SIp setup time (to SCKp \uparrow) ^{Note 1}	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	44			ns
		$\begin{array}{c} 2.7 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$		44			ns
				75			ns
SIp hold time (from SCKp1) $^{\rm Note\ 2}$	tksi1			19			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}				25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

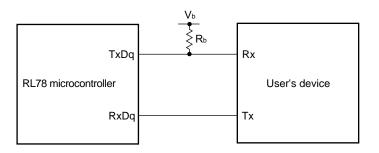
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 3, 5, 7)

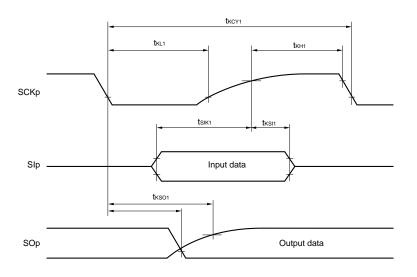
fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00, 01))

Notes 6. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

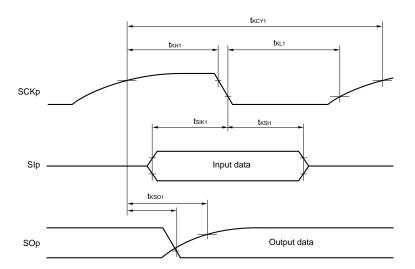

Expression for calculating the transfer rate when 2.4 V \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **Remarks 1.** p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - **2.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tксү2	$4.0 V \le V_{DD} \le 5.5 V$,	20 MHz < $f_{MCK} \leq$ 24 MHz	12/ f мск			ns
		$2.7 V \le V_b \le 4.0 V$	8 MHz < fмск ≤20 MHz	10/ f мск			ns
			4 MHz < fмск ≤ 8 MHz	8/fмск			ns
			fмск ≤4 MHz	6/fмск			ns
		$2.7 V \le V_{DD} < 4.0 V$,	20 MHz < fмск ≤24 MHz	16/ f мск			ns
		$2.3 V \le V_b \le 2.7 V$	16 MHz < fмск ≤ 20 MHz	14/ f мск			ns
			8 MHz < fмск ≤ 16 MHz	12/ f мск			ns
			4 MHz < fмск ≤8 MHz	8/f мск			ns
			fмск ≤4 MHz	6/f мск			ns
		$2.4 V \le V_{DD} < 3.3 V$,	20 MHz < fмск ≤24 MHz	36/f мск			ns
		$1.6 V \le V_b \le 2.0 V^{Note}$	16 MHz < fмск ≤ 20 MHz	32/f мск			ns
		2	8 MHz < fмск ≤ 16 MHz	26/f мск			ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/ f мск			ns
			fмск ≤4 MHz	10/ f мск			ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V$		tксү2/2 – 12			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	$V_{,} 2.3 \text{ V} \leq V_{b} \leq 2.7 \text{ V}$	tксү2/2 – 18			ns
		$2.4~V \leq V_{\text{DD}}$ < 3.3 V, 1.6 V $\leq V_{b} \leq 2.0~V^{\text{Note 2}}$		tксү2/2 – 50			ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	$V_{\rm b}, 2.7~V \le V_{\rm b} \le 4.0~V$	1/fмск + 20			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	$V_{\rm r}, 2.3 \ V \le V_{\rm b} \le 2.7 \ V_{\rm b}$	1/fмск + 20			ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$	$V_{\rm b}$ 1.6 V \leq V _b \leq 2.0 V ^{Note 2}	1/fмск + 30			ns
SIp hold time (from SCKp↑) ^{Note 4}	tksı2			1/fмск + 31			ns
Delay time from SCKp↓ to	tĸso2	$4.0~V \le V_{\text{DD}} \le 5.5~V$	$V, 2.7 V \le V_b \le 4.0 V,$			2/fмск +	ns
SOp output Note 5		C _b = 30 pF, R _b = 1.	4 kΩ			120	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	$V_{\rm r}, 2.3 \ V \le V_{\rm b} \le 2.7 \ V_{\rm r},$			2/fмск +	ns
		C _b = 30 pF, R _b = 2.	7 kΩ			214	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$	', 1.6 V \leq V _b \leq 2.0 V ^{Note 2} ,			2/fмск +	ns
		C _b = 30 pF, R _b = 5.	5 kΩ			573	

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

- **2.** Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remarks are listed on the next page.)

