E. Renesas Electronics America Inc - UPD78F1002GB-GAF-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1002gb-gaf-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Input to the P71, P72, P74, and P75 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units, using port input mode register 7 (PIM7).

Output from the P70, P72, P73, and P75 pins can be specified as normal CMOS output or N-ch open-drain output (VDD tolerance) in 1-bit units, using port output mode register 7 (POM7).

	78K0R/KC3-L (µPD78F100y: y = 0 to 3)		78K0R/KC3-L 78K0R/KC3-L (48-pin) (μPD78F100y: y = 0 to 3) (μPD78F100y: y = 1 to 3)			78K0R/KD3-L (μPD78F100y: y = 4 to 6)	78K0R/KE3-L (µPD78F100y: y = 7 to 9)		
	40-pin	44-pin							
P70/KR0/SO01/ INTP4	-	N	\checkmark	\checkmark	\checkmark				
P71/KR1/SI01/ INTP5	-	N	\checkmark	\checkmark	\checkmark				
P72/KR2/ SCK01/INTP6	-	N	\checkmark	\checkmark	\checkmark				
P73/KR3/SO00/ TxD0		N	\checkmark	\checkmark	\checkmark				
P74/KR4/SI00/ RxD0		V	\checkmark	\checkmark	\checkmark				
P75/KR5/SCK00	-	V	\checkmark	\checkmark	\checkmark				
P76/KR6	-	_	_	\checkmark					
P77/KR7		_	_	\checkmark					

Remark $\sqrt{}$: Mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P70 to P77 function as an I/O port. P70 to P77 can be set to input or output port in 1-bit units using port mode register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).

(2) Control mode

P70 to P77 function as key interrupt input, serial interface data I/O, clock I/O, and external interrupt request input.

(a) KR0 to KR7

These are the key interrupt input pins.

(b) SI00, SI01

These are the serial data input pin of serial interface CSI00 and CSI01.

(c) SO00, SO01

These are the serial data output pin of serial interface CSI00 and CSI01.

(d) SCK00, SCK01

These are the serial clock I/O pins of serial interface CSI00 and CSI01.

(e) RxD0

This is a serial data input pin of serial interface UART0.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P80 to P87	5-AG	I/O	Input: Independently connect to EVDD0, EVDD1, EVSS0, or EVSS1
P91			via a resistor.
P110	8-R		Output: Leave open.
P111	5-AG		
P120/INTP0/EXLVI	8-R		
P121/X1 ^{Note 1}	37-C	Input	Independently connect to V_{DD} or V_{SS} via a resistor.
P122/X2/EXCLK ^{Note 1}			
P123/XT1 ^{Note 1}	37-В		
P124/XT2 ^{Note 1}			
P130	3-C	Output	Leave open.
P131/TI06/TO06	8-R	I/O	Input: Independently connect to EVDD0, EVDD1, EVSS0, or EVSS1
P140/PCLBUZ0/ITNP6			via a resistor.
P141/PCLBUZ1/INTP7			Output. Leave open.
P142/SCK20/SCL20	5-AN		Input: Independently connect to EVDD0, EVDD1, EVSS0, or EVSS1
P143/SI20/RxD2/SDA20			via a resistor.
P144/SO20/TxD2	5-AG		Output: Leave open.
			<pre><vvnen n-cn="" open-drain=""> Set the port output latch to 0 and leave open with low level out put.</vvnen></pre>
P145/TI07/TO07	8-R		Input: Independently connect to EVDD0, EVDD1, EVSS0, or EVSS1 via a resistor.
			Output: Leave open.
P150/ANI8 to P157/ANI15 ^{Note 2}	11-G		Input: Independently connect to AV _{REF} or AV _{SS} via a resistor. Output: Leave open.
AVREF	_	_	$\label{eq:When one or more of P20 to P27 and P150 to P157 are set as a digital port> Make this pin the same potential as EV_{DD0}, EV_{DD1}, or V_{DD}. < When all of P20 to P27 and P150 to P157 are set as analog ports> Make this pin to have a potential where 1.8 V \leq AV_{REF} \leq V_{DD}.$
AVss	_	-	Make this pin the same potential as EVsso, EVss1, or Vss.
FLMD0	2-W	_	Leave open or connect to Vss via a resistor of 100 k Ω or more.
RESET	2	Input	Connect directly or via a resistor to EVDD0 or EVDD1.
REGC		_	Connect to Vss via capacitor (0.47 to 1 μ F; target).

