E. Renesas Electronics America Inc - UPD78F1000GB-GAF-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1000gb-gaf-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							1			(2/2)			
Iter	n			78K0R/KF3-	r	~	<u> </u>	r	/KG3-L	~			
		μ PD78F1010	μ PD78F1011	μ PD78F1012	μ PD78F1027	μ PD78F1028	μ PD78F1013	μ PD78F1014	μ PD78F1029 ^{Note 1}	μ PD78F1030 ^{Note 1}			
Clock output/buzze	er output					2							
		(periphe • 256 Hz	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (peripheral hardware clock: f_{MAIN} = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: f_{SUB} = 32.768 kHz operation) 										
10-bit resolution A/ (AV _{REF} = 1.8 to 5.5				12 channel	S			16 ch	annels				
Comparators						-							
Programmable gai	n amplifiers					_							
Serial interface		 CSI: 1 d CSI: 1 d UART s 	hannel/UA hannel/UA upporting I	RT: 1 chan _IN-bus: 1 c	nel/simplifie nel/simplifie	ed I ² C: 1 ch	annel	F1029, 78F	-1030)				
	I ² C bus		1 channel										
Multiplier/divider			 16 bits × 16 bits = 32 bits (multiplication) 32 bits ÷ 32 bits = 32 bits (division) 										
DMA controller		2 channels											
Vectored interrupt	Internal		33		3	35	;	33	3	35			
sources	External					13							
Key interrupt		8 channel	s (KR0 to k	(R7)									
Reset • Reset by RESET pin • Internal reset by watchdog timer • Internal reset by power-on-clear • Internal reset by low-voltage detector • Internal reset by illegal instruction execution Note 2 • Internal reset by a reset processing check error													
Power-on-clear cire	cuit	• Power-o • Power-d		1.61 ±0.09 1.59 ±0.09									
Low-voltage detect	tor	1.91 V to	1.91 V to 4.22 V (16 stages)										
On-chip debug fun	ction	Provided	Provided										
Power supply volta	ige	V _{DD} = 1.8	to 5.5 V										
Operating ambient temperature $T_A = -40$ to $+85 \ ^{\circ}C$													

Notes 1. The μ PD78F1029 and μ PD78F1030 don't have the FBGA package.

2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(1) Port functions (2/2): 78K0R/KE3-L

Function Name	I/O	Function	After Reset	Alternate Function
P70	I/O	Port 7.	Input port	KR0/SO01/INTP4
P71		8-bit I/O port.		KR1/SI01/INTP5
P72		Input of P71, P72, P74, and P75 can be set to TTL buffer. Output of P70, P72, P73, and P75 can be set to N-ch open-drain		KR2/SCK01/INTP6
P73		output (V _{DD} tolerance).		KR3/SO00/TxD0
P74		Input/output can be specified in 1-bit units.		KR4/SI00/RxD0
P75		Use of an on-chip pull-up resistor can be specified by a software		KR5/SCK00
P76		setting.		KR6
P77				KR7
P80	I/O	Port 8. 4-bit I/O port.	Analog input	CMP0P/INTP3/ PGAI
P81		Inputs/output can be specified in 1-bit units.		CMP0M
P82		Inputs of P80 to P83 can be set as comparator inputs or programmable gain amplifier inputs.		CMP1P/INTP7
P83				CMP1M
P120	I/O	Port 12.	Input port	INTP0/EXLVI
P121	Input	1-bit I/O port and 4-bit input port.		X1
P122		For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified		X2/EXCLK
P123		by a software setting.		XT1
P124				XT2
P140	Output	Port 14.	Output port	PCLBUZ0
P141	I/O	1-bit output port and 1-bit I/O port. For only P141, input/output can be specified. For only P141, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	PCLBUZ1
P150 to P153	I/O	Port 15. 4-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI8 to ANI11

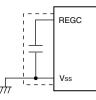
(1) Port functions (2/3): 78K0R/KG3-L

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5.	Input port	SCK40 ^{Note}
P51		8-bit I/O port.		SI40/RxD4 ^{Note}
P52		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SO40/TxD4 ^{Note}
P53		software setting.		SCK41 ^{Note}
P54				SI41 ^{Note}
P55				SO41 ^{Note}
P56				_
P57				_
P60	I/O	Port 6.	Input port	SCL0
P61		8-bit I/O port.		SDA0
P62, P63		Output of P60 to P63 can be set to N-ch open-drain output		_
P64 to P67		(6 V tolerance).Input/output can be specified in 1-bit units.For only P64 to P67, use of an on-chip pull-up resistor can be specified by a software setting.		TI10/TO10 to TI13/TO13
P70 to P73	I/O	Port 7.	Input port	KR0 to KR3
P74 to P77		8-bit I/O port.		KR4/INTP8 to
		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		KR7/INTP11
P80 to P87	I/O	Port 8. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	_
P91	I/O	Port 9. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	_
P110, P111	I/O	Port 11. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	_
P120	I/O	Port 12.	Input port	INTP0/EXLVI
P121	Input	1-bit I/O port and 4-bit input port.		X1
P122	1	For only P120, use of an on-chip pull-up resistor can be		X2/EXCLK
P123		specified by a software setting.		XT1
P124				XT2
P130	Output	Port 13. 1-bit output port and 1-bit I/O port.	Output port	-
P131	I/O	For only P131, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI06/TO06

