

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, MMC/SD, SPI, UART/USART, USB OTG, USIC
Peripherals	DMA, I ² S, LED, POR, Touch-Sense, WDT
Number of I/O	75
Program Memory Size	1.5MB (1.5M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	276K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-25
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4700f100f1536aaxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4[78]00 series devices.

The document describes the characteristics of a superset of the XMC4[78]00 series devices. For simplicity, the various device types are referred to by the collective term XMC4[78]00 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

Summary of Features

1 Summary of Features

The XMC4[78]00 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

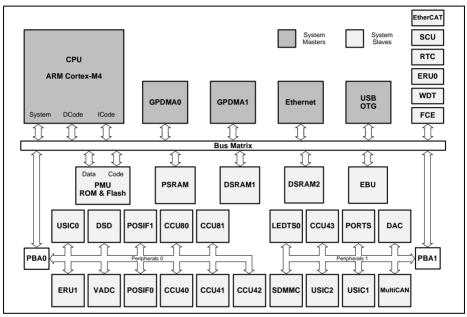


Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- General Purpose DMA with up-to channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests
- Flexible CRC Engine (FCE) for multiple bit error detection

Data Sheet

Summary of Features

Derivative ¹⁾	LED TS Intf.	SD MMC Intf.	EBU Intf. ²⁾	ETH Intf. 3)	ECAT Slave Intf.	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4800-E196x2048	1	1	SDM	MR	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-F144x2048	1	1	SDM	MR	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-F100x2048	1	1	M16	R	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-E196x1536	1	1	SDM	MR	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-F144x1536	1	1	SDM	MR	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-F100x1536	1	1	M16	R	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-E196x1024	1	1	SDM	MR	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-F144x1024	1	1	SDM	MR	2 x MII	1	3 x 2	N[05] MO[0255]
XMC4800-F100x1024	1	1	M16	R	2 x MII	1	3 x 2	N[05] MO[0255]

Table 2Features of XMC4[78]00 Device Types (cont'd)

1) x is a placeholder for the supported temperature range.

2) Memory types supported S=SDRAM, D=DEMUX, M=MUX 16-bit and 32-bit, M16=MUX 16-bit

3) Supported interfaces, M=MII, R=RMII.

Table 3	Features of XMC4[78]00 Device Types
---------	-------------------------------------

Derivative ¹⁾	ADC Chan.	DSD Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.
XMC4700-E196x2048	32	4	2	4 x 4	2 x 4	2
XMC4700-F144x2048	32	4	2	4 x 4	2 x 4	2
XMC4700-F100x2048	24	4	2	4 x 4	2 x 4	2
XMC4700-E196x1536	32	4	2	4 x 4	2 x 4	2
XMC4700-F144x1536	32	4	2	4 x 4	2 x 4	2
XMC4700-F100x1536	24	4	2	4 x 4	2 x 4	2
XMC4800-E196x2048	32	4	2	4 x 4	2 x 4	2

XMC4700 / XMC4800 XMC4000 Family

General Device Information

Table 10	Package Pi	n Mapping	(cont'd)		
Function	LFBGA-196	LQFP-144	LQFP-100	Pad Type	Notes
P0.11	G5	139	95	A1+	
P0.12	F5	138	94	A1+	
P0.13	E5	137	-	A1+	
P0.14	G6	136	-	A1+	
P0.15	E6	135	-	A1+	
P1.0	F9	112	79	A1+	
P1.1	G9	111	78	A1+	
P1.2	E11	110	77	A2	
P1.3	E12	109	76	A2	
P1.4	E10	108	75	A1+	
P1.5	F10	107	74	A1+	
P1.6	D9	116	83	A2	
P1.7	D10	115	82	A2	
P1.8	C10	114	81	A2	
P1.9	D11	113	80	A2	
P1.10	F12	106	73	A1+	
P1.11	F11	105	72	A1+	
P1.12	G11	104	71	A2	
P1.13	G12	103	70	A2	
P1.14	G10	102	69	A2	
P1.15	J12	94	68	A2	
P2.0	L11	74	52	A2	
P2.1	M12	73	51	A2	After a system reset, via HWSEL this pin selects the DB.TDO function.
P2.2	M11	72	50	A2	
P2.3	N11	71	49	A2	
P2.4	N10	70	48	A2	
P2.5	P10	69	47	A2	
P2.6	L9	76	54	A1+	
P2.7	M9	75	53	A1+	
P2.8	N9	68	46	A2	
P2.9	P9	67	45	A2	

Table 12 Port I/O Functions (cont'd)

Function	Outputs				Inputs											
	ALT1	ALT2	ALT3	ALT4	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
XTAL1									U0C0. DX0F	U0C1. DX0F	U1C0. DX0F		U2C0. DX0F	U2C1. DX0F		
XTAL2																
RTC_XTAL1											ERU0. 1B1					
RTC_XTAL2																

Data Sheet

Infineon

XMC4700 / XMC4800 XMC4000 Family

3 Electrical Parameters

Attention: All parameters in this chapter are preliminary target values and may change based on characterization results.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4[78]00 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with a two-letter abbreviation in column "Symbol":

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are a distinctive feature of the XMC4[78]00 and must be regarded for system design.

