

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, MMC/SD, SPI, UART/USART, USB OTG, USIC
Peripherals	DMA, I ² S, LED, POR, Touch-Sense, WDT
Number of I/O	119
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	276К х 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 32x12b; D/A 2x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-24
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4700f144k1536aaxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4[78]00 series devices.

The document describes the characteristics of a superset of the XMC4[78]00 series devices. For simplicity, the various device types are referred to by the collective term XMC4[78]00 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

Summary of Features

1 Summary of Features

The XMC4[78]00 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- General Purpose DMA with up-to channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests
- Flexible CRC Engine (FCE) for multiple bit error detection

Data Sheet

Summary of Features

Table 1 Synopsis of XMC4[78]00 Device Types (cont'd)

Derivative ¹⁾	Package	Flash Kbytes	SRAM Kbytes	
XMC4700-F144x1536	PG-LQFP-144	1536	276	
XMC4700-F100x1536	PG-LQFP-100	1536	276	
XMC4800-E196x2048	PG-LFBGA-196	2048	352	
XMC4800-F144x2048	PG-LQFP-144	2048	352	
XMC4800-F100x2048	PG-LQFP-100	2048	352	
XMC4800-E196x1536	PG-LFBGA-196	1536	276	
XMC4800-F144x1536	PG-LQFP-144	1536	276	
XMC4800-F100x1536	PG-LQFP-100	1536	276	
XMC4800-E196x1024	PG-LFBGA-196	1024	200	
XMC4800-F144x1024	PG-LQFP-144	1024	200	
XMC4800-F100x1024	PG-LQFP-100	1024	200	

1) x is a placeholder for the supported temperature range.

1.3 Device Type Features

The following table lists the available features per device type.

Table 2 Features of XMC4[78]00 Device Types

Derivative ¹⁾	LED TS Intf.	SD MMC Intf.	EBU Intf. ²⁾	ETH Intf. 3)	ECAT Slave Intf.	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4700-E196x2048	1	1	SDM	MR	-	1	3 x 2	N[05] MO[0255]
XMC4700-F144x2048	1	1	SDM	MR	-	1	3 x 2	N[05] MO[0255]
XMC4700-F100x2048	1	1	M16	R	-	1	3 x 2	N[05] MO[0255]
XMC4700-E196x1536	1	1	SDM	MR	-	1	3 x 2	N[05] MO[0255]
XMC4700-F144x1536	1	1	SDM	MR	-	1	3 x 2	N[05] MO[0255]
XMC4700-F100x1536	1	1	M16	R	-	1	3 x 2	N[05] MO[0255]

The XMC4[78]00 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

 $V_{\rm AGND}$ is the low potential to the analog reference $V_{\rm AREF}$. Depending on the application it can share the common ground or have a different potential. In devices with shared $V_{\rm DDA}/V_{\rm AREF}$ and $V_{\rm SSA}/V_{\rm AGND}$ pins the reference is tied to the supply. Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

Table 15	PN-Junction Characterisitics for positive Overload							
Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	I _{ον} = 5 mA, T _J = 150 °C						
A1 / A1+	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.75 V						
A2	$V_{\rm IN} = V_{\rm DDP}$ + 0.7 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.6 V						
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ + 0.75 V						

Table 16	PN-Junction Characterisitics for negative Overload

Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	I _{ov} = 5 mA, T _J = 150 °C							
A1 / A1+	$V_{\rm IN} = V_{\rm SS}$ - 1.0 V	$V_{\rm IN} = V_{\rm SS}$ - 0.75 V							
A2	$V_{\rm IN} = V_{\rm SS}$ - 0.7 V	$V_{\rm IN} = V_{\rm SS}$ - 0.6 V							
AN/DIG_IN	$V_{\rm IN}$ = $V_{\rm DDP}$ - 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ - 0.75 V							

Table 17	Port Groups for Overload and Short-Circuit Current Sum
	Parameters

Group	Pins
1	P0.[15:0], P3.[15:0], P8.[11:0]
2	P14.[15:0], P15.[15:0]
3	P2.[15:0], P5.[11:0], P7[11:0]
4	P1.[15:0], P4.[7:0], P6.[6:0], P9.[11:0]

