

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Draduct Status	Obselete
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10kgcana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANI0 to ANI7, ANI16, ANI17, ANI19:	Analog Input
AVREFM:	Analog Reference Voltage Minus
AVREFP:	Analog Reference Voltage Plus
EXCLK:	External Clock Input (Main System Clock)
EXCLKS:	External Clock Input (Sub System Clock)
INTP0 to INTP6, INTP8, INTP9:	External Interrupt Input
KR0 to KR5:	Key Return
P00, P01:	Port 0
P14 to P17:	Port 1
P20 to P27:	Port 2
P30, P31:	Port 3
P40, P41:	Port 4
P50, P51:	Port 5
P60 to P63:	Port 6
P70 to P75:	Port 7
P120 to P124:	Port 12
P130, P137:	Port 13
P140:	Port 14
PCLBUZ0, PCLBUZ1:	Programmable Clock Output/Buzzer Output
REGC:	Regulator Capacitance
RESET:	Reset
RTC1HZ:	Real-time Clock Correction Clock (1 Hz) Output
RxD0:	Receive Data
SCK00, SCK01:	Serial Clock Input/Output
SCLA0, SCL00, SCL01:	Serial Clock Input/Output
SDAA0, SDA00, SDA01:	Serial Data Input/Output
SI00, SI01:	Serial Data Input
SO00, SO01:	Serial Data Output
TI00 to TI03:	Timer Input
TO00 to TO03:	Timer Output
TOOL0:	Data Input/Output for Tool
TOOLRxD, TOOLTxD:	Data Input/Output for External Device
TxD0:	Transmit Data
UDM0, UDM1, UDP0, UDP1:	USB Input/Output
UOVRCUR0, UOVRCUR1:	USB Input
UVBUSEN0, UVBUSEN1:	USB Output
UVDD:	USB Power Supply/USB Regulator Capacitance
UVBUS:	USB Input/USB Power Supply (USB Optional BC)
Vdd:	Power Supply
Vss:	Ground
X1, X2:	Crystal Oscillator (Main System Clock)
XT1, XT2:	Crystal Oscillator (Subsystem Clock)

					(2/2)		
	Item	32	-pin	4	8-pin		
		R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC		
Clock output	/buzzer output	2		2			
		 2.93 kHz, 5. (Main system clock: fMA 256 Hz, 512 kHz (Subsystem clock: fsub 	86 kHz, 11.7 kHz, 1.5 M	Hz, 3 MHz, 6 MHz, 12 M Hz, 4.096 kHz, 8.192 kH	ИНz lz, 16.384 kHz, 32.768		
8/10-bit resolu	tion A/D converter	8 channels		9 channels			
Serial interfac	e	CSI: 2 channels/UART:	1 channel/simplified I ² C	: 2 channels			
	I ² C bus	1 channel					
USB	Host controller	2 channels	_	2 channels	-		
	Function controller	1 channel					
Multiplier and		Multiplier: 16 bits × 16 bits = 32 bits (Unsigned or signed)					
divider/multiply-accumulator		• Divider: 32 bits ÷ 32 bits = 32 bits (Unsigned)					
		Multiply-accumulator:16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)					
DMA controlle	r	2 channels					
Vectored	Internal	20		20			
sources	External	8		10			
Key interrupt			_	6			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-rese	et circuit	Power-on-reset: 1.51 V (TYP.) Power-down-reset: 1.50 V (TYP.)					
Voltage detection	tor	2.45 V to 4.06 V (9 stag	jes)				
On-chip debu	g function	Provided					
Power supply	voltage	V _{DD} = 2.4 to 5.5 V					
Operating aml	bient temperature	T _A = -40 to +85 °C (A:	Consumer applications),	T _A = -40 to +105°C (G	Industrial applications)		

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

2.5 Peripheral Functions Characteristics

HS (high-speed main) mode:

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) ($T_A = -40$ to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} ^{Note}			4.0	Mbps

Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_DD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fsc∟	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		1000 Note 1	kHz
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$		400 Note 1	kHz
		C_b = 100 pF, R_b = 3 k Ω			
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V},$		300 ^{Note 1}	kHz
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "L"	t LOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	475		ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "H"	t HIGH	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$	475		ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$2.4~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$	1/fмск + 85		ns
		C_b = 50 pF, R_b = 2.7 k Ω	Note 2		
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 145		ns
		C_b = 100 pF, R_b = 3 k Ω	Note 2		
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$	1/fмск + 230		ns
		C_b = 100 pF, R_b = 5 k Ω	Note 2		
Data hold time (transmission)	t hd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	0	305	ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V,$	0	355	ns
		C_b = 100 pF, R_b = 3 k Ω			
		$2.4~V \leq V_{\text{DD}} < 2.7~V,$	0	405	ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$			

(5) During communication at same potential (simplified I^2C mode) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Caution and Remarks are listed on the next page.)