Note SCK40, SCK41, SI40, SI41, SO40, SO41, TxD4, RxD4 are only mounted in the μ PD78F1027 and 78F1028.

3.2.17 RESET

This is the active-low system reset input pin.


When the external reset pin is not used, connect this pin directly or via a resistor to EVDD0 or EVDD1.

When the external reset pin is used, design the circuit based on VDD.

3.2.18 REGC

This is the pin for connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F: target).

Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

3.2.19 FLMD0

This is a pin for setting flash memory programming mode. Perform either of the following processing.

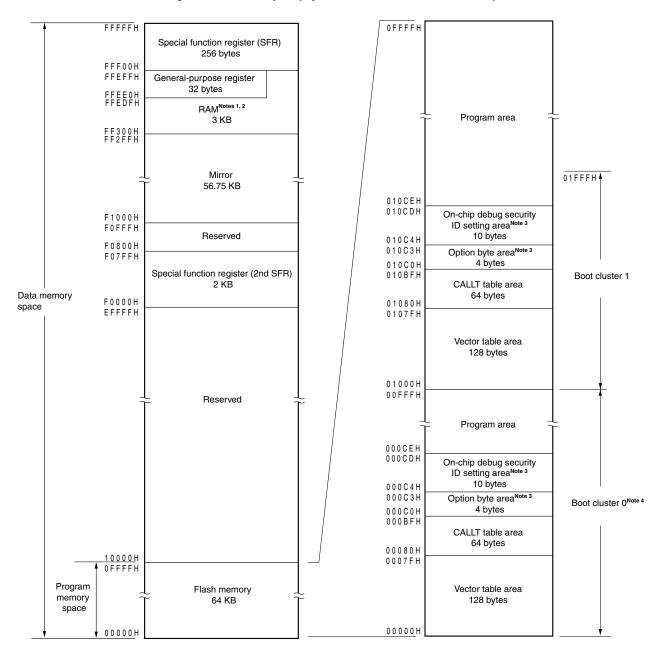
(a) In normal operation mode

It is recommended to leave this pin open during normal operation.

The FLMD0 pin must always be kept at the Vss level before reset release but does not have to be pulled down externally because it is internally pulled down by reset. However, pulling it down must be kept selected (i.e., FLMDPUP = "0", default value) by using bit 7 (FLMDPUP) of the background event control register (BECTL) (see **26.5 (1) Back ground event control register**). To pull it down externally, use a resistor of 200 k Ω or smaller. Self programming and the rewriting of flash memory with the programmer can be prohibited using hardware, by directly connecting this pin to the Vss pin.

(b) In self programming mode

It is recommended to leave this pin open when using the self programming function. To pull it down externally, use a resistor of 100 k Ω to 200 k Ω .


In the self programming mode, the setting is switched to pull up in the self programming library.

(c) In flash memory programming mode

Directly connect this pin to a flash memory programmer when data is written by the flash memory programmer. This supplies a writing voltage of the V_{DD} level to the FLMD0 pin.

The FLMD0 pin does not have to be pulled down externally because it is internally pulled down by reset. To pull it down externally, use a resistor of 1 k Ω to 200 k Ω .

- **Notes 1.** While using the self-programming function, the area FFE20H to FFEFFH cannot be used as stack memory. Furthermore, the areas of FF300H to FF6FFH also cannot be used with the μ PD78F1003, 78F1006 and 78F1009.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - **3.** When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.
 - When boot swap is used:Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the
on-chip debug security IDs to 000C4H to 000CDH and 010C4H to 010CDH.
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 26.7 Security Setting).