3.2.2 Analog to Digital Converters (VADC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	-	Values	S	Unit	Note /	
		Min.	Тур.	Max.	-	Test Condition	
Analog reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{}+$ 0.05 ¹⁾	V		
Analog reference ground ⁵⁾	$V_{ m AGND}$ SR	V _{SSM} - 0.05	-	V _{AREF} - 1	V		
Analog reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	_	V _{DDA} + 0.1	V		
Analog input voltage	$V_{\rm AIN}~{\rm SR}$	$V_{\rm AGND}$	-	V_{DDA}	V		
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$\begin{array}{l} 0.03 \times V_{\rm DDA} < \\ V_{\rm AIN} < 0.97 \times V_{\rm DDA} \end{array}$	
		-500	-	100	nA	$\begin{array}{l} 0 \ V \leq V_{AIN} \leq 0.03 \\ \times \ V_{DDA} \end{array}$	
		-100	-	500	nA	$\begin{array}{l} \textbf{0.97} \times V_{DDA} \\ \leq V_{AIN} \leq V_{DDA} \end{array}$	
Input leakage current at VAREF	I _{OZ2} CC	-1	-	1	μA	$0 V \le V_{AREF} \le V_{DDA}$	
Input leakage current at VAGND	I _{OZ3} CC	-1	-	1	μA	$\begin{array}{l} 0 \ V \leq V_{AGND} \\ \leq V_{DDA} \end{array}$	
Internal ADC clock	$f_{\sf ADCI}\sf CC$	2	-	36	MHz	$V_{\rm DDA}$ = 3.3 V	
Switched capacitance at the analog voltage inputs ⁴⁾	C _{AINSW} CC	-	4	6.5	pF		
Total capacitance of an analog input	C _{AINTOT} CC	-	12	20	pF		
Switched capacitance at the positive reference voltage input ⁵⁾⁶⁾	C_{AREFSW} CC	-	15	30	pF		
Total capacitance of the voltage reference inputs ⁵⁾	C_{AREFTOT} CC	-	20	40	pF		

Table 25	VADC Parameters	(Operating	Conditions apply)
----------	-----------------	------------	-------------------

Figure 17 DAC Conversion Examples

3.2.6 USB OTG Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		,	Values	i	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
VBUS input voltage range	$V_{\rm IN}$	СС	0.0	_	5.25	V		
A-device VBUS valid threshold	V_{B1}	СС	4.4	-	-	V		
A-device session valid threshold	V_{B2}	СС	0.8	-	2.0	V		
B-device session valid threshold	$V_{\rm B3}$	СС	0.8	-	4.0	V		
B-device session end threshold	V_{B4}	СС	0.2	-	0.8	V		
VBUS input resistance to ground	R _{VBUS} CC	S_IN	40	-	100	kOhm		
B-device VBUS pull- up resistor	R _{VBUS} CC	S_PU	281	-	-	Ohm	Pull-up voltage = 3.0 V	
B-device VBUS pull- down resistor	R _{VBUS} CC	S_PD	656	_	_	Ohm		
USB.ID pull-up resistor	R _{UID_F} CC	۶U	14	_	25	kOhm		
VBUS input current	I _{VBUS} _ CC	_IN	-	-	150	μA	$0 V \le V_{IN} \le 5.25 V$: T _{AVG} = 1 ms	

Table 30 USB OTG VBUS and ID Parameters (Operating Conditions apply)

3.2.8 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 $V_{\rm DDP}$ = 3.3 V, $T_{\rm A}$ = 25 °C

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾¹¹⁾	$I_{\rm DDPA}$	СС	-	135	-	mA	144 / 144 / 144
Peripherals enabled			-	125	-		144 / 72 / 72
frequency:			-	97	-		72 / 72 / 144
JCPU, JPERIPH, JCCU			-	80	-		24 / 24 / 24
			-	68	-		1/1/1
Active supply current	$I_{\rm DDPA}$	CC	-	108	-	mA	144 / 144 / 144
Code execution from RAM Flash in Sleep mode			-	98	-	-	144 / 72 / 72
Active supply current ²⁾	I _{DDPA}	CC	-	86	-	mA	144 / 144 / 144
Peripherals disabled			-	85	-	-	144 / 72 / 72
feeu/feeuency.			-	70	-		72 / 72 / 144
JCPU, JPERIPH, JCCU			-	55	-		24 / 24 / 24
			-	50	-		1/1/1
Sleep supply current ³⁾	$I_{\rm DDPS}$	CC	-	127	-	mA	144 / 144 / 144
Peripherals enabled			-	115	-		144 / 72 / 72
frequency:			-	93	-	-	72 / 72 / 144
JCPU, JPERIPH, JCCU			-	57	-		24 / 24 / 24
			-	47	-		1/1/1
$f_{CPU}/f_{PERIPH}/f_{CCU}$ in kHz	1		-	48	-	1	100 / 100 / 100