Table 3-4. Connection of Unused Pins (3/3)

Notes 1. Use recommended connection above in input port mode (see Figure 7-3 Format of Clock Operation Mode Control Register (CMC)) when these pins are not used.

2. P150/ANI8 to P157/ANI15 are set in the digital input port mode after release of reset.

Figure 4-16. Correspondence Between Data Memory and Addressing (µPD78F1011, 78F1013)

Address	Special Function Register (SFR) Name	unction Register (SFR) Name Symbol		Manipu	Iable Bit	Range	After Reset	K	Ā	ĸ	즈	조	주	K
				1-bit	8-bit	16-bit		C3-L (40-pin)	C3-L (44-pin)	C3-L (48-pin)	D3-L	Ξ3-L	=3-L	33-L
F0158H F0159H	Serial communication operation setting register 10	SCR10	R/W	-	-	\checkmark	0087H	-	-	-	-	_	\checkmark	\checkmark
F015AH F015BH	Serial communication operation setting register 11	SCR11	R/W	_	_	V	0087H	-	-	-	-	-	V	\checkmark
F015CH F015DH	Serial communication operation setting register 12	SCR12	R/W	_	_	V	0087H	-	-	-	-	-	V	\checkmark
F015EH F015FH	Serial communication operation setting register 13	SCR13	R/W	_	_	V	0087H	-	-	-	-	-	V	\checkmark
F0160H	Serial channel enable status register 1	SE1L SE1	R	√	√	\checkmark	0000H	-	-	-	-	_	√ √	
F0162H	Serial channel start register 1	SS1L SS1	R/W	V	V	V	0000H	-	-	_	_	_	V	V
F0164H	Serial channel stop register 1	register 1 ST1L ST1		√		V	0000H	-		-	-	_	√ √	V
F0165H F0166H	Serial clock select register 1	- SPS1L SPS1	R/W	-	-	V	0000H	-	_ _	-	-	-	√ √	√ √
F0167H F0168H	Serial output register 1	- SO1	R/W	_	_	V	0F0FH	-	-	-	-	_	√ √	
F0169H	Serial output enable register 1	SOE1L SOE1	R/W	\checkmark	\checkmark	V	0000H	_	-	_	_	_	√ √	V
F0174H	Serial output level register 1	SOL1L SOL1	R/W	_	\checkmark	V	0000H	_	-	_	_		V	V
F0180H	Timer counter register 00	TCR00	R	_	_	V	FFFFH	V	\checkmark	\checkmark	\checkmark	\checkmark	V	1
F0182H	Timer counter register 01	TCR01	R	_	_	V	FFFFH	V	\checkmark		\checkmark	V	\checkmark	\checkmark
F0184H	Timer counter register 02	TCR02	R	_	_	\checkmark	FFFFH	V	V	V	\checkmark	V	\checkmark	\checkmark
F0186H	Timer counter register 03	TCR03	R	_	-	V	FFFFH	V	V	\checkmark	\checkmark	\checkmark	V	\checkmark
F0188H F0189H	Timer counter register 04	TCR04	R	-	-	V	FFFFH	V	V	\checkmark	\checkmark	V	\checkmark	\checkmark
F018AH F018BH	Timer counter register 05	TCR05	R	_	_	V	FFFFH	V	V	\checkmark	\checkmark	\checkmark	V	\checkmark
F018CH F018DH	Timer counter register 06	TCR06	R	-	_	V	FFFFH	V	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark
F018EH F018FH	Timer counter register 07	TCR07	R	_	_	V	FFFFH	\checkmark	\checkmark	V	\checkmark	\checkmark	V	\checkmark

Table 4-6. Extended SFR (2nd SFR) List (4/8)

Figure 6-11. Block Diagram of P15

- P1: Port register 1
- PU1: Pull-up resistor option register 1
- PM1: Port mode register 1
- RD: Read signal
- WR××: Write signal

Table 7-4. CPU Clock Transition and SFR Register Setting Examples (5/6)

(11) CPU clock changing from subsystem clock (D) to high-speed system clock (C) (products other than 78K0R/KC3-L (40-pin))