Address	Special Function Register (SFR) Name	Syn	nbol	R/W	Manipu	lable Bit	Range	After Reset	Z	조	즈	즈	즈	Z
					1-bit	8-bit	16-bit		KC3-L (44-pin)	KC3-L (48-pin)	KD3-L	KE3-L	KF3-L	KG3-L
F01DCH	Timer channel stop register 1	TT1L	TT1	R/W	\checkmark	\checkmark	\checkmark	0000H	-	-	-	-	\checkmark	
F01DDH		-			-	-			-	Ι	Ι	-	\checkmark	\checkmark
F01DEH	Timer clock select register 1	TPS1L	TPS1	R/W	-	\checkmark	\checkmark	0000H	-	Ι	Ι	-	\checkmark	
F01DFH		-			-	-			-	-	-	-	\checkmark	\checkmark
F01E0H	Timer output register 1	TO1L	TO1	R/W	-	\checkmark	\checkmark	0000H	-	Ι	Ι	-	\checkmark	\checkmark
F01E1H		-			-	-			_	-	-	-	\checkmark	
F01E2H	Timer output enable register 1	TOE1L	TOE1	R/W	\checkmark	\checkmark	\checkmark	0000H	-	Ι	Ι	-	\checkmark	\checkmark
F01E3H		-			_	-			_	-	-	-	\checkmark	
F01E4H	Timer output level register 1	TOL1L	TOL1	R/W	-	\checkmark	\checkmark	0000H	-	-	-	-	\checkmark	
F01E5H		-			_	-			_	-	-	-	\checkmark	
F01E6H	Timer output mode register 1	TOM1L	TOM1	R/W	_	\checkmark	\checkmark	0000H	_	-	-	-	\checkmark	
F01B7H		-			_	_			_	-	-	-	\checkmark	
F0200H	Serial status register 20	SSR20L	SSR20	R/W	-	\checkmark	\checkmark	0000H	-	Ι	Ι	-	Note	Note
F0201H		-			-	-			-	Ι	Ι	-	Note	Note
F0202H	Serial status register 21	SSR21L	SSR21	R/W	_	\checkmark	\checkmark	0000H	_	-	-	-	Note	Note
F0203H		-			_	-			_	-	-	-	Note	Note
F0204H	Serial flag clear trigger register	SIR20L	SIR20	R/W	-	\checkmark	\checkmark	0000H	-	-	-	-	Note	Note
F0205H	20	-			_	-			_	-	-	-	Note	Note
F0206H	Serial flag clear trigger register	SIR21L	SIR21	R/W	-	\checkmark	\checkmark	0000H	-	-	-	-	Note	Note
F0207H	21	-			_	-			_	-	-	-	Note	Note
F0208H	Serial mode register 20	SMR20		R/W	-	-	\checkmark	0020H	-	-	-	-	Note	Note
F0209H														
F020AH	Serial mode register 21	SMR21		R/W	-	-	\checkmark	0020H	-	-	-	-	Note	Note
F020BH														
F020CH	Serial communication operation	SCR20		R/W	-	-	\checkmark	0087H	-	-	-	-	Note	Note
F020DH	setting register 20													
F020EH	Serial communication operation	SCR21		R/W	-	-	\checkmark	0087H	-	-	-	-	Note	Note
F020FH	setting register 21													
F0210H	Serial channel enable status	SE2L	SE2	R	\checkmark	\checkmark	\checkmark	0000H	_	-	-	_	Note	Note
F0211H	register 2	-			-	-			-	_	_	-	Note	Note
F0212H	Serial channel start register 2	SS2L	SS2	R/W	\checkmark	\checkmark	\checkmark	0000H	-	-	-	-	Note	Note
F0213H		-			-	-			-	-	_	-	Note	Note
F0214H	Serial channel stop register 2	ST2L	ST2	R/W	\checkmark	\checkmark	\checkmark	0000H	_	-	_	_	Note	Note
F0215H		_			_	_			-			-	Note	Note
F0216H	Serial clock select register2	SPS2L	SPS2	R/W	\checkmark	\checkmark	\checkmark	0000H	_			-	Note	Note
F0217H		-			-	_			-	-	-	-	Note	Note

Table 4-6. Extended SFR (2nd SFR) List (7/8)

Note Those are only mounted in the 78K0R/KF3-L (μ PD78F1027 and 78F1028) and the 78K0R/KG3-L (μ PD78F1029 and 78F1030).

(6) A/D port configuration register (ADPC)

This register switches the ANI0/P20 to ANI7/P27 and ANI8/P150 to ANI11/P153 pins to digital I/O of port or analog input of A/D converter.

The ADPC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 10H.