Table 34 Power Supply Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 34Power Supply Parameters

Parameter Symbol			Values	5	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Sleep supply current ⁴⁾	I _{DDPS} CC	_	77	-	mA	144 / 144 / 144	
Peripherals disabled		_	76	-		144 / 72 / 72	
frequency:		_	65	-	_	72 / 72 / 144	
JCPU, JPERIPH, JCCU		_	53	-		24 / 24 / 24	
		_	46	-	_	1/1/1	
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		_	47	-	_	100 / 100 / 100	
Deep Sleep supply	I _{DDPD} CC	_	11	-	mA	24 / 24 / 24	
current ⁵⁾		_	7.0	-	_	4 / 4 / 4	
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz		-	6.6	-	-	1/1/1	
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in kHz		_	7.6	-	_	100 / 100 / 100 ₆₎	
Hibernate supply current RTC on ⁷⁾	I _{DDPH} CC	_	8.7	-	μA	$V_{\rm BAT}$ = 3.3 V	
		_	6.5	-		$V_{\rm BAT}$ = 2.4 V	
		_	5.7	-	_	$V_{\rm BAT}$ = 2.0 V	
Hibernate supply current	I _{DDPH} CC	_	8.0	-	μA	$V_{\rm BAT}$ = 3.3 V	
RTC off ⁸⁾		_	6.0	-		$V_{\rm BAT}$ = 2.4 V	
		_	5.0	-		$V_{\rm BAT}$ = 2.0 V	
Hibernate off ⁹⁾	I _{DDPH} CC	-	4.4	-	μA	$V_{\rm BAT}$ = 3.3 V	
		_	3.5	-		$V_{\rm BAT}$ = 2.4 V	
		_	3.1	-		$V_{\rm BAT}$ = 2.0 V	
Worst case active supply current ¹⁰⁾	I _{DDPA} CC	-	-	250 11)	mA	V _{DDP} = 3.6 V, T _J = 150 °C	
$V_{\rm DDA}$ power supply current	I _{DDA} CC	-	-	_12)	mA		
I_{DDP} current at PORST Low	I _{DDP_PORST} CC	_	5	10	mA	$V_{\rm DDP} = 3.3 \text{ V},$ $T_{\rm J} = 25 \text{ °C}$	
		_	13	55	mA	V _{DDP} = 3.6 V, T _J = 150 °C	
Power Dissipation	P _{DISS} CC	-	-	1.4	W	$V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$	

Figure 33 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.9.3 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values		Unit	Note /	
	-	Min.	Тур.	Max.		Test Condition	
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns		
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns		
Data hold time	t ₃ CC/SR	0	-	-	μs		
Data set-up time	t ₄ CC/SR	250	-	-	ns		
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs		
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs		
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs		
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs		
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs		
Bus free time between a STOP and START condition	<i>t</i> ₁₀ CC/SR	4.7	-	-	μs		
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF		

Table 48 USIC IIC Standard Mode Timing¹⁾

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Table 49 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol		Values	5	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns		
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns		
Data hold time	t ₃ CC/SR	0	-	-	μs		
Data set-up time	t ₄ CC/SR	100	-	-	ns		
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs		
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs		
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs		
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs		
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs		
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs		
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF		

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Table 55 SD Card Bus Timing for High-Speed Mode¹⁾

Parameter	Symbol	Value	s	Unit	Note/ Test	
		Min.	Max.		Condition	
SD card input setup time	t _{ISU}	6	-	ns		
SD card input hold time	t _{IH}	2	-	ns		
SD card output valid time	t _{ODLY}	-	14	ns		
SD card output hold time	t _{OH}	2.5	-	ns		

1) Reference card timing values for calculation examples. Not subject to production test and not characterized.

