

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, MMC/SD, SPI, UART/USART, USB OTG, USIC
Peripherals	DMA, I ² S, LED, POR, Touch-Sense, WDT
Number of I/O	75
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	276K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-25
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4700f100k1536aaxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

On-Chip Debug Support

- Full support for debug features: 8 breakpoints, CoreSight, trace
- · Various interfaces: ARM-JTAG, SWD, single wire trace

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC4<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - E: LFBGA
 - F: LQFP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - K: -40°C to 125°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC4[78]00 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC4[78]00 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC4[78]00 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1	Synopsis of XMC4[78]00 Device Types
---------	-------------------------------------

Derivative ¹⁾	Package	Flash Kbytes	SRAM Kbytes
XMC4700-E196x2048	PG-LFBGA-196	2048	352
XMC4700-F144x2048	PG-LQFP-144	2048	352
XMC4700-F100x2048	PG-LQFP-100	2048	352
XMC4700-E196x1536	PG-LFBGA-196	1536	276

XMC4700 / XMC4800 XMC4000 Family

General Device Information

Table 10 Package Pin Mapping (cont'd)								
Function	LFBGA-196	LQFP-144	LQFP-100	Pad Type	Notes			
P14.14	К3	32	21	AN/DIG_IN				
P14.15	K2	31	20	AN/DIG_IN				
P15.2	K1	30	19	AN/DIG_IN				
P15.3	J2	29	18	AN/DIG_IN				
P15.4	J4	28	-	AN/DIG_IN				
P15.5	J3	27	-	AN/DIG_IN				
P15.6	J5	26	-	AN/DIG_IN				
P15.7	J6	25	-	AN/DIG_IN				
P15.8	P6	54	39	AN/DIG_IN				
P15.9	N6	53	38	AN/DIG_IN				
P15.12	M5	50	-	AN/DIG_IN				
P15.13	P4	49	-	AN/DIG_IN				
P15.14	N4	44	-	AN/DIG_IN				
P15.15	M4	43	-	AN/DIG_IN				
USB_DP	G1	16	9	special				
USB_DM	F1	15	8	special				
HIB_IO_0	H4	21	14	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open- drain output and drives "0". As output the medium driver mode is active.			
HIB_IO_1	H3	20	13	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. As output the medium driver mode is active.			
тск	J8	93	67	A1	Weak pull-down active.			
TMS	J7	92	66	A1+	Weak pull-up active. As output the strong-soft driver mode is active.			

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	ol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Con dition
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	_
Junction temperature	T_{J}	SR	-40	-	150	°C	_
Voltage at 3.3 V power supply pins with respect to V_{SS}	V_{DDP}	SR	-	-	4.3	V	-
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	V _{IN}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Voltage on any analog input pin with respect to $V_{\rm AGND}$	V_{AIN} V_{AREF}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA	
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\rm IN}$	SR	-25	-	+25	mA	
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA	

Table 13 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 17**.

Figure 10 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

Table 14 Overload Parameters

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV} SR	-5	-	5	mA	
Absolute sum of all input circuit currents for one port	I _{OVG} SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$
group during overload condition ¹⁾		-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$
Absolute sum of all input circuit currents during overload condition	I _{OVS} SR	-	-	80	mA	ΣI_{OVG}

1) The port groups are defined in Table 17.

Figure 11 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

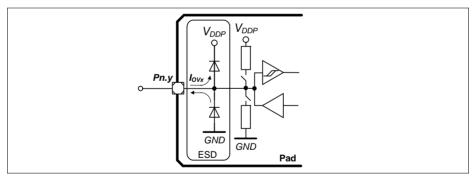
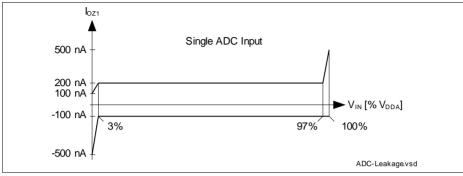


Figure 11 Input Overload Current via ESD structures

Table 15 and Table 16 list input voltages that can be reached under overload conditions.Note that the absolute maximum input voltages as defined in the Absolute MaximumRatings must not be exceeded during overload.