Figure 5-41. Format of A/D Port Configuration Register (ADPC)

Address	: F0017H	After reset: 10H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	ADPC4	ADPC3	ADPC2	ADPC1	ADPC0

ADPC4	ADPC3	ADPC2	ADPC1	ADPC0		Analog input (A)/digital I/O (D) switching										
						Port 15 Port 2							Port 15			
					ANI11	ANI10	ANI9	ANI8	ANI7	ANI6	ANI5	ANI4	ANI3	ANI2	ANI1	ANI0
					/P153	/P152	/P151	/P150	/P27	/P26	/P25	/P24	/P23	/P22	/P21	/P20
0	0	0	0	0	А	А	А	А	А	А	А	А	А	А	А	А
0	0	0	0	1	А	А	А	А	А	А	А	А	А	А	А	D
0	0	0	1	0	А	А	А	А	А	А	А	А	А	А	D	D
0	0	0	1	1	А	А	А	А	А	А	А	А	А	D	D	D
0	0	1	0	0	А	А	А	А	А	А	А	А	D	D	D	D
0	0	1	0	1	А	А	А	А	А	А	А	D	D	D	D	D
0	0	1	1	0	А	А	А	А	А	А	D	D	D	D	D	D
0	0	1	1	1	А	А	А	А	А	D	D	D	D	D	D	D
0	1	0	0	0	А	А	А	А	D	D	D	D	D	D	D	D
0	1	0	0	1	А	А	А	D	D	D	D	D	D	D	D	D
0	1	0	1	0	А	А	D	D	D	D	D	D	D	D	D	D
0	1	0	1	1	А	D	D	D	D	D	D	D	D	D	D	D
1	0	0	0	0	D D D D D D D D D D D D D							D				
	Other	than the	above		Setting prohibited											

Cautions 1. Set a channel to be used for A/D conversion in the input mode by using port mode register 2 and 15 (PM2, PM15).

- 2. Do not set the pin that is set by the ADPC register as digital I/O by the analog input channel specification register (ADS).
- 3. Be sure to first set the ADCEN bit of peripheral enable register 0 (PER0) to 1 when setting up the ADPC register. If ADCEN = 0, writing to the ADPC register is ignored and specified values are returned to the initial values.

 Remark
 P20/ANI0 to P27/ANI7, P150/ANI8, and P151/ANI9: 78K0R/KC3-L (40-pin, 44-pin)

 P20/ANI0 to P27/ANI7, P150/ANI8 to P152/ANI10: 78K0R/KC3-L (48-pin), 78K0R/KD3-L

 P20/ANI0 to P27/ANI7, P150/ANI8 to P153/ANI11: 78K0R/KE3-L

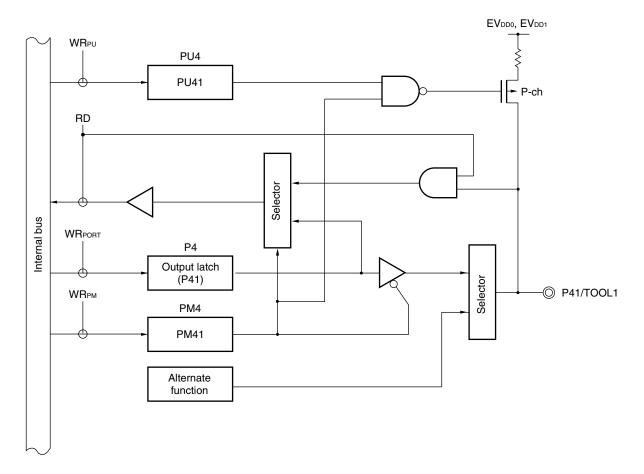


Figure 6-16. Block Diagram of P41

- P4: Port register 4
- PU4: Pull-up resistor option register 4
- PM4: Port mode register 4
- RD: Read signal
- WR xx: Write signal

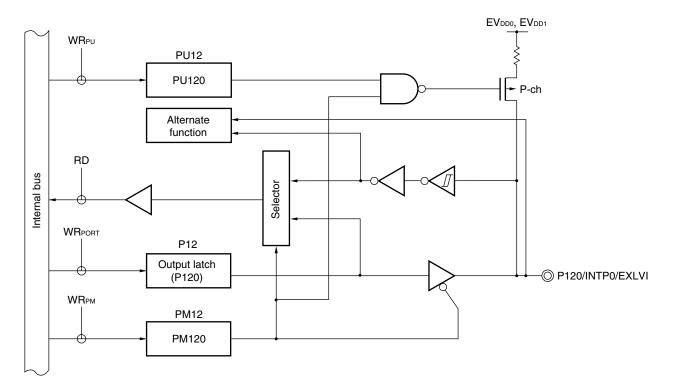


Figure 6-42. Block Diagram of P120

- P12: Port register 12
- PU12: Pull-up resistor option register 12
- PM12: Port mode register 12
- RD: Read signal
- WR××: Write signal

(6) A/D port configuration register (ADPC)

This register switches the P20/ANI0 to P27/ANI7 and P150/ANI8 to P157/ANI15 pins to digital I/O of port or analog input of A/D converter.