SR

Such parameters indicate **S**ystem Requirements, which must be provided by the application system in which the XMC4[78]00 is designed in.

XMC4700 / XMC4800 XMC4000 Family

Electrical Parameters

Figure 13 Pull Device Input Characteristics

Figure 13 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases "B" the internal pull device defines the input logical state against a weak external load.

Parameter	Symbol		Value	S	Unit	Note /	
	-	Min.	Тур.	Typ. Max.		Test Condition	
Total Unadjusted Error	TUE CC	-4	-	4	LSB	12-bit resolution;	
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-3	-	3	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$	
Gain Error ⁸⁾	EA _{GAIN} CC	-4	-	4	LSB		
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-3	-	3	LSB	-	
Offset Error ⁸⁾	EA _{OFF} CC	-4	-	4	LSB		
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	_	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$	
Charge consumption on V_{AREF} per conversion ⁵⁾	$\begin{array}{c} Q_{\rm CONV} \\ { m CC} \end{array}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9)}$	
ON resistance of the analog input path	R _{AIN} CC	-	600	1 200	Ohm		
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm		
Resistance of the reference voltage input path	R _{AREF} CC	_	700	1 700	Ohm		

Table 25 VADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 16).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.
- 8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.
- 9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 459$ ns results in a typical average current of $I_{AREF} = 65.4 \mu A$.

55

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

			· ·	•				
Parameter	Symbol			Values	5	Unit	Note / Test Condition	
			Min.	Тур.	Max.	1		
DC Switching Level	V_{ODC}	CC	100	125	210	mV	$V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$	
Hysteresis	VOHYS	CC	50	-	V _{ODC}	mV		
Detection Delay of a persistent Overvoltage	t _{ODD}	CC	50	-	450	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 210 mV	
			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Always detected	t _{OPDD}	CC	440	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 210 mV	
Overvoltage Pulse			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Never detected	t _{OPDN}	СС	-	-	45	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 210 mV	
Overvoltage Pulse			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV	
Release Delay	t _{ORD}	CC	65	-	105	ns	$V_{AIN} \leq V_{AREF}$	
Enable Delay	t _{OED}	CC	-	100	200	ns		

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

XMC4700 / XMC4800 XMC4000 Family

Electrical Parameters

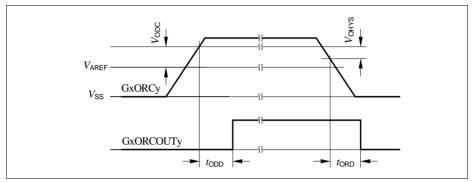


Figure 18 GxORCOUTy Trigger Generation

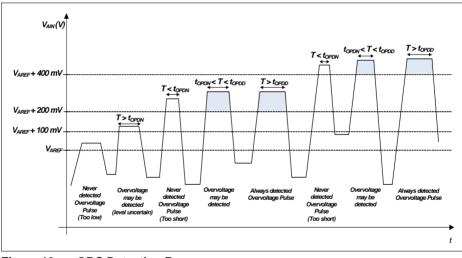


Figure 19 ORC Detection Ranges

3.2.8 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 $V_{\rm DDP}$ = 3.3 V, $T_{\rm A}$ = 25 °C

Parameter	Symb	Symbol		Values	S	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Active supply current ¹⁾¹¹⁾	$I_{\rm DDPA}$	CC	-	135	-	mA	144 / 144 / 144	
Peripherals enabled			-	125	-		144 / 72 / 72	
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	97	-		72 / 72 / 144	
JCPU, JPERIPH, JCCU			-	80	-		24 / 24 / 24	
			-	68	-		1/1/1	
Active supply current Code execution from RAM Flash in Sleep mode	$I_{\rm DDPA}$	CC	-	108	-	mA	144 / 144 / 144	
			-	98	-		144 / 72 / 72	
Active supply current ²⁾	I _{DDPA}	CC	-	86	-	mA	144 / 144 / 144	
Peripherals disabled			-	85	-		144 / 72 / 72	
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	70	-	-	72 / 72 / 144	
JCPU, JPERIPH, JCCU			_	55	-		24 / 24 / 24	
			-	50	-		1/1/1	
Sleep supply current ³⁾	$I_{\rm DDPS}$	CC	-	127	-	mA	144 / 144 / 144	
Peripherals enabled			_	115	-		144 / 72 / 72	
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			_	93	-	-	72 / 72 / 144	
			-	57	-		24 / 24 / 24	
			-	47	-	1	1/1/1	
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz	1		-	48	-	1	100 / 100 / 100	