RENESAS

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage					
	Reference voltage (+) = AV _{REFP} Reference voltage (–) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (–) = AVREFM			
ANI0 to ANI7	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).			
ANI16, ANI17, ANI19	Refer to 2.6.1 (2).					
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_			

(1) When AV_{REF (+)} = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+) = AV}_{\text{REFP}}, \text{ Reference voltage (-)} \ge 10^{\circ}\text{C}, 1$	
$= AV_{REFM} = 0 V$	

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	2.125		39	μs
		Target pin: ANI2 to ANI7	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7	·	0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} ^{Note 4}			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V

(**Notes** are listed on the next page.)

3.2.3 PLL oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			-3.0 ^{Note} 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P130, P140	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P70 to P75 (When duty \leq 70% ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-19.0	mA
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-60.0	mA
Іон2	Іон2	Per pin for P20 to P27	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note} 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \le V_{\text{DD}} \le 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit			
Output current, low ^{Note 1}	Iol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			8.5 ^{Note 2}	mA			
		Per pin for P60 to P63	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			15.0 Note 2	mA			
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA			
		P130, P140 (When duty ≤ 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA			
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA			
		Total of P14 to P17, P30, P31, P50,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA			
		P51, P60 to P63, P70 to P75	$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA			
		(When duty $\leq 70\%$ ^{Note 3})	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA			
					Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			80.0	mA
	IOL2	Per pin for P20 to P27	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			0.4 Note 2	mA			
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5 \; V$			5.0	mA			

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.
 - The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol		Conditions			MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL ^{Note 1}				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.8	mA
operating current	6	at maximum speed Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V			0.5	0.8	mA
A/D converter reference voltage current	I _{ADREF} ^{Note} 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	I _{LVD} Notes 1, 7				0.08		μA
Self-programming operating current	I _{FSP} ^{Notes 1,} 9				2.00	12.30	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.30	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.80	1.97	mA
current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	3.00	mA
		CSI operation			0.70	1.56	mA

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

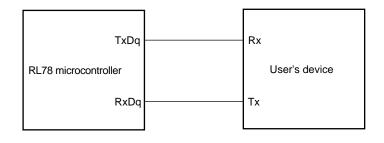
(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

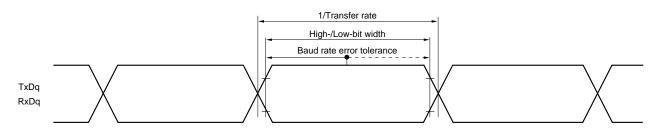
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) ($T_A = -40$ to +105°C, 2.4 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					f мск/12	bps
		Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} ^{Note}			2.0	Mbps


Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: $\hfill 24\hfill MHz$ (2.7 V \leq V_DD \leq 5.5 V)


16 MHz (2.4 V \leq V_DD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

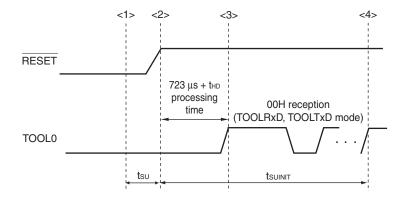
UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

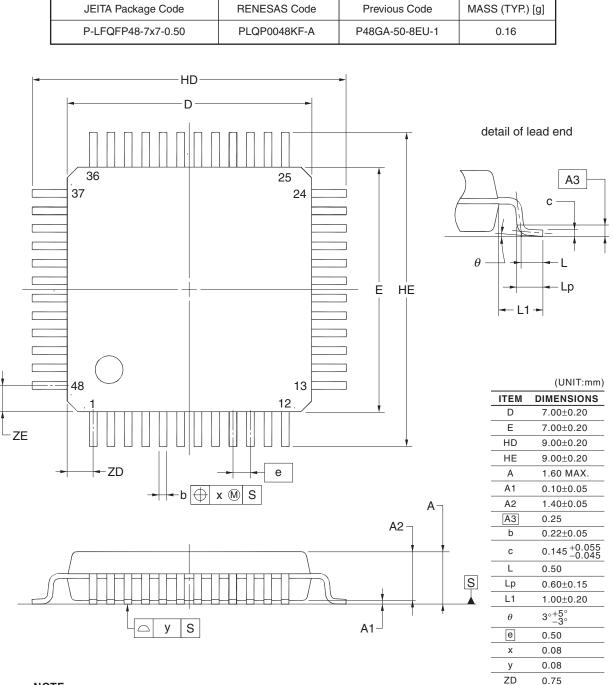
Parameter Symbol Conditions MIN. TYP. MAX. Unit UDPi/UDMi VDSELi 0000 **V**DDET0 27 32 37 % UV_{BUS} [3:0] input 0001 VDDET1 29 34 39 % UV_{BUS} reference (i = 0) 0010 32 37 % UV_{BUS} VDDET2 42 voltage (UV_{BUS} divider 0011 VDDET3 35 40 45 % UV_{BUS} ratio) 0100 VDDET4 38 43 48 % UV_{BUS} • VDOUEi = 0 0101 % UV_{BUS} VDDET5 41 46 51 (i = 0)) 0110 VDDET6 44 49 54 % UV_{BUS} 0111 VDDET7 47 52 57 % UV_{BUS} VDDET8 1000 51 56 61 % UV_{BUS} 1001 VDDET9 55 60 65 % UV_{BUS} 1010 59 % UV_{BUS} VDDET10 64 69 1011 VDDET11 63 68 73 % UV_{BUS} 1100 VDDET12 67 72 77 % UV_{BUS} 1101 VDDET13 71 76 81 % UV_{BUS} 85 1110 75 80 % UV_{BUS} VDDET14 1111 VDDET15 79 84 89 % UV_{BUS}


