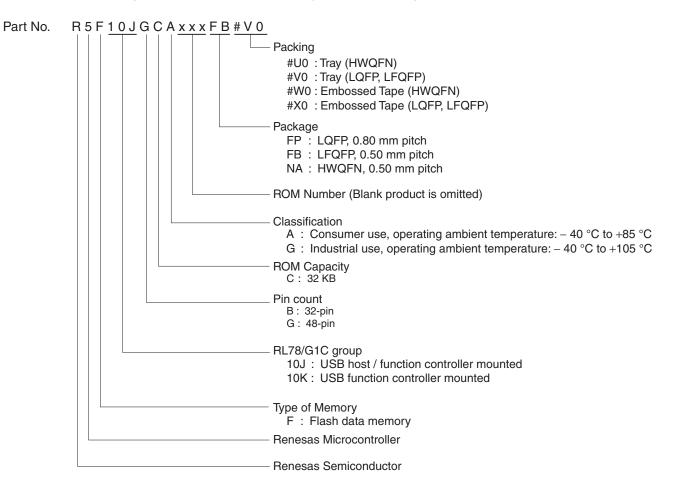


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10kgcafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

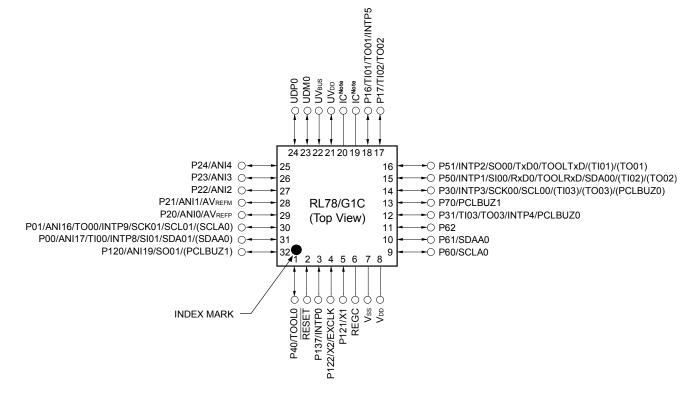


Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C

(2) USB function: Function controller only (R5F10KBC)

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2. ELECTRICAL SPECIFICATIONS (A: $T_A = -40$ to $+85^{\circ}$ C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to +85°C)".

The target productsA: Consumer applications ; TA = -40 to +85°C
R5F10JBCANA, R5F10JBCAFP, R5F10JGCANA, R5F10JGCAFB,
R5F10KBCANA, R5F10KBCAFP, R5F10KGCANA, R5F10KGCAFB
G: Industrial applications ; when using TA = -40 to +105°C specification products
at TA = -40 to +85°C.
R5F10JBCGNA, R5F10JBCGFP, R5F10JGCGNA, R5F10JGCGFB,
R5F10KBCGNA, R5F10KBCGNA, R5F10KGCGNA, R5F10KGCGFB

- Cautions 1. The RL78 microcontrollers has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

r						
Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator		–20 to +85 °C	-1.0		+1.0	%
clock frequency accuracy		–40 to –20 °C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-55.0	mA
		P130, P140	$2.7~V \leq V_{\text{DD}} ~< 4.0~V$			-10.0	mA
		(When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P70 to P75	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-19.0	mA
		(When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}}~<2.7~V$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-135.0	mA
	Іон2	Per pin for P20 to P27	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Not} e 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			20.0 ^{Note} 2	mA
		Per pin for P60 to P63	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			20.0 Note 2 20.0 Note 2 70.0 15.0 9.0 80.0 35.0 20.0 150.0 0.4 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$				mA
		P130, P140	$2.7~V \leq V_{\text{DD}} < 4.0~V$				mA
		(When duty $\leq 70\%$ ^{Note 3})	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				mA
		Total of P14 to P17, P30, P31, P50,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$				mA
		P51, P60 to P63, P70 to P75	$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4V \le V_{\text{DD}} \le 5.5 \text{ V}$			150.0	mA
	IOL2	Per pin for P20 to P27	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			2 20.0 Note 2 70.0 15.0 9.0 80.0 35.0 20.0 150.0 0.4 Note 2	mA

