

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	144MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, MMC/SD, SPI, UART/USART, USB OTG, USIC
Peripherals	DMA, I ² S, LED, POR, Touch-Sense, WDT
Number of I/O	75
Program Memory Size	1.5MB (1.5M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	276К х 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-25
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4800f100k1536aaxqma1

Email: info@E-XFL.COM

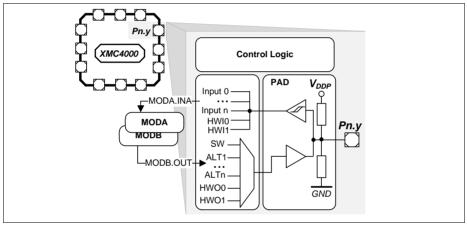
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4700 / XMC4800 XMC4000 Family

General Device Information

Table 10	Package Pi	Package Pin Mapping (cont'd)							
Function	LFBGA-196	LQFP-144	LQFP-100	Pad Type	Notes				
P5.3	L10	81	-	A2					
P5.4	M10	80	-	A2					
P5.5	L8	79	-	A2					
P5.6	M8	78	-	A2					
P5.7	L7	77	55	A1+					
P5.8	K6	58	-	A2					
P5.9	M6	57	-	A2					
P5.10	K5	56	-	A1+					
P5.11	L5	55	-	A1+					
P6.0	J10	101	-	A2					
P6.1	H9	100	-	A2					
P6.2	K10	99	-	A2					
P6.3	J9	98	-	A1+					
P6.4	H10	97	-	A2					
P6.5	H11	96	-	A2					
P6.6	H12	95	-	A2					
P7.0	L13	-	-	A2					
P7.1	M13	-	-	A2					
P7.2	N13	-	-	A2					
P7.3	M14	-	-	A2					
P7.4	N14	-	-	A1+					
P7.5	L14	-	-	A1+					
P7.6	K14	-	-	A1+					
P7.7	J14	-	-	A1+					
P7.8	H14	-	-	A2					
P7.9	G13	-	-	A1+					
P7.10	G14	-	-	A1+					
P7.11	F14	-	-	A1+					
P8.0	B7	-	-	A2					
P8.1	A7	-	-	A2					
P8.2	B3	-	-	A2					
P8.3	B2	-	-	A2					
P8.4	B6	-	-	A1+					

Data Sheet


General Device Information

2.2.2 Port I/O Functions

The following general scheme is used to describe each Port pin:

Table 11 Port I/O Function Description

Function	Outputs			Inputs			
	ALT1	ALTn	HWO0	HWI0	Input	Input	
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA		
Pn.y	MODA.OUT				MODA.INA	MODC.INB	

Figure 8 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

The XMC4[78]00 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

 $V_{\rm AGND}$ is the low potential to the analog reference $V_{\rm AREF}$. Depending on the application it can share the common ground or have a different potential. In devices with shared $V_{\rm DDA}/V_{\rm AREF}$ and $V_{\rm SSA}/V_{\rm AGND}$ pins the reference is tied to the supply. Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

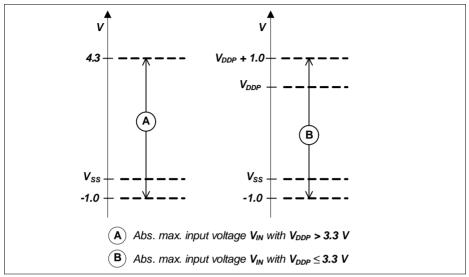


Figure 10 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 14 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Table 14 Overload Parameters

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Input current on any port pin during overload condition	I _{OV} SR	-5	-	5	mA	
Absolute sum of all input circuit currents for one port	I _{OVG} SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$
group during overload condition ¹⁾		-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$
Absolute sum of all input circuit currents during overload condition	I _{OVS} SR	-	-	80	mA	ΣI_{OVG}

1) The port groups are defined in Table 17.

Figure 11 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

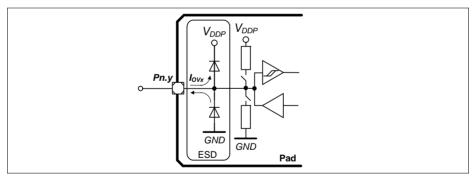


Figure 11 Input Overload Current via ESD structures

Table 15 and Table 16 list input voltages that can be reached under overload conditions.Note that the absolute maximum input voltages as defined in the Absolute MaximumRatings must not be exceeded during overload.

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and their basic characteristics.