The ADPC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 10H.

Figure 6-60. Format of A/D Port Configuration Register (ADPC)

Address: F0017H After reset: 10H R/W

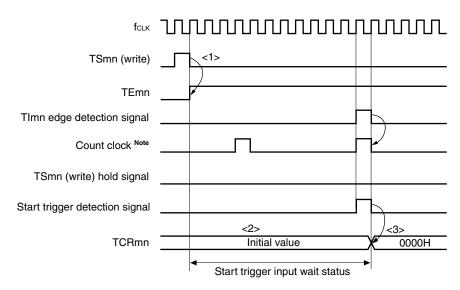
Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	ADPC4	ADPC3	ADPC2	ADPC1	ADPC0

ADP	ADP	ADP		ADP			Analog input (A)/digital I/O (D) switching								witchi	ng				
C4	C3	C2	C1	C0		Port 15						Port 2								
					ANI15/ P157	ANI14/ P156	ANI13/ P155	ANI12/ P154	-		ANI9/ P151	ANI8/ P150	ANI7/ P27	ANI6/ P26	ANI5/ P25	ANI4/ P24	ANI3/ P23	ANI2/ P22	ANI1/ P21	ANI0/ P20
0	0	0	0	0	А	А	А	А	А	Α	А	А	А	Α	А	А	А	А	А	А
0	0	0	0	1	А	Α	А	А	А	Α	А	Α	Α	Α	Α	Α	Α	А	Α	D
0	0	0	1	0	А	А	А	А	А	А	А	А	Α	А	А	А	А	А	D	D
0	0	0	1	1	А	Α	А	А	А	Α	А	А	А	Α	А	А	А	D	D	D
0	0	1	0	0	А	А	А	А	А	А	А	А	А	А	А	Α	D	D	D	D
0	0	1	0	1	А	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	D	D	D	D	D
0	0	1	1	0	А	Α	А	А	А	А	А	А	А	Α	D	D	D	D	D	D
0	0	1	1	1	А	Α	А	А	А	Α	А	Α	Α	D	D	D	D	D	D	D
0	1	0	0	0	А	Α	А	А	А	А	А	А	D	D	D	D	D	D	D	D
0	1	0	0	1	А	А	А	А	А	А	А	D	D	D	D	D	D	D	D	D
0	1	0	1	0	А	А	А	А	А	А	D	D	D	D	D	D	D	D	D	D
0	1	0	1	1	А	Α	Α	Α	Α	D	D	D	D	D	D	D	D	D	D	D
0	1	1	0	0	А	Α	Α	Α	D	D	D	D	D	D	D	D	D	D	D	D
0	1	1	0	1	А	Α	Α	D	D	D	D	D	D	D	D	D	D	D	D	D
0	1	1	1	0	А	А	D	D	D	D	D	D	D	D	D	D	D	D	D	D
0	1	1	1	1	А	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
1	0	0	0	0	D								D							
	Other	than	above)	Setti	etting prohibited														

Cautions 1. Set the channel used for A/D conversion to the input mode by using port mode registers 2 and 15 (PM2, PM15).

- 2. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS).
- 3. P20/ANI0 to P27/ANI7 and P150/ANI8 to P157/ANI15 are set as analog inputs in the order of P157/ANI15, ..., P150/ANI8, P27/ANI7, ..., P20/ANI0 by the A/D port configuration register (ADPC). When using P20/ANI0 to P27/ANI7 and P150/ANI8 to P157/ANI15 as analog inputs, start designing from P157/ANI15.
- 4. Be sure to first set the ADCEN bit of peripheral enable register 0 (PER0) to 1 when setting up the ADPC register. If ADCEN = 0, writing to the ADPC register is ignored and specified values are returned to the initial values.

 Remark
 P20/ANI0 to P27/ANI7, P150/ANI8 to P153/ANI11:
 78K0R/KF3-L


 P20/ANI0 to P27/ANI7, P150/ANI8 to P157/ANI15:
 78K0R/KG3-L

(e) Start timing in capture & one-count mode

<1> Operation is enabled (TEmn = 1) by writing 1 to the TSmn bit.