(Setting sequence of SFR registers) -

Setting Flag of SFR Register	OSTS Register	CSC Register	OSMC Register	OSTC Register	CKC F	legister
Status Transition		MSTOP	FSEL		MCM0	CSS
$\begin{array}{l} (D) \rightarrow (C) \; (X1 \; clock: 2 \; MHz \leq \\ f_{X \leq 10 \; MHz}) \end{array}$	Note 1	0	0	Must be checked	1	0
(D) \rightarrow (C) (X1 clock: 10 MHz < fx \leq 20 MHz)	Note 1	0	1 ^{Note 2}	Must be checked	1	0
(D) \rightarrow (C) (external main clock)	Note 1	0	0/1	Must not be checked	1	0

Unnecessary if the CPU is operating with the high-speed system clock

Unnecessary if these registers are already set

- Notes 1. Set the oscillation stabilization time as follows.
 - Desired the oscillation stabilization time counter status register (OSTC) oscillation stabilization time ≤ Oscillation stabilization time set by the oscillation stabilization time select register (OSTS)
 - 2. FSEL = 1 when $f_{CLK} > 10 \text{ MHz}$ If a divided clock is selected and $f_{CLK} \le 10 \text{ MHz}$, use with FSEL = 0 is possible even if $f_X > 10 \text{ MHz}$.
- Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L) or CHAPTER 31 ELECTRICAL SPECIFICATIONS (78K0R/KF3-L, 78K0R/KG3-L)).
- (12) CPU clock changing from 20 MHz internal high-speed oscillation clock (J) to internal high-speed oscillation clock (B)

(Setting sequence of SFR registers)		
Setting Flag of SFR Register	DSCCTL	Register
Status Transition	SELDSC	DSCON
$(J) \rightarrow (B)$	0	0

Remark (A) to (K) in Table 7-4 correspond to (A) to (K) in Figure 7-19.

Figure 8-11. Format of Timer Mode Register mn (TMRmn) (2/3)

Address: F0190H, F0191H (TMR00) to F019EH, F019FH (TMR07) After reset: 0000H R/W

F01C8H, F01C9H (TMR10) to F01CEH, F01CFH (TMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	0	0	CCS	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
	mn			mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

MAS TER mn	Selection between using channel n independently or simultaneously with another channel(as a slave or master)
0	Operates in independent channel operation function or as slave channel in simultaneous channel operation function.
1	Operates as master channel in simultaneous channel operation function.
Only tl Be sur Clear	ne even channel can be set as a master channel (MASTERmn = 1). re to use odd-numbered channels as slave channels (MASTERmn = 0). the MASTERmn bit to 0 for a channel that is used with the independent channel operation function.

STS	STS	STS	Setting of start trigger or capture trigger of channel n
mn2	mn1	mn0	
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TImn pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TImn pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).
Othe	r than a	bove	Setting prohibited

CIS	CIS	Selection of TImn pin input valid edge						
mni	mnu							
0	0	Falling edge						
0	1	Rising edge						
1	0	Both edges (when low-level width is measured) Start trigger: Falling edge, Capture trigger: Rising edge						
1	1	Both edges (when high-level width is measured) Start trigger: Rising edge, Capture trigger: Falling edge						
If both	If both the edges are specified when the value of the STSmn2 to STSmn0 bits is other than 010B, set the CISmn1 to CISmn0 bits to 10B							

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)

However, in case of the timer input pin (TImn), mn changes as below.

78K0R/KC3-L (40-pin):	
78K0R/KC3-L (44-pin, 48-pin):	
78K0R/KD3-L, 78K0R/KE3-L:	
78K0R/KF3-L, 78K0R/KG3-L:	

```
 \begin{array}{l} mn = 02 \ to \ 07 \\ mn = 00 \ to \ 07 \\ mn = 00 \ to \ 07 \\ mn = 00 \ to \ 07, \ 10 \ to \ 13 \\ \end{array}
```


Example

8.8.3 Operation as multiple PWM output function

By extending the PWM function and using multiple slave channels, many PWM waveforms with different duty values can be output.

For example, when using two slave channels, the period and duty factor of an output pulse can be calculated by the following expressions.