Table 18Pad Driver and Pad Classes Overview

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
A	3.3 V	LVTTL I/O	A1 (e.g. GPIO)	6 MHz	100 pF	No
			A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended
			A2 (e.g. ext. Bus)	80 MHz	15 pF	Series termination recommended

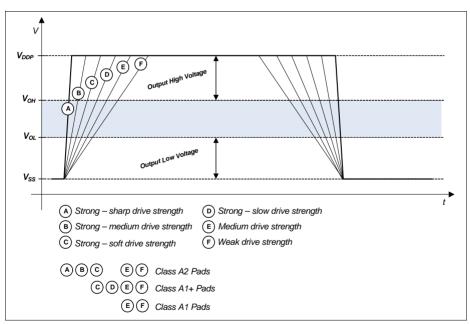


Figure 12 Output Slopes with different Pad Driver Modes

Figure 12 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Va	alues	Unit	Note / Test Condition
		Min.	Max.		
Pin capacitance (digital inputs/outputs)	C _{IO} CC	-	10	pF	
Pull-down current	$ I_{PDL} $	150	-	μΑ	$^{1)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$
	SR	_	10	μΑ	$^{2)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$
Pull-Up current	$ I_{\rm PUH} $	_	10	μΑ	$^{2)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$
	SR	100	-	μΑ	$^{1)}V_{\rm IN} \leq 0.36 \times V_{\rm DDP}$
Input Hysteresis for pads of all A classes ³⁾	HYSA CC	$0.1 \times V_{\text{DDP}}$	-	V	
PORST spike filter always blocked pulse duration	t _{SF1} CC	-	10	ns	
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns	
PORST pull-down current	I _{PPD} CC	13	-	mA	V _{IN} = 1.0 V

Table 20 Standard Pad Parameters

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

Load current at which the pull device still maintains the valid logic level ("keep current").
 With active pull device, at load currents between force and keep current the input state is undefined.

 Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

47

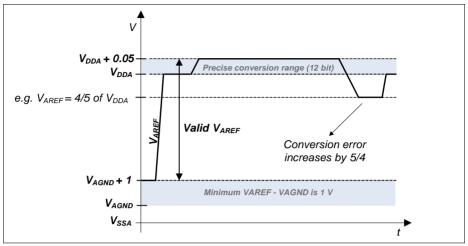
Table 22 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note / Test Condition
		Min.	Max.		
Output high voltage,	V _{OHA1+}	V _{DDP} - 0.4	-	V	<i>I</i> _{OH} ≥ -400 μA
$POD^{1)} = weak$	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA
Output high voltage,		$V_{\rm DDP}$ - 0.4	-	V	I _{OH} ≥ -1.4 mA
$POD^{1)} = medium$		2.4	-	V	I _{OH} ≥ -2 mA
Output high voltage,		$V_{\rm DDP}$ - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA
$POD^{1)} = strong$		2.4	_	V	$I_{\rm OH} \ge$ -2 mA
Output low voltage	$V_{\rm OLA1+}$ CC	_	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong
Fall time	t _{FA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium
		_	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft;
Rise time	t _{RA1+} CC	-	150	ns	$C_{\rm L}$ = 20 pF; POD ¹⁾ = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium
		-	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft

1) POD = Pin Out Driver

Parameter	Symbol		Value	S	Unit	Note /
	-	Min.	Тур.	Max.	-	Test Condition
Total Unadjusted Error	TUE CC	-4	-	4	LSB	12-bit resolution;
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-3	-	3	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$
Gain Error ⁸⁾	EA _{GAIN} CC	-4	-	4	LSB	
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-3	-	3	LSB	-
Offset Error ⁸⁾	EA _{OFF} CC	-4	-	4	LSB	
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	_	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$
Charge consumption on V_{AREF} per conversion ⁵⁾	$\begin{array}{c} Q_{\mathrm{CONV}} \\ \mathrm{CC} \end{array}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9)}$
ON resistance of the analog input path	R _{AIN} CC	-	600	1 200	Ohm	
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm	
Resistance of the reference voltage input path	R _{AREF} CC	_	700	1 700	Ohm	

Table 25 VADC Parameters (Operating Conditions apply)


1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 16).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.
- 8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.
- 9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 459$ ns results in a typical average current of $I_{AREF} = 65.4 \mu A$.

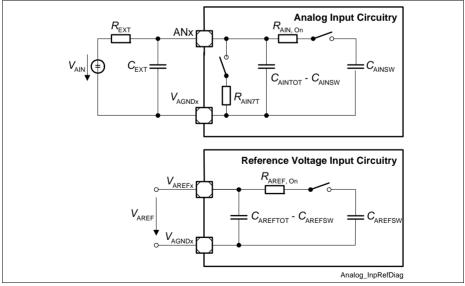
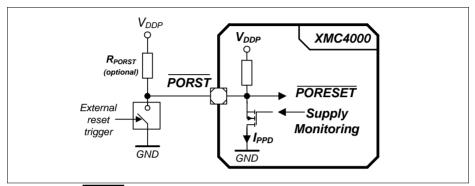

55

Figure 14 VADC Reference Voltage Range

The power-up calibration of the VADC requires a maximum number of 4 $352 f_{ADCI}$ cycles.