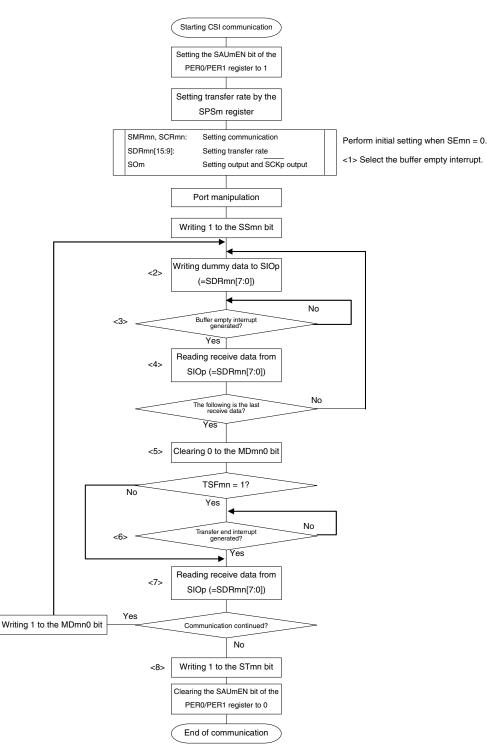

<2> Enters the start trigger input wait status, and timer/counter register mn (TCRmn) holds the initial value.</3> On start trigger detection, 0000H is loaded to the TCRmn register and count starts.

Figure 8-19. Start Timing (In Capture & One-count Mode)

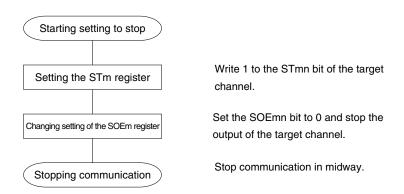

- **Note** When the capture & one-count mode is set, the operation clock (f_{MCK}) is selected as count clock (CCSmn = 0).
- Caution An input signal sampling error is generated since operation starts upon start trigger detection (If the TImn pin input signal is used as a start trigger, an error of one count clock occurs.)

Figure 14-43. Flowchart of Master Reception (in Continuous Reception Mode)

- Caution After setting the PER0/PER1 register to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.
- **Remark** <1> to <8> in the figure correspond to <1> to <8> in **Figure 14-42 Timing Chart of Master Reception** (in Continuous Reception Mode).

Figure 14-54. Procedure for Stopping Slave Transmission

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-55 Procedure for Resuming Slave Transmission).

14.6 Operation of UART (UART0 to UART4) Communication

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception (RxD) lines. By using these two communication lines, each data frame, which consist of a start bit, data, parity bit, and stop bit, is transferred asynchronously (using the internal baud rate) between the microcontroller and the other communication party. Full-duplex UART communication can be performed by using a channel dedicated to transmission (even-numbered channel) and a channel dedicated to reception (odd-numbered channel). The LIN-bus can be implemented by using timer array unit 0 with an external interrupt (INTP0).

[Data transmission/reception]

- Data length of 5, 7, or 8 bits
- Select the MSB/LSB first
- Level setting of transmit/receive data and select of reverse
- Parity bit appending and parity check functions
- Stop bit appending
- [Interrupt function]
 - Transfer end interrupt/buffer empty interrupt
 - Error interrupt in case of framing error, parity error, or overrun error

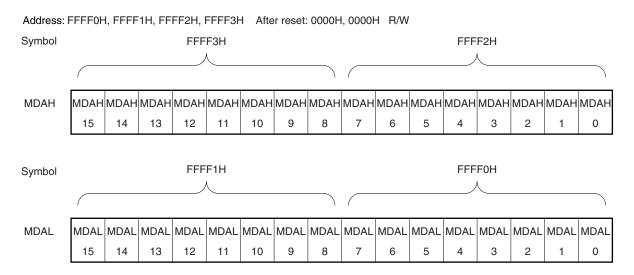
[Error detection flag]

• Framing error, parity error, or overrun error

The LIN-bus is accepted in UART0 of the 78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L and UART3 of the 78K0R/KF3-L, 78K0R/KG3-L.

[LIN-bus functions]

- Wakeup signal detection
- Sync break field (SBF) detection
- · Sync field measurement, baud rate calculation


Using the external interrupt (INTP0) and timer array unit 0

(1) Multiplication/division data register A (MDAH, MDAL)

The MDAH and MDAL registers set the values that are used for a multiplication or division operation and store the operation result. They set the multiplier and multiplicand data in the multiplication mode, and set the dividend data in the division mode. Furthermore, the operation result (quotient) is stored in the MDAH and MDAL registers in the division mode.

The MDAH and MDAL registers can be set by a 16-bit manipulation instruction. Reset signal generation clears these registers to 0000H.

Figure 16-2. Format of Multiplication/Division Data Register A (MDAH, MDAL)

- Cautions 1. Do not rewrite the MDAH and MDAL registers values during division operation processing (while the multiplication/division control register (MDUC) is 81H). The operation will be executed in this case, but the operation result will be an undefined value.
 - 2. The MDAH and MDAL registers values read during division operation processing (while MDUC is 81H) will not be guaranteed.