Table 34 Power Supply Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

- 2) Maximum threshold for reset deassertion.
- 3) The V_{DDP} monitoring has a typical hysteresis of V_{PORHYS} = 180 mV.
- If t_{PR} is not met, low spikes on PORST may be seen during start up (e.g. reset pulses generated by the supply monitoring due to a slow ramping V_{DDP}).

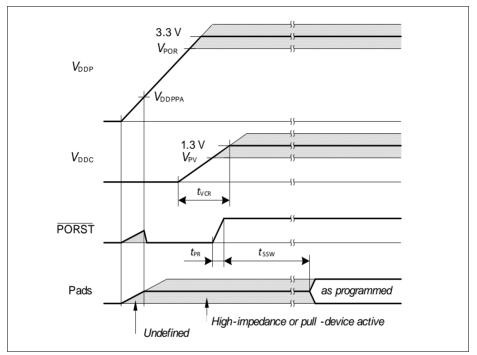


Figure 26 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 47 USIC SSC Slave Mode Timing

Parameter		nbol		Values	S	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
DX1 slave clock period	t _{CLK}	SR	66.6	-	-	ns		
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	t ₁₀	SR	3	-	-	ns		
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	t ₁₁	SR	4	-	-	ns		
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	t ₁₂	SR	6	-	-	ns		
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	4	-	-	ns		
Data output DOUT[3:0] valid time	t ₁₄	СС	0	-	24	ns		

 This input timing is valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

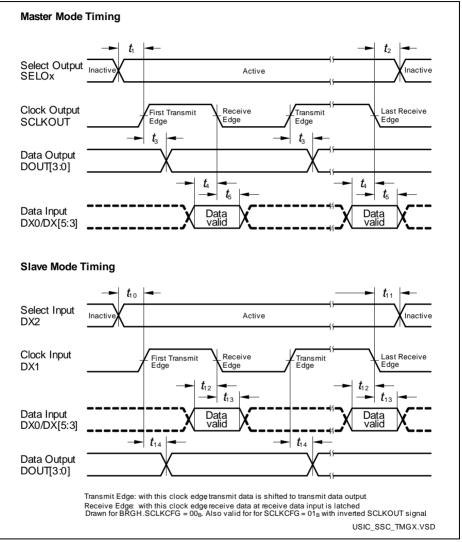
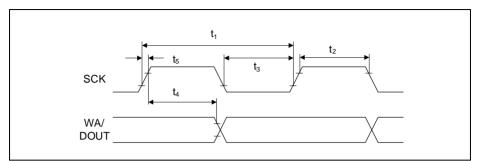



Figure 33 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Figure 35	USIC IIS Master	Transmitter Timing	
-----------	-----------------	--------------------	--

Parameter	Symbol		Values	3	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₆ SR	66.6	_	-	ns	
Clock high time	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock low time	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	-	-	ns	
Hold time	<i>t</i> ₁₀ SR	0	-	-	ns	

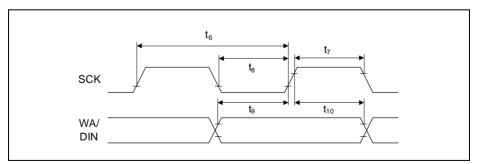


Figure 36 USIC IIS Slave Receiver Timing

Full-Speed Input Path (Read)

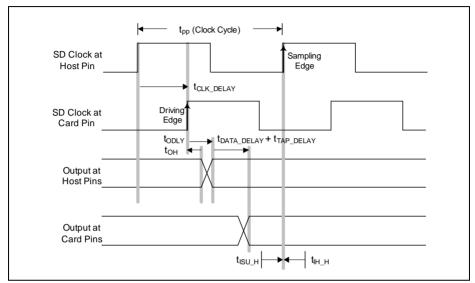


Figure 38 Full-Speed Input Path

Full-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

(5)

```
t_{\text{CLK\_DELAY}} + t_{\text{DATA\_DELAY}} + t_{\text{TAP\_DELAY}} + t_{\text{ODLY}} + t_{\text{ISU\_F}} < 0.5 \times t_{\text{pp}}
```

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} < 0.5 \times t_{pp} - t_{\mathrm{ODLY}} - t_{\mathrm{ISU_F}} - t_{\mathrm{TAP_DELAY}}$

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} < 20 - 14 - 2 - t_{\mathrm{TAP_DELAY}}$

 $t_{\rm CLK_DELAY} + t_{\rm DATA_DELAY} < 4 - t_{\rm TAP_DELAY}$

The data + clock delay can be up to 4 ns for a 40 ns clock cycle.