Condition	s apply)					
Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input low voltage	$V_{\rm IL}$ SR	-	-	0.8	V	
Input high voltage (driven)	V _{IH} SR	2.0	-	-	V	
Input high voltage (floating) ¹⁾	V _{IHZ} SR	2.7	-	3.6	V	
Differential input sensitivity	V _{DIS} CC	0.2	-	-	V	
Differential common mode range	V _{CM} CC	0.8	-	2.5	V	
Output low voltage	V _{OL} CC	0.0	-	0.3	V	1.5 kOhm pull- up to 3.6 V
Output high voltage	V _{OH} CC	2.8	-	3.6	V	15 kOhm pull- down to 0 V
DP pull-up resistor (idle bus)	R _{PUI} CC	900	-	1 575	Ohm	
DP pull-up resistor (upstream port receiving)	R _{PUA} CC	1 425	-	3 090	Ohm	
DP, DM pull-down resistor	R _{PD} CC	14.25	-	24.8	kOhm	
Input impedance DP, DM	Z _{INP} CC	300	-	-	kOhm	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Driver output resistance DP, DM	Z _{DRV} CC	28	-	44	Ohm	

Table 31 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)


 Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at Bconnector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 25 PORST Circuit

Table 37	Supply	Monitoring	Parameters
----------	--------	------------	------------

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	_	3.05 ²⁾	V	3)
Core supply voltage reset threshold	$V_{\rm PV}$ CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	_	_	2	μs	4)
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{\rm DDC}$ ramp up time	t _{VCR} CC	_	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of $V_{\rm POR}$ or $V_{\rm PV}$

1) Minimum threshold for reset assertion.

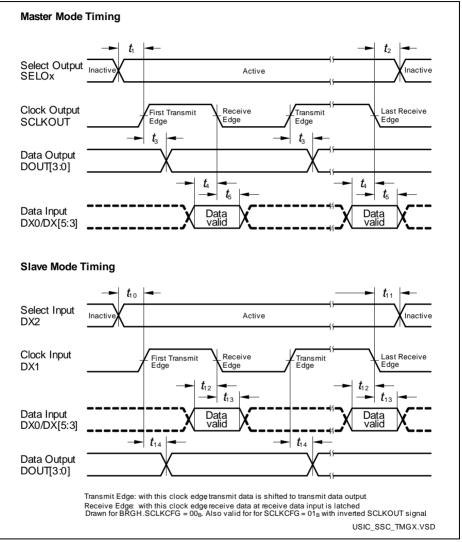
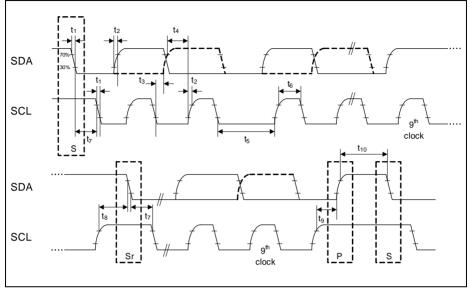


Figure 33 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.9.3 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode.


Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

Table 48 USIC IIC Standard Mode Timing¹⁾

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Figure 34 USIC IIC Stand and Fast Mode Timing

3.3.9.4 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	-	_	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	_	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	_	-	0.15 x	ns	
				t _{1min}		

93

Table 50 USIC IIS Master Transmitter Timing

3.3.9.5 SDMMC Interface Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating Conditions apply, total external capacitive load $C_1 = 40 \text{ pF}$.

AC Timing Specifications (Full-Speed Mode)

Parameter	Symbol		Values	5	Unit	Note/ Test
			Min. Max.			Condition
Clock frequency in full speed transfer mode $(1/t_{pp})$	$f_{\sf pp}$	СС	0	24	MHz	
Clock cycle in full speed transfer mode	t _{pp}	СС	40	-	ns	
Clock low time	t _{WL}	СС	10	-	ns	
Clock high time	t _{WH}	CC	10	-	ns	
Clock rise time	t _{TLH}	CC	-	10	ns	
Clock fall time	t _{THL}	CC	-	10	ns	
Inputs setup to clock rising edge	t _{ISU_F}	SR	2	-	ns	
Inputs hold after clock rising edge	t _{IH_F}	SR	2	-	ns	
Outputs valid time in full speed mode	t _{ODLY_F}	CC	-	10	ns	
Outputs hold time in full speed mode	t _{OH_F}	СС	0	-	ns	