The following table shows the functions of the MDAH and MDAL registers during operation execution.

DIVMODE	Operation Mode	Setting	Operation Result
0	Multiplication mode	MDAH: Multiplier	_
		MDAL: Multiplicand	
1	Division mode	MDAH: Divisor (higher 16 bits)	MDAH: Division result (quotient)
		MDAL: Dividend (lower 16 bits)	Higher 16 bits
			MDAL: Division result (quotient)
			Lower 16 bits

Remark DIVMODE: Bit 7 of the multiplication/division control register (MDUC)

17.5.2 Consecutive capturing of A/D conversion results

- A flowchart of an example of setting for consecutively capturing A/D conversion results is shown below.
- Consecutive capturing of A/D conversion results.
- DMA channel 1 is used for DMA transfer.
- DMA start source: INTAD
- Interrupt of A/D is specified by IFC13 to IFC10 = 1100B.
- Transfers FFF1EH and FFF1FH (2 bytes) of the 10-bit A/D conversion result register (ADCR) to 512 bytes of FFCE0H to FFEDFH of RAM.

Remark IFC13 to IFC10: Bits 3 to 0 of DMA mode control registers 1 (DMC1)

	Hardware	Status After Reset Acknowledgment ^{Note 1}
Serial interface IICA	IICA shift register (IICA)	00H
	IICA status register (IICS)	00H
	IICA flag register (IICF)	00H
	IICA control register 0 (IICCTL0)	00H
	IICA control register 1 (IICCTL1)	00H
	IICA low-level width setting register (IICWL)	FFH
	IICA high-level width setting register (IICWH)	FFH
	Slave address register (SVA)	00H
Multiplier/divider	Multiplication/division data register A (L) (MDAL)	0000H
	Multiplication/division data register A (H) (MDAH)	0000H
	Multiplication/division data register B (L) (MDBL)	0000H
	Multiplication/division data register B (H) (MDBH)	0000H
	Multiplication/division data register C (L) (MDCL)	0000H
	Multiplication/division data register C (H) (MDCH)	0000H
	Multiplication/division control register (MDUC)	00H
Key interrupt	Key return mode register (KRM)	00H
Reset function	Reset control flag register (RESF)	00H ^{Note 2}
Low-voltage detector	Low-voltage detection register (LVIM)	00H ^{Note 3}
	Low-voltage detection level select register (LVIS)	0EH ^{Note 2}
Regulator	Regulator mode control register (RMC)	00H
DMA controller	SFR address registers 0, 1 (DSA0, DSA1)	00H
	RAM address registers 0L, 0H, 1L, 1H (DRA0L, DRA0H, DRA1L, DRA1H)	00H
	Byte count registers 0L, 0H, 1L, 1H (DBC0L, DBC0H, DBC1L, DBC1H)	00H
	Mode control registers 0, 1 (DMC0, DMC1)	00H
	Operation control registers 0, 1 (DRC0, DRC1)	00H

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

2. These values vary depending on the reset source.

Register	Reset Source	RESET Input	Reset by POC	Reset by Execution of Illegal Instruction	Reset by WDT	Reset by INIRF	Reset by LVI
RESF	TRAP bit	Cleared (0)	Cleared (0)	Set (1)	Held	Held	Held
	WDRF bit			Held	Set (1)	Held	Held
	INIRF bit			Held	Held	Set (1)	Held
	LVIRF bit			Held	Held	Held	Set (1)
LVIS		Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Held

3. This value varies depending on the reset source and the option byte.

Remark The special function register (SFR) mounted depend on the product. See 4.2.4 Special function registers (SFRs) and 4.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Dedicated Flash Memory Programmer			78K0R/Kx3-L	Connection
Signal Name	I/O	Pin Function	Pin Name	
FLMD0	Output	Mode signal	FLMD0	0
VDD	I/O	V_DD voltage generation/power monitoring	VDD, EVDD, EVDD0, EVDD1, AVREF	0
GND	_	Ground	Vss, EVss, EVsso, EVss1, AVss	0
CLK	Output	Clock output	_	×
/RESET	Output	Reset signal	RESET	0
SI/RxD ^{Notes1, 2}	Input	Receive signal	TOOL0	0
SO/TxD Note2	Output	Transmit signal		
SCK	Output	Transfer clock	-	×

Table 26-2. Pin Connection

Notes 1. This pin is not required to be connected when using PG-FP5 or FL-PR5.

2. Connect SI/RxD or SO/TxD when using QB-MINI2.

Remark \bigcirc : Be sure to connect the pin.

 \times : The pin does not have to be connected.