Notes 6. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 3, 5)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00)
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.
- (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	300			ns
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500			ns
			$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 2.4 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150			ns
SCKp high-level width	t кн1	$4.0 V \le V_{DD} \le$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$	tксү1/2 – 75			ns
		C _b = 30 pF, I	R _b = 1.4 kΩ				
		2.7 V ≤ V _{DD} < C _b = 30 pF	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V, R _b = 2.7 kΩ.	tксү1/2 – 170			ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} <$ $C_{\text{b}} = 30 \text{ pF}, \text{ I}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tксү1/2 – 458			ns
SCKp low-level width	t ĸ∟1	$4.0 V \le V_{DD} \le$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$	tксү1/2 – 12			ns
		C₀ = 30 pF, I	R _b = 1.4 kΩ				
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	< 4.0 V, 2.3 V \leq V _b \leq 2.7 V,	tксү1/2 – 18			ns
		C _b = 30 pF, I	R _b = 2.7 kΩ				
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V,	tксү1/2 – 50			ns
		C _b = 30 pF, I	R _b = 5.5 kΩ				

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$4.0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$		1000 Note 1	kHz
		$2.7~V \leq V_b \leq 4.0~V,$			
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$		1000 ^{Note 1}	kHz
		$2.3 \text{ V} \leq V_{b} < 2.7 \text{ V},$			
		C_b = 50 pF, R_b = 2.7 k Ω			
		$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$		400 Note 1	kHz
		$2.7~V \leq V_{b} \leq 4.0~V,$			
		C_b = 100 pF, R_b = 2.8 k Ω			
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V},$		400 Note 1	kHz
		$2.3~V \leq V_{b} < 2.7~V,$			
		C_b = 100 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$		300 ^{Note 1}	kHz
		$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}^{\text{Note 2}},$			
		C_b = 100 pF, R_b = 5.5 k Ω			
Hold time when SCLr = "L"	t LOW	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	475		ns
		$2.7~V \leq V_{b} \leq 4.0~V,$			
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	475		ns
		$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		$2.7~V \leq V_b \leq 4.0~V,$			
		C_b = 100 pF, R_b = 2.8 k Ω			
		$2.7 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V},$	1150		ns
		$2.3 V \le V_b < 2.7 V$,			
		$C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	1550		ns
		$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 2}}$,			
		$C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Hold time when SCLr = "H"	t high	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$	245		ns
		$2.7 V \le V_b \le 4.0 V$,			
		$C_b = 50 \text{ pr}, R_b = 2.7 \text{ k}\Omega$			
		$2.7 V \le V_{DD} < 4.0 V$,	200		ns
		$2.3 V \le V_b < 2.7 V,$			
		$C_b = 50 \text{ pr}, R_b = 2.7 \text{ K}\Omega_2$	075		
		$4.0 V \leq V_{DD} \leq 5.5 V,$	675		ns
		$2.7 V \le V_b \le 4.0 V$,			
		$C_b = 100 \text{ pr}, R_b = 2.0 \text{ ks}_2$	000		
		$2.7 V \le V_{DD} < 4.0 V$,	600		ns
		$2.3 V \le V_0 \le 2.7 V$, C _b = 100 pE R _b = 2.7 kO			
		$C_0 = 100 \text{ pr}, 100 = 2.7 \text{ Ks}_2$	610		20
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ 1 6 V \le V \le 2 0 V Note 2	010		115
		$1.0 V \ge V_{\rm D} \ge 2.0 V$, $C_{\rm h} = 100 \text{ pF } R_{\rm h} = 5.5 \text{ kO}$			
		00 100 pr, 100 0.0 122			

(Notes, Caution and Remarks are listed on the next page.)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
			Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
Minimum pul	se width	t∟w		300			μs
Detection de	lay time	tld				300	μs

3.2.3 PLL oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency ^{Note}	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, IOH1 high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0 ^{Note} 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P130, P140	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
		(when duty ≤ 70%)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P70 to P75	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-19.0	mA
		(when duty ≤ 70%)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
Іонг		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-60.0	mA
	Іон2	Per pin for P20 to P27	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note} 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and $I_{OH} = -10.0 \text{ mA}$

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL ^{Note 1}				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	ı⊤ ^{Notes 1, 2, 4}				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.8	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.8	mA
A/D converter reference voltage current	ADREF Note				75.0		μA
Temperature sensor operating current	TMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operating current	FSP ^{Notes 1,} 9				2.00	12.30	mA
BGO operating current	_{BGO} Notes 1, 8				2.00	12.30	mA
SNOOZE operating	Isnoz Note 1	ADC operation	The mode is performed Note 10		0.80	1.97	mA
current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	3.00	mA
		CSI operation			0.70	1.56	mA