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd - 1.5			V
		P120, P130, P140	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	V _{DD} – 0.7			V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	V _{DD} – 0.6			V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array} \end{array} \label{eq:eq:VDD}$	V _{DD} – 0.5			V
	Vон2	P20 to P27	2.4 V \leq V _{DD} \leq 5.5 V, Іон2 = -100 μ А	V _{DD} – 0.5		1.3 0.7 0.6 0.4 0.4 0.4 2.0 0.4 0.4	V
Output voltage, VoL	Vol1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20.0 \ mA \end{array} \end{array} \label{eq:VDD}$			1.3	V
		$\begin{array}{c} \mbox{$4.0$ V \le V_{DD} \le 5.5$ V,} \\ \mbox{$I_{DL1} = 8.5$ mA} \end{array}$	0.7	V			
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			1.3 0.7 0.6 0.4 0.4 0.4 0.4 0.4 0.4	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 1.5 mA				V
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$				V
	Vol2	P20 to P27	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{I}_{\text{OL2}} = 400 \ \mu \text{ A}$				V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 20.0 mA			2.0	V
	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ I_{OL1} = 5.0 \ mA \\ \hline \\ 2.7 \ V \leq V_{DD} \leq 5.5 \ V, \\ I_{OL1} = 3.0 \ mA \end{array}$				0.4	V	
				0.4	V		
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 2.0 \text{ mA}$			0.4	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

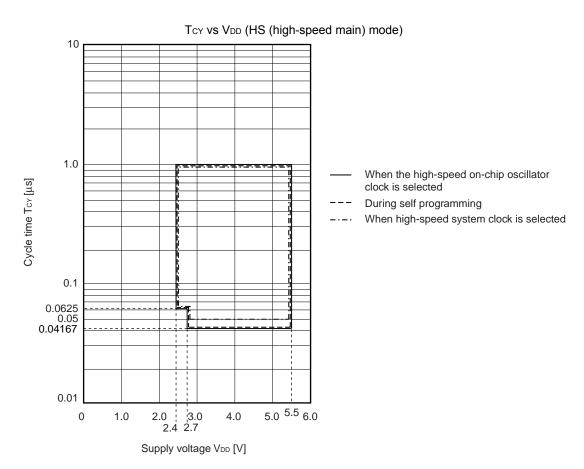
- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

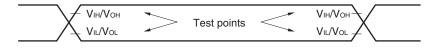
HS (high-speed main) mode: $2.7 \ V \le V_{DD} \le 5.5 \ V@1 \ MHz \ to \ 24 \ MHz \\ 2.4 \ V \le V_{DD} \le 5.5 \ V@1 \ MHz \ to \ 16 \ MHz$

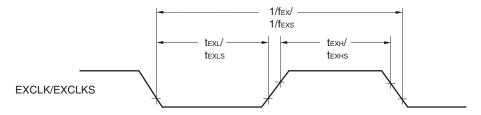
- Remarks 1. fHOCO: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - 2. fi⊢: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fPLL: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

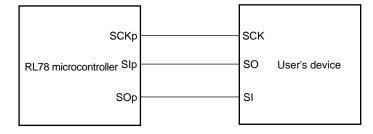

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS	fносо = 48 MHz	V _{DD} = 5.0 V		0.67	1.25	mA
Current Note 1	Note 2	mode		fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.67	1.25	mA
			main) mode Note 9	fHOCO = 24 MHz ^{Note 7}	V _{DD} = 5.0 V		0.50	0.86	mA
				fi⊢ = 12 MHz ^{Note 4}	V _{DD} = 3.0 V		0.50	0.86	mA
				fHOCO = 12 MHz ^{Note 7}	V _{DD} = 5.0 V		0.41	0.67	mA
				f _{IH} = 6 MHz ^{Note 4}	V _{DD} = 3.0 V		0.41	0.67	mA
				fHOCO = 6 MHz ^{Note 7}	V _{DD} = 5.0 V		0.37	0.58	mA
				f _{IH} = 3 MHz ^{Note 4}	V _{DD} = 3.0 V		0.37	0.58	mA
			HS	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			(High-speed	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			main) mode Note 9	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection				
	HS	f _{PLL} = 48 MHz,			0.26	0.67	mA		
		$f_{CLK} = 24 \text{ MHz}^{\text{Note 3}}$	$V_{DD} = 5.0 V$		0.91	1.52	mA		
		main) mode	fpll = 48 MHz,	V _{DD} = 3.0 V		0.91	1.52	mA	
		(PLL	fclκ = 12 MHz ^{Note 3}	V _{DD} = 5.0 V		0.85	1.28	mA	
			operation) Note 9		V _{DD} = 3.0 V		0.85	1.28	mA
				fork = 6 MHz Note 3	V _{DD} = 5.0 V		0.82	1.15	mA
					V _{DD} = 3.0 V		0.82	1.15	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.44	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μA
				T _A = +50°C	Resonator connection		0.63	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μA
				T _A = +70°C	Resonator		0.76	2.16	μA
					connection				•
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
				T _A = +85°C	Resonator connection		1.16	3.56	μA
	DD3 ^{Note 6}	STOP	T _A = −40°C				0.18	0.50	μA
mode	mode Note 8	T _A = +25°C				0.23	0.50	μA	
			T _A = +50°C				0.26	1.10	μA
		$T_{A} = +70^{\circ}C$				0.29	1.90	μA	
								1.00	μη