Write Timing

Table 58 Asynchronous Write Timing, Multiplexed and Demultiplexed

Parameter	Symbol	Limit Values		Unit		
				Min.	Max.	
A(24:0) output delay	to RD/WR rising	CC	t ₃₀	-2.5	2.5	ns
A(24:0) output delay		CC	t ₃₁	-2.5	2.5	
CS rising edge		CC	t ₃₂	-2	2	
ADV rising edge		CC	t ₃₃	-2	4.5	
BC rising edge		CC	t ₃₄	-2.5	2	
WAIT input setup		SR	t ₃₅	12	-	
WAIT input hold		SR	t ₃₆	0	-	
Data output delay		CC	t ₃₇	-5.5	2	
Data output delay		CC	t ₃₈	-5.5	2	
RD / WR output delay		CC	t ₃₉	-2.5	1.5	

3.3.12.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)

Parameter		nbol	Values			Unit	Note /	
			Min.	Тур.	Max.	-	Test Conditi on	
ETH_MDC period	<i>t</i> ₁	CC	400	-	-	ns	C _L = 25 pF	
ETH_MDC high time	<i>t</i> ₂	CC	160	-	-	ns		
ETH_MDC low time	t ₃	CC	160	_	-	ns		
ETH_MDIO setup time (output)	t_4	CC	10	-	-	ns		
ETH_MDIO hold time (output)	t_5	CC	10	-	-	ns		
ETH_MDIO data valid (input)	t_6	SR	0	—	300	ns		

Table 64 ETH Management Signal Timing Parameters

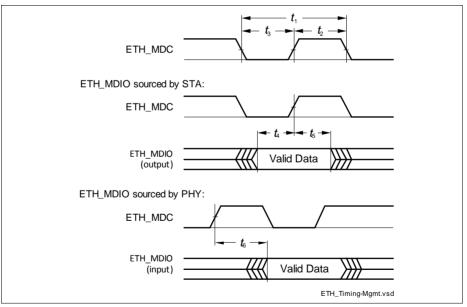
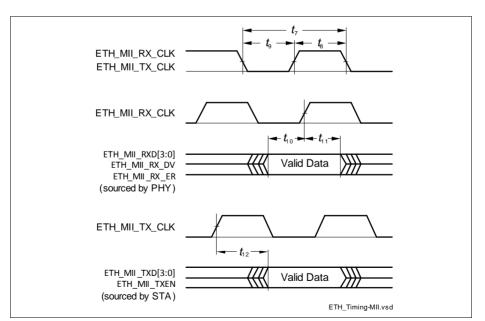


Figure 52 ETH Management Signal Timing



3.3.12.3 ETH MII Parameters

In the following, the parameters of the MII (Media Independent Interface) are described.

Parameter	Symbol		Values			Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Clock period, 10 Mbps	<i>t</i> ₇	SR	400	-	-	ns	C _L = 25 pF	
Clock high time, 10 Mbps	<i>t</i> ₈	SR	140	-	260	ns	-	
Clock low time, 10 Mbps	t ₉	SR	140	-	260	ns	-	
Clock period, 100 Mbps	<i>t</i> ₇	SR	40	-	-	ns	-	
Clock high time, 100 Mbps	<i>t</i> ₈	SR	14	-	26	ns	-	
Clock low time, 100 Mbps	t ₉	SR	14	-	26	ns		
Input setup time	<i>t</i> ₁₀	SR	10	-	-	ns	-	
Input hold time	<i>t</i> ₁₁	SR	10	-	-	ns		
Output valid time	<i>t</i> ₁₂	CC	0	-	25	ns		

Table 65 ETH MII Signal Timing Parameters

Figure 53 ETH MII Signal Timing

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[78]00 is executed according to the JEDEC standard JESD47I.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Operation lifetime	t _{OP} CC	20	-	-	а	$T_{\rm J} \le 109^{\circ}{ m C},$ device permanent on	
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	3 000	V	EIA/JESD22- A114-B	
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	-	-	1 000	V	Conforming to JESD22-C101-C	
Moisture sensitivity level	MSL CC	_	-	3	-	JEDEC J-STD-020D	
Soldering temperature	$T_{\rm SDR}$ SR	-	_	260	°C	Profile according to JEDEC J-STD-020D	

Table 72Quality Parameters