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tксү1 ≥ 4/fclк	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2 – 24			ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2 – 36			ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2 – 76			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	66			ns
		$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	66			ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	113			ns
SIp hold time (from SCKp1) $^{\rm Note\ 2}$	tksi1			38			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}	1			50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 3, 5, 7)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 5	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск			ns
			fмск ≤ 20 MHz	12/fмск			ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	16/ f мск			ns
			fмск ≤ 16 MHz	12/fмск			ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		12/fмск and 1000			ns
SCKp high-/low-level width	tкн2, tк∟2	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ 2.7 \ V \leq EV_{DD0} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$		tксү2/2 – 14			ns
				tксү2/2 – 16			ns
				tксү2/2 – 36			ns
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+40			ns
(to SCKp↑) ^{Note 1}		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск+60			ns
SIp hold time	tksi2	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		1/fмск+62			ns
(from SCKp↑) ^{Note 2}		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1/fмск+62			ns
Delay time from SCKp \downarrow to	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			2/fмск+66	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			2/fмск+113	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0),
 - n: Channel number (n = 0, 1), g: PIM number (g = 0, 3, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01)
 - **2.** m: Unit number, n: Channel number (mn = 00, 01)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$		400 ^{Note 1}	kHz
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$		100 ^{Note 1}	kHz
		C_b = 100 pF, R_b = 3 k Ω			
Hold time when SCLr = "L"	t LOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1200		ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V,$	4600		ns
		C_b = 100 pF, R_b = 3 k Ω			
Hold time when SCLr = "H"	tніgн	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1200		ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V,$	4600		ns
		C_b = 100 pF, R_b = 3 k Ω			
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 220		ns
		C_b = 50 pF, R_b = 2.7 k Ω	Note 2		
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 580		ns
		C_b = 100 pF, R_b = 3 k Ω	Note 2		
Data hold time (transmission)	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V,$	0	770	ns
		C_b = 50 pF, R_b = 2.7 k Ω			
		$2.4 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			

(4) During communication at same potential (simplified I^2C mode) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Caution and Remarks are listed on the next page.)

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Transfer rate		reception	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$				fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{CLK} = 24$ MHz, $f_{MCK} = f_{CLK}$ Note 2			2.0	Mbps
			$2.7 V \le V_{DD} < 4.0 V$, $2.3 V \le V_b \le 2.7 V$				fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{CLK} = 24$ MHz, $f_{MCK} = f_{CLK}$ Note 2			2.0	Mbps
			$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$				fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{CLK} = 24$ MHz, $f_{MCK} = f_{CLK}$ Note 2			2.0	Mbps	

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Use it with $V_{DD} \ge V_b$.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00), g: PIM, POM number (g = 0, 3, 5, 7)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

Parameter Symbol Conditions MIN. TYP. MAX. Unit UDPi/UDMi VDSELi 0000 **V**DDET0 27 32 37 % UV_{BUS} [3:0] input 0001 VDDET1 29 34 39 % UV_{BUS} reference (i = 0) 0010 32 37 % UV_{BUS} VDDET2 42 voltage (UV_{BUS} divider 0011 VDDET3 35 40 45 % UV_{BUS} ratio) 0100 VDDET4 38 43 48 % UV_{BUS} • VDOUEi = 0 0101 % UV_{BUS} VDDET5 41 46 51 (i = 0)) 0110 VDDET6 44 49 54 % UV_{BUS} 0111 VDDET7 47 52 57 % UV_{BUS} VDDET8 1000 51 56 61 % UV_{BUS} 1001 VDDET9 55 60 65 % UV_{BUS} 1010 59 % UV_{BUS} VDDET10 64 69 1011 VDDET11 63 68 73 % UV_{BUS} 1100 VDDET12 67 72 77 % UV_{BUS} 1101 VDDET13 71 76 81 % UV_{BUS} 85 1110 75 80 % UV_{BUS} VDDET14 1111 VDDET15 79 84 89 % UV_{BUS}

(4) BC option standard (Function)

(T _A = -40 to +105°C	C. 4.35 V ≤ UV _{BUS}	≤ 5.25 V. 3.0 V ≤ I	$UV_{DD} \le 3.6 V. 2.4$	$V \le V_{DD} \le 5.5 V. V_{SS} = 0 V$)
۰.		, 4.00 • 3 0 • 500	, <u></u>			,

LVD Detection Voltage of Interrupt & Reset Mode ($T_A = -40$ to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

		1						
Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	VPOC	POC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.75	2.86	V
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3]	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

(T_A = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