Table 21 Standard Pads Class_A1


Parameter	Symbol	Va	lues	Unit	Note /
		Min.	Max.		Test Condition
Input leakage current	I _{OZA1} CC	-500	500	nA	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1}~{\rm SR}$	$0.6 imes V_{ m DDP}$	V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1}{\rm SR}$	-0.3	$0.36 \times V_{\text{DDF}}$. V	
Output high voltage,	V_{OHA1}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A
$POD^{1)} = weak$	CC	2.4	-	V	$I_{OH} \ge$ -500 μ A
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA
$POD^{1} = medium$		2.4	-	V	$I_{OH} \ge -2 \text{ mA}$
Output low voltage	V _{OLA1} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak
		_	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
Fall time	t _{FA1} CC	_	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium
Rise time	t _{RA1} CC	-	150	ns	$C_{\rm L}$ = 20 pF; POD ¹⁾ = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium

1) POD = Pin Out Driver

Table 22 Standard Pads Class_A1+

Parameter	Symbol Values			Unit	Note /	
		Min.		Max.		Test Condition
Input leakage current	I _{OZA1+} CC	-1		1	μΑ	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1+}\rm SR$	$0.6 \times V_{\rm DDP}$		V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1+}\rm SR$	-0.3		$0.36 \times V_{\rm DDP}$	V	

Conversion Time

Table 26	Conversion Time (Operating Conditions apply)
----------	---

Parameter Symbol			Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}		N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:

 f_{ADC} = 144 MHz i.e. t_{ADC} = 6.9 ns, DIVA = 3, f_{ADCI} = 36 MHz i.e. t_{ADCI} = 27.8 ns

According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{\text{CN12C}} = (2 + 12 + 2) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 16 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 459 \text{ ns}$ 12-bit uncalibrated conversion:

 $t_{CN12} = (2 + 12) \times t_{ADC1} + 2 \times t_{ADC} = 14 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 403 \text{ ns}$

10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 348 \text{ ns}$

8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADC1} + 2 \times t_{ADC} = 10 \times 27.8 \text{ ns} + 2 \times 6.9 \text{ ns} = 292 \text{ ns}$

3.2.3 Digital to Analog Converters (DAC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.	-	Test Condition
RMS supply current	I _{DD}	CC	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs
Resolution	RES	CC	_	12	-	Bit	
Update rate	f _{urate.}	_ _A CC	_		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy
Update rate	f _{urate.}	_ _F CC	_		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy
Settling time	t _{settle}	E CC	-	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB
Slew rate	SR	CC	2	5	-	V/µs	
Minimum output voltage	V _{OUT_} N CC	MIN	-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H
Maximum output voltage	V _{OUT_} N CC	МАХ	-	2.5	_	V	code value unsigned: FFF _H ; signed: 7FF _H
Integral non-linearity	INL	CC	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm}, \\ C_L \leq 50 \text{ pF} \end{array}$
Differential non- linearity	DNL	СС	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$

Table 27	DAC Parameters	(Operating Conditions apply)
----------	----------------	------------------------------

Parameter	Symbol		Values			Note /
		Min.	Тур.	Max.		Test Condition
Offset error	ED _{OFF} C	С	±20		mV	
Gain error	$ED_{G_{IN}}CO$	C -6.5	-1.5	3	%	
Startup time	t _{STARTUP} C	C –	15	30	μs	time from output enabling till code valid ±16 LSB
3dB Bandwidth of Output Buffer	<i>f</i> _{C1} C	C 2.5	5	-	MHz	verified by design
Output sourcing current	I _{OUT_SOURC} CC	CE -	-30	-	mA	
Output sinking current	I _{OUT_SINK} CC	-	0.6	-	mA	
Output resistance	R _{OUT} C	C –	50	-	Ohm	
Load resistance	R _L S	R 5	-	-	kOhm	
Load capacitance	C _L S	R –	-	50	pF	
Signal-to-Noise Ratio	SNR CO	-	70	-	dB	examination bandwidth < 25 kHz
Total Harmonic Distortion	THD C	C –	70	-	dB	examination bandwidth < 25 kHz
Power Supply Rejection Ratio	PSRR CO	C –	56	-	dB	to $V_{\rm DDA}$ verified by design

Table 27 DAC Parameters (Operating Conditions apply) (cont'd)

Conversion Calculation

Unsigned: DACxDATA = 4095 × (V_{OUT} - V_{OUT_MIN}) / (V_{OUT_MAX} - V_{OUT_MIN}) Signed: DACxDATA = 4095 × (V_{OUT} - V_{OUT_MIN}) / (V_{OUT_MAX} - V_{OUT_MIN}) - 2048