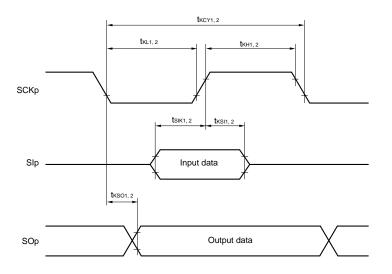

(Notes and Remarks are listed on the next page.)

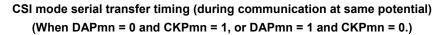

Minimum Instruction Execution Time during Main System Clock Operation

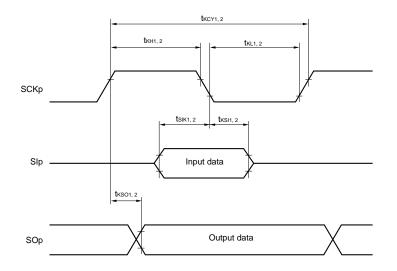
AC Timing Test Points



External System Clock Timing






CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01)
 - **2.** m: Unit number, n: Channel number (mn = 00, 01)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 3, 5)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00)
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.
- (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300			ns
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500			ns
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 2.4 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150			ns
SCKp high-level width	tкнı	4.0 V \leq V _{DD} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 30 pF, R _b = 1.4 kΩ		tксү1/2 — 75			ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 170			ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 – 458			ns
SCKp low-level width	tĸ∟1	$4.0 V \le V_{DD} \le C_b = 30 \text{ pF}, \text{ F}$	$ \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}, $ R _b = 1.4 kΩ	tксү1/2 – 12			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le C_{\text{b}} = 30 \text{ pF}, \text{ F}$	$< 4.0 V, 2.3 V \le V_b \le 2.7 V,$ R _b = 2.7 kΩ	tксү1/2 – 18			ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 – 50			ns

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

2.5.2 Serial interface IICA

(1) I²C standard mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	HS (high-spe	ed main) mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Standard mode: fclk≥ 1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	100	kHz
		MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.7		μs
				4.7		μs
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		μs
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		4.7		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		4.7		μs
Hold time when SCLA0 = "H"	t high	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		250		μs
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		250		μs
Data hold time	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0	3.45	μs
(transmission) ^{Note 2}		$2.4~V \le V_{\text{DD}} \le 5.5~V$		0	3.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		μs
		$2.4 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		μs	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(1A = -40	10 +05	, 4.35 V		$5.25 \text{ V}, 3.0 \text{ V} \le \text{UV}_{\text{DD}} \le 3.6 \text{ V}, 2.4$		5.5 V, VS	s = U V)	
Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	VDSELi	0000	VDDET0		27	32	37	% UV _{BUS}
input [3:0] reference (i = 0) voltage (UV _{BUS} divider ratio) • VDOUEi = 0 (i = 0))		0001	VDDET1		29	34	39	% UV _{BUS}
	(1 = 0)	0010	VDDET2		32	37	42	% UV _{BUS}
		0011	VDDET3		35	40	45	% UV _{BUS}
		0100	VDDET4		38	43	48	% UV _{BUS}
		0101	VDDET5		41	46	51	% UV _{BUS}
		0110	VDDET6		44	49	54	% UV _{BUS}
		0111	VDDET7		47	52	57	% UV _{BUS}
		1000	VDDET8		51	56	61	% UV _{BUS}
		1001	VDDET9		55	60	65	% UV _{BUS}
		1010	VDDET10		59	64	69	% UV _{BUS}
		1011	VDDET11		63	68	73	% UV _{BUS}
		1100	VDDET12		67	72	77	% UV _{BUS}
		1101	VDDET13		71	76	81	% UV _{BUS}
		1110	VDDET14		75	80	85	% UV _{BUS}
		1111	VDDET15		79	84	89	% UV _{BUS}