High-Speed Output Path (Write)

Figure 39 High-Speed Output Path

High-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

No clock delay:		(7)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$	(7)
With clock delay:		
		(8)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$	
		(9)
	$t_{\text{DATA_DELAY}} + t_{\text{TAP_DELAY}} - t_{\text{CLK_DELAY}} < t_{WL} - t_{\text{ISU}} - t_{\text{ODLY_H}}$	
	$t_{\text{DATA_DELAY}} - t_{\text{CLK_DELAY}} < t_{WL} - t_{ISU} - t_{ODLY_H} - t_{TAP_DELAY}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$	
	$t_{\text{DATA}_\text{DELAY}} - t_{\text{CLK}_\text{DELAY}} < -10 - t_{\text{TAP}_\text{DELAY}}$	

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

 $t_{\mathrm{CLK_DELAY}} < t_{WL} + t_{\mathrm{OH_H}} + t_{\mathrm{DATA_DELAY}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\text{CLK_DELAY}} - t_{\text{DATA_DELAY}} < 10 + 2 + t_{\text{TAP_DELAY}} - 2$

 $t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY}$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of t_{WL} = 10 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

Demultiplexed Write Timing

Parameter			Symbol	Limit Values		Unit
				Min.	Max.	
A(15:0) output valid	from SDCLKO	CC	t ₆	-	9	ns
A(15:0) output hold	low-to-high transition	CC	<i>t</i> ₇	3	-	
CS(3:0) low		CC	t ₈	-	9	
CS(3:0) high		CC	t ₉	3	-	
RAS low		CC	t ₁₀	-	9	
RAS high		SR	t ₁₁	3	-	
CAS low	-	SR	t ₁₂	-	9	
CAS high		CC	t ₁₃	3	-	
RD/WR low		CC	t ₁₄	-	9	
RD/WR high		CC	t ₁₅	3	-	
BC(3:0) low		CC	t ₁₆	-	9	
BC(3:0) high		CC	t ₁₇	3	-	
D(15:0) output valid		CC	t ₁₈	-	9	
D(15:0) output hold		CC	t ₁₉	3	-	
CKE output valid ¹⁾		CC	t ₂₂	-	7	
CKE output hold ¹⁾		CC	t ₂₃	2	-	
D(15:0) input hold		SR	t ₂₁	3	-	
D(15:0) input setup to transition	SDCLKO low-to-high	SR	t ₂₀	4	_	

Table 62 EBU SDRAM Access Signal Timing Parameters

1) Not depicted in the read and write access timing figures below.

3.3.12.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)

Parameter	Symbol		,	Values	6	Unit	Note /	
			Min.	Тур.	Max.		Test Conditi on	
ETH_MDC period	<i>t</i> ₁	СС	400	-	-	ns	C _L = 25 pF	
ETH_MDC high time	<i>t</i> ₂	СС	160	-	-	ns		
ETH_MDC low time	t ₃	СС	160	-	-	ns		
ETH_MDIO setup time (output)	<i>t</i> ₄	СС	10	-	-	ns		
ETH_MDIO hold time (output)	<i>t</i> ₅	СС	10	-	-	ns		
ETH_MDIO data valid (input)	t ₆	SR	0	-	300	ns		

Table 64 ETH Management Signal Timing Parameters

Figure 52 ETH Management Signal Timing

XMC4700 / XMC4800 XMC4000 Family

Package and Reliability

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[78]00 is executed according to the JEDEC standard JESD47I.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Values	5	Unit	Note /	
	Min. Typ. Max.		1	Test Condition			
Operation lifetime	t _{OP} CC	20	-	-	а	$T_{\rm J} \le 109^{\circ}{\rm C},$ device permanent on	
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	_	-	3 000	V	EIA/JESD22- A114-B	
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	_	-	1 000	V	Conforming to JESD22-C101-C	
Moisture sensitivity level	MSL CC	-	-	3	_	JEDEC J-STD-020D	
Soldering temperature	$T_{\rm SDR}$ SR	_	-	260	°C	Profile according to JEDEC J-STD-020D	

Table 72Quality Parameters