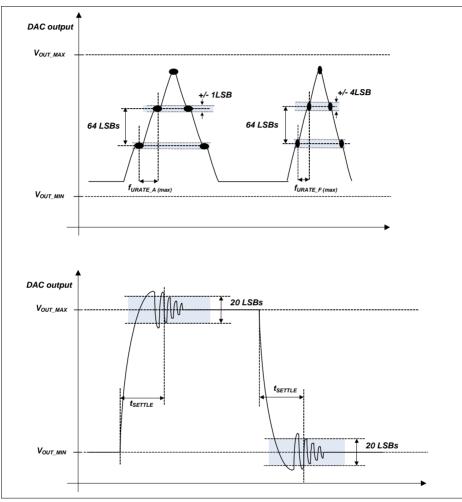


Figure 17 DAC Conversion Examples

- 1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms.
- 2) The following formula applies to the wait state configuration: FCON.WSPFLASH × (1 / f_{CPU}) $\geq t_a$.
- 3) Storage and inactive time included.
- 4) Values given are valid for an average weighted junction temperature of $T_{\rm J}$ = 110°C.
- 5) Only valid with robust EEPROM emulation algorithm, equally cycling the logical sectors. For more details see the Reference Manual.

3.3.4 Phase Locked Loop (PLL) Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Main and USB PLL

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Accumulated Jitter	D _P CC	-	-	±5	ns	accumulated over 300 cycles f_{SYS} = 144 MHz
Duty Cycle ¹⁾	D _{DC} CC	46	50	54	%	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	f _{pllbase} CC	30	-	140	MHz	
VCO input frequency	$f_{\sf REF}\sf CC$	4	-	16	MHz	
VCO frequency range	$f_{\rm VCO} {\rm CC}$	260	-	520	MHz	
PLL lock-in time	t _L CC	-	-	400	μS	

Table 39PLL Parameters

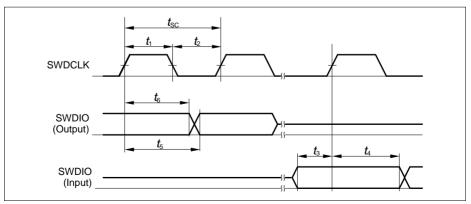
1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values.

Slow Internal Clock Source

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Nominal frequency	$f_{\rm OSI}{\rm CC}$	-	32.768	-	kHz	
Accuracy	∆f _{OSI} CC	-4	-	4	%	$V_{BAT} = const.$ 0 °C $\leq T_{A} \leq$ 85 °C
		-5	-	5	%	V_{BAT} = const. $T_A < 0 \text{ °C or}$ $T_A > 85 \text{ °C}$
		-5	-	5	%	$2.4 \text{ V} \le V_{\text{BAT}},$ $T_{\text{A}} = 25 \text{ °C}$
		-10	-	10	%	$1.95 V \le V_{BAT} < 2.4 V,$ $T_A = 25 °C$
Start-up time	t _{OSIS} CC	-	50	-	μS	

Table 41 Slow Internal Clock Parameters

3.3.7 Serial Wire Debug Port (SW-DP) Timing

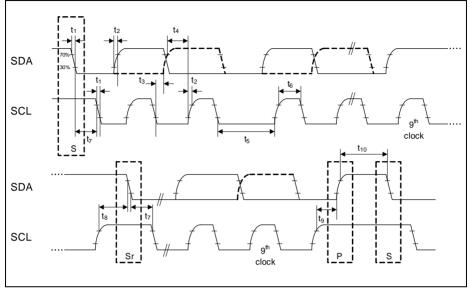

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 43	SWD Interface Timing Parameters (Operating Conditions apply)
----------	--

Parameter		nbol		Values	6	Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	C _L = 30 pF
			40	-	-	ns	C _L = 50 pF
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	_	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns	
SWDIO output valid time	t_5	CC	-	-	17	ns	C _L = 50 pF
after SWDCLK rising edge			-	-	13	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	_	ns	


Table 49 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	C _b SR	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Figure 34 USIC IIC Stand and Fast Mode Timing

3.3.9.4 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	ues Unit		Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	-	_	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	_	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	_	-	0.15 x	ns	
				t _{1min}		