Table 52 SDMMC Timing for Full-Speed Mode

Table 53	SD Card Bus Timing for Full-Speed Mode ¹⁾
----------	--

Parameter	Symbol	Values		Unit	Note/ Test	
		Min.	Max.		Condition	
SD card input setup time	t _{ISU}	5	-	ns		
SD card input hold time	t _{IH}	5	-	ns		

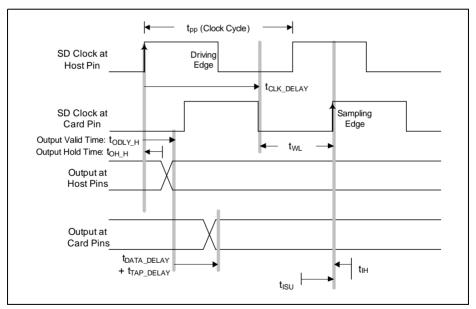


Table 55 SD Card Bus Timing for High-Speed Mode¹⁾

Parameter	Symbol	Value	s	Unit	Note/ Test
		Min.	Max.		Condition
SD card input setup time	t _{ISU}	6	_	ns	
SD card input hold time	t _{IH}	2	-	ns	
SD card output valid time	t _{ODLY}	-	14	ns	
SD card output hold time	t _{OH}	2.5	_	ns	

1) Reference card timing values for calculation examples. Not subject to production test and not characterized.

High-Speed Output Path (Write)

Figure 39 High-Speed Output Path

High-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

Parameter			Symbol	Limit \	Limit Values	
				Min.	Max.	
A(15:0) output valid	from SDCLKO	CC	t ₆	-	9	ns
A(15:0) output hold	low-to-high	CC	<i>t</i> ₇	3	-	
CS(3:0) low	- transition	CC	t ₈	-	9	
CS(3:0) high	-	CC	t ₉	3	-	
RAS low	-	CC	<i>t</i> ₁₀	-	9	
RAS high	-	SR	t ₁₁	3	-	
CAS low	-	SR	t ₁₂	-	9	
CAS high	-	CC	t ₁₃	3	-	
RD/WR low	-	CC	t ₁₄	-	9	
RD/WR high	-	CC	t ₁₅	3	-	
BC(3:0) low		CC	t ₁₆	-	9	
BC(3:0) high	-	CC	t ₁₇	3	-	
D(15:0) output valid	-	CC	t ₁₈	-	9	
D(15:0) output hold		CC	t ₁₉	3	-	
CKE output valid ¹⁾		CC	t ₂₂	-	7	
CKE output hold ¹⁾	-	CC	t ₂₃	2	-	
D(15:0) input hold		SR	t ₂₁	3	-	
D(15:0) input setup to transition	SDCLKO low-to-high	SR	t ₂₀	4	-	

Table 62 EBU SDRAM Access Signal Timing Parameters

1) Not depicted in the read and write access timing figures below.

3.3.11 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter Symbol		bol		Value	s	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Rise time	t _R	CC	4	-	20	ns	C _L = 50 pF	
Fall time	t _F	CC	4	-	20	ns	C _L = 50 pF	
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	-	111.11	%	C _L = 50 pF	
Crossover voltage	V_{CRS}	CC	1.3	-	2.0	V	C _L = 50 pF	

 Table 63
 USB Timing Parameters (operating conditions apply)

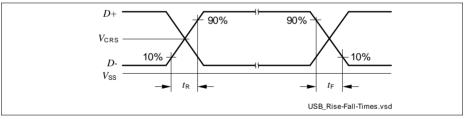


Figure 50 USB Signal Timing

3.3.12.4 ETH RMII Parameters

In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.

Table 66 ETH RMII Signal Timing Parameter	Table 66	RMII Signal Timing Parameters
---	----------	-------------------------------

Parameter		Symbol		Value	S	Unit	Note /	
			Min.	Тур.	Max.		Test Condit ion	
ETH_RMII_REF_CL clock period	t ₁₃	SR	20	-	_	ns	C _L = 25 pF; 50 ppm	
ETH_RMII_REF_CL clock high time	t ₁₄	SR	7	-	13	ns	C _L = 25 pF	
ETH_RMII_REF_CL clock low time	t ₁₅	SR	7	-	13	ns		
ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time	t ₁₆	SR	4	-	_	ns		
ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time	t ₁₇	SR	2	-	-	ns		
ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid	t ₁₈	CC	4	-	15	ns		

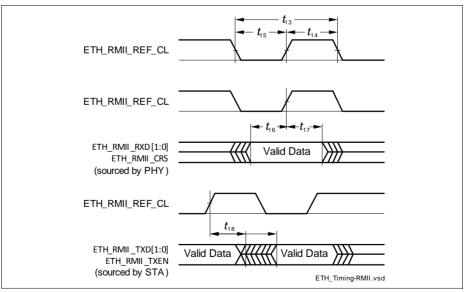


Figure 54 ETH RMII Signal Timing