26.4 Connection of Pins on Board

To write the flash memory on-board, connectors that connect the dedicated flash memory programmer must be provided on the target system. First provide a function that selects the normal operation mode or flash memory programming mode on the board.

When the flash memory programming mode is set, all the pins not used for programming the flash memory are in the same status as immediately after reset. Therefore, if the external device does not recognize the state immediately after reset, the pins must be handled as described below.

26.4.1 FLMD0 pin

(1) In flash memory programming mode

Directly connect this pin to a flash memory programmer when data is written by the flash memory programmer. This supplies a writing voltage of the VDD level to the FLMD0 pin.

The FLMD0 pin does not have to be pulled down externally because it is internally pulled down by reset. To pull it down externally, use a resistor of 1 k Ω to 200 k Ω .

(2) In normal operation mode

It is recommended to leave this pin open during normal operation.

The FLMD0 pin must always be kept at the Vss level before reset release but does not have to be pulled down externally because it is internally pulled down by reset. However, pulling it down must be kept selected (i.e., FLMDPUP = "0", default value) by using bit 7 (FLMDPUP) of the background event control register (BECTL) (see **26.5** (1) Back ground event control register). To pull it down externally, use a resistor of 200 k Ω or smaller.

Self programming and the rewriting of flash memory with the programmer can be prohibited using hardware, by directly connecting this pin to the Vss pin.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск			ns
		$1.8 V \le V_{DD} < 4.0 V$	0 16 MHz < fмск	8/fмск			ns
			fмск ≤ 16 MHz	6/fмск			ns
SCKp high-/low-level width	tкн2, tк∟2			tксү2/2			ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2			80			ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2			1/fмск+50			ns
Delay time from $\overline{\mathrm{SCKp}}\downarrow$ to	tkso2	$C = 30 \text{ pF}^{Note 4}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			2/fмск+45	ns
SOp output ^{Note 3}			$2.7~V \leq V_{\text{DD}} < 4.0~V$			2/fмск+57	ns
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			2/fмск+125	ns

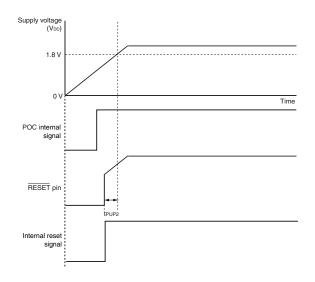
(3) During communication at same potential (CSI mode) (slave mode, \overline{SCKp} ... external clock input) (T_A = -40 to +85°C, 1.8 V ≤ V_{DD} = EV_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = AV_{SS} = 0 V)

- **Notes 1.** When DAP0n = 0 and CKP0n = 0, or DAP0n = 1 and CKP0n = 1. The SIp setup time becomes "to $\overline{SCKp}\downarrow$ " when DAP0n = 0 and CKP0n = 1, or DAP0n = 1 and CKP0n = 0.
 - **2.** When DAP0n = 0 and CKP0n = 0, or DAP0n = 1 and CKP0n = 1. The SIp hold time becomes "from $\overline{SCKp}\downarrow$ " when DAP0n = 0 and CKP0n = 1, or DAP0n = 1 and CKP0n = 0.
 - **3.** When DAP0n = 0 and CKP0n = 0, or DAP0n = 1 and CKP0n = 1. The delay time to SOp output becomes "from $\overline{SCKp}\uparrow$ " when DAP0n = 0 and CKP0n = 1, or DAP0n = 1 and CKP0n = 0.
 - 4. C is the load capacitance of the SOp output lines.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10), g: PIM and POM number (g = 3, 7)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKS0n bit of the SMR0n register. n: Channel number (n = 0 to 2))

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

31.6.6 Supply voltage rise time

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to 1.8 V (V _{DD} (MIN.)) ^{Note} (V _{DD} : 0 V \rightarrow 1.8 V)	tpup1	LVI default start function stopped is set (LVIOFF (Option Byte) = 1), when $\overrightarrow{\text{RESET}}$ input is not used			3.6	ms
Maximum time to rise to 1.8 V (V _{DD} (MIN.)) ^{Note} (releasing RESET input \rightarrow V _{DD} : 1.8 V)	tpup2	LVI default start function stopped is set (LVIOFF (Option Byte) = 1), when $\overrightarrow{\text{RESET}}$ input is used			1.88	ms

Note Make sure to raise the power supply in a shorter time than this.

Supply Voltage Rise Time Timing

• When the RESET pin input is not used

Supply voltage (Voc) 1.8 V 0 V POC internal signal trup1 • When the $\overrightarrow{\text{RESET}}$ pin input is used (when external reset is released by the $\overrightarrow{\text{RESET}}$ pin, after POC has been released)