93

Table 50 USIC IIS Master Transmitter Timing

No clock delay:		
		(7)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$	
With clock delay:		
	$t_{ODLY H} + t_{DATA DELAY} + t_{TAP DELAY} + t_{ISU} < t_{WL} + t_{CLK DELAY}$	(8)
	CODLY_H + *DATA_DELAY + *TAP_DELAY + *ISU > *WL + *CLK_DELAY	
		(9)
	$t_{\text{DATA}_\text{DELAY}} + t_{\text{TAP}_\text{DELAY}} - t_{\text{CLK}_\text{DELAY}} < t_{\text{WL}} - t_{\text{ISU}} - t_{\text{ODLY}_\text{H}}$	
	$t_{\text{DATA}_\text{DELAY}} - t_{\text{CLK}_\text{DELAY}} < t_{\text{WL}} - t_{\text{ISU}} - t_{\text{ODLY}_H} - t_{\text{TAP}_\text{DELAY}}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$	
	$t_{\text{DATA_DELAY}} - t_{\text{CLK_DELAY}} < -10 - t_{\text{TAP_DELAY}}$	

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

 $t_{\mathrm{CLK_DELAY}} < t_{WL} + t_{\mathrm{OH_H}} + t_{\mathrm{DATA_DELAY}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\text{CLK_DELAY}} - t_{\text{DATA_DELAY}} < 10 + 2 + t_{\text{TAP_DELAY}} - 2$

 $t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY}$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of t_{WL} = 10 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

3.3.10.2 EBU Burst Mode Access Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating Conditions apply, with Class A2 pins and $C_1 = 16 \text{ pF}$.

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Output delay from BFCLKO rising edge	<i>t</i> ₁₀	СС	-2	-	2	ns	-
RD and RD/WR active/inactive after BFCLKO active edge ¹⁾	t ₁₂	CC	-2	-	2	ns	-
CSx output delay from BFCLKO active edge ¹⁾	t ₂₁	CC	-2.5	-	1.5	ns	-
ADV active/inactive after BFCLKO active edge ²⁾	t ₂₂	CC	-2	-	2	ns	_
BAA active/inactive after BFCLKO active edge ²⁾	<i>t</i> _{22a}	CC	-2.5	-	1.5	ns	-
Data setup to BFCLKI rising edge ³⁾	<i>t</i> ₂₃	SR	3	-	-	ns	-
Data hold from BFCLKI rising edge ³⁾	<i>t</i> ₂₄	SR	0	-	-	ns	-
WAIT setup (low or high) to BFCLKI rising edge ³⁾	t ₂₅	SR	3	-	-	ns	-
WAIT hold (low or high) from BFCLKI rising edge ³⁾	t ₂₆	SR	0	-	-	ns	-

Table 59 EBU Burst Mode Read / Write Access Timing Parameters

1) An active edge can be a rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and the clock divider ratio.

Negative minimum values for these parameters mean that the last data read during a burst may be corrupted. However, with clock feedback enabled, this value is an oversampling not required for the internal bus transaction, and will be discarded.

2) This parameter is valid for BUSCONx.EBSE = 1 and BUSAPx.EXTCLK = 00_B.

For BUSCONx.EBSE = 1 and other values of BUSAPx.EXTCLK, ADV and BAA will be delayed by 1/2 of the internal bus clock period T_{CPU} = 1 / f_{CPU} .

For BUSCONx. EBSE = 0 and BUSAPx.EXTCLK = 11_B , add 2 internal bus clock periods.

For BUSCONx. EBSE = 0 and other values of BUSAPx.EXTCLK, add 1 internal bus clock period.

XMC4700 / XMC4800 XMC4000 Family

Electrical Parameters

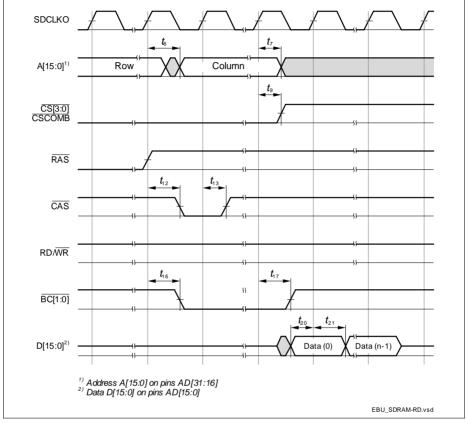


Figure 48 EBU SDRAM Read Access Timing

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}} - V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

4.2 Package Outlines

The availability of different packages for different devices types is listed in Table 1.

The exposed die pad dimensions are listed in Table 71.

www.infineon.com

Published by Infineon Technologies AG