(4) BC option standard (Function)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 4.35 \text{ V} \le \text{UV}_{BUS} \le 5.25 \text{ V}, 3.0 \text{ V} \le \text{UV}_{DD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	Conditions			MAX.	Unit
Resolution	Res				8		Bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

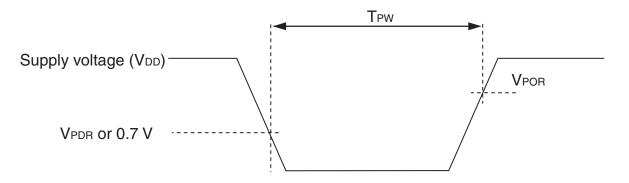
3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		–0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{\rm Note1}$	V
UVDD pin input voltage	VIUVDD	UVDD	-0.3 to V _{DD} +0.3	V
Input voltage	VI1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P70 to P75, P120 to P124, P137, P140, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	VI2	P60 to P63 (N-ch open-drain)	–0.3 to +6.5	V
	VI3	UDP0, UDM0, UDP1, UDM1	–0.3 to +6.5	V
	V _{I4}	UV _{BUS}	-0.3 to +6.5	V
Output voltage	V ₀₁	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140	–0.3 to V _{DD} +0.3 ^{Note 2}	V
	V ₀₂	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
Analog input voltage	VAI1	ANI16, ANI17, ANI19	-0.3 to V _{DD} +0.3	V
			and –0.3 to AV $_{\rm REF}$ (+) +0.3 $_{\rm Notes 2, 3}$	
	Vai2	ANI0 to ANI7	$\begin{array}{c} -0.3 \ to \ V_{DD} \ +0.3 \\ and \ -0.3 \ to \ AV_{REF} \ (+) \ +0.3 \\ _{Notes \ 2, \ 3} \end{array}$	V

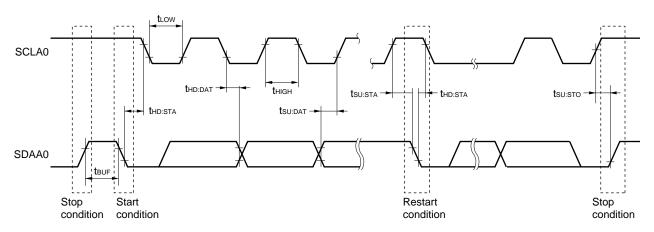
Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - AV_{REF} (+): The + side reference voltage of the A/D converter. This can be selected from AV_{REFP}, the internal reference voltage (1.45 V), and V_{DD}.
 - 3. Vss : Reference voltage

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (h	HS (high-speed main) Mode			
			Sta M		Fast	Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fc∟ĸ ≥ 3.5 MHz	-	_	0	400	kHz
		Standard mode: fcLK ≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	t high		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
UDPi output	VDSELi	1000	V _{P20}		38	40	42	% UV _{BUS}
-	[3:0]	1001	Vp27		51.6	53.6	55.6	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	VP20		38	40	42	% UV _{BUS}
•VDOUEi = 1		1100	V _{P33}		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	V _{M20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{M27}		51.6	53.6	55.6	% UV _{BUS}
•VDOUEi = 1		1100	Vмзз		60	66	72	% UV _{BUS}
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
(UV _{BUS} divider	(i = 0, 1)	1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
• VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UDMi	VDSELi [3:0] (i = 0, 1)	3:0]	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage ^{Note 1}			VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
Voltage (UV _{BUS} divider			VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
• VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
		1001		voltage range of pull-up resistors				
Connect detection with the full speed function (pull-up resistor)		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
UDMi pull-up d		1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
Connect detection with the low-speed (pull-up resistor)		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
UDMi sink current		1000	HDET_SINK		25			μA
Note 2 detection		1001			-			
the BC1.2 port	Connect detection with the BC1.2 portable							
device (sink resistor)								

(3) BC option standard (Host)

Notes 1. If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