(4) BC option standard (Function)

3.10 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must end before the external reset ends.	1			ms

(T_A = -40 to +105°C, 2.4 V \leq V_DD \leq 5.5 V, Vss = 0 V)



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** t_{SUINIT}: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

4.2 48-pin Products

R5F10JGCAFB, R5F10KGCAFB R5F10JGCGFB, R5F10KGCGFB

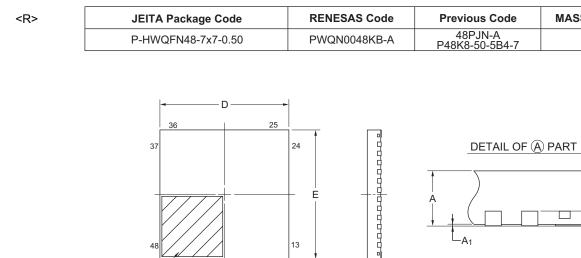
NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

ZE

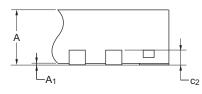
0.75

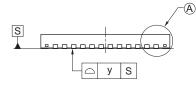


MASS (Typ) [g]

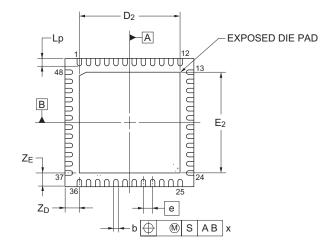
0.13

Unit: mm


R5F10JGCANA, R5F10KGCANA R5F10JGCGNA, R5F10KGCGNA



F


13

12

 \angle INDEX AREA

Reference	Dimensi	ons in mi	llimeters
Symbol	Min	Nom	Max
D	6.95	7.00	7.05
Е	6.95	7.00	7.05
А		—	0.80
A ₁	0.00	—	_
b	0.18	0.25	0.30
е	_	0.50	_
Lp	0.30	0.40	0.50
х	—	—	0.05
У	—	—	0.05
ZD		0.75	—
ZE		0.75	_
C2	0.15	0.20	0.25
D ₂	—	5.50	_
E ₂	_	5.50	_

© 2015 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G1A Data Sheet

			Description
Rev.	Date	Page	Summary
0.01	Sep 20, 2012	-	First Edition issued
1.00	Aug 08, 2013	Throughout	Deletion of the bar over SCK and SCKxx
			Renaming of fEXT to fEXS
			Renaming of interval timer (unit) to 12-bit interval timer
			Addition of products for G: Industrial applications (T_A = -40 to +105 °C)
		1	Change of 1.1 Features
		2	Change of 1.2 List of Part Numbers
		3	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C
		4, 5	Addition of remark to 1.3 Pin Configuration (Top View)
		15, 16	Change of 1.6 Outline of Functions
		17 to 76	Addition of a whole chapter
		77 to 131	Addition of a whole chapter
		132	Addition of products for G: Industrial applications (T _A = -40 to +105 $^{\circ}$ C)
1.10	Nov 15, 2013	77	Caution 3 added.
		79	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.
1.20	Sep 30, 2016	4 to 7	Modification of pin configuration in 1.3.1 32-pin products
		8 to 11	Modification of pin configuration in 1.3.2 48-pin products
		15	Modification of description of main system clock in 1.6 Outline of Functions
		74	Modification of title of 2.7 RAM Data Retention Characteristics and figure
		74	Modification of table of 2.8 Flash Memory Programming Characteristics
		129	Modification of title of 3.7 RAM Data Retention Characteristics and figure
		129	Modification of table of 3.8 Flash Memory Programming Characteristics and addition
			of Note 4
		132	Change of figure in 4.1 32-pin Products
		134	Change of figure in 4.2 48-pin Products

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.