Pulse period = {Set value of TDRmn (master) + 1} × Count clock period Duty factor 1 [%] = {Set value of TDRmp (slave 1)}/{Set value of TDRmn (master) + 1} × 100 Duty factor 2 [%] = {Set value of TDRmq (slave 2)}/{Set value of TDRmn (master) + 1} × 100

Remark Although the duty factor exceeds 100% if the set value of TDRmp (slave 1) > {set value of TDRmn (master) + 1} or if the {set value of TDRmq (slave 2)} > {set value of TDRmn (master) + 1}, it is summarized into 100% output.

Timer/counter register mn (TCRmn) of the master channel operates in the interval timer mode and counts the periods.

The TCRmp register of the slave channel 1 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmp pin. The TCRmp register loads the value of timer data register mp (TDRmp), using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmp = 0000H, TCRmp outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp = 0000H.

In the same way as the TCRmp register of the slave channel 1, the TCRmq register of the slave channel 2 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmq pin. The TCRmq register loads the value of the TDRmq register, using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmq = 0000H, the TCRmq register outputs INTTMmq and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmq becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmq = 0000H.

When channel 0 is used as the master channel as above, up to seven types of PWM signals can be output at the same time.

- Caution To rewrite both timer data register mn (TDRmn) of the master channel and the TDRmp register of the slave channel 1, write access is necessary at least twice. Since the values of the TDRmn and TDRmp registers are loaded to the TCRmn and TCRmp registers after INTTMmn is generated from the master channel, if rewriting is performed separately before and after generation of INTTMmn from the master channel, the TOmp pin cannot output the expected waveform. To rewrite both the TDRmn register of the master and the TDRmp register of the slave, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel (This applies also to the TDRmq register of the slave channel 2).
- $\label{eq:result} \begin{array}{ll} \textbf{Remark} & \text{m: Unit number } (m=0,\,1),\,n: Channel number } (n=0,\,2,\,4) \\ & 78K0R/KC3-L,\,78K0R/KD3-L,\,78K0R/KE3-L: & mn=00,\,02,\,04 \\ & 78K0R/KF3-L,\,78K0R/KG3-L: & mn=00,\,02,\,04,\,10 \\ & \text{p: Slave channel number 1, q: Slave channel number 2^{Note} \\ & \text{When } m=0:\,n< p< q\leq 7 \\ & \text{When } m=1:\,n< p< q\leq 3 \\ & (\text{Where p and q are consecutive integers greater than n}) \end{array}$
 - **Note** Since there is no function of timer I/O, the channel 1 in the 78K0R/KC3-L (40-pin) can not be used as the slave channel.

(1) Peripheral enable registers 0, 1 (PER0, PER1)

PER0 and PER1 register are used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise. When serial array unit 0 is used, be sure to set bit 2 (SAU0EN) of PER0 register to 1.

In the 78K0R/KF3-L and 78K0R/KG3-L, be sure to set bit 3 (SAU1EN) of PER0 register to 1 when using serial array unit 1, in the 78K0R/KF3-L (μ PD78F1027, 78F1028) and 78K0R/KG3-L (μ PD78F1029, 78F1030), be sure to set bit 0 (SAU2EN) of PER1 register to 1 when using serial array unit 2.

The PER0 and PER1 registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears the PER0 and PER1 register to 00H.

Figure 14-5. Format of Peripheral Enable Register 0, 1 (PER0, PER1)

Address: F00	F0H After re	set: 00H	R/W					
Symbol	<7>	6	<5>	<4>	<3>	<2>	<1>	<0>
PER0	RTCEN Note 1	0	ADCEN	IICAEN Note 2	SAU1EN Note 3	SAU0EN	TAU1EN Note 3	TAU0EN Note 3
Address: F00	F1H After rea	set: 00H	R/W					
Symbol	7	6	5	4	3	2	1	<0>
PER1 Note	0	0	0	0	0	0	0	SAU2EN Note 4

SAUmEN	Control of serial array unit m input clock supply
0	Stops supply of input clock.SFR used by serial array unit m cannot be written.Serial array unit m is in the reset status.
1	Enables input clock supply.SFR used by serial array unit m can be read/written.

Notes 1. That is not provided in 40-pin product of the 78K0R/KC3-L.

- 2. That is not provided in 40-pin and 44-pin products of the 78K0R/KC3-L.
- 3. 78K0R/KF3-L and 78K0R/KG3-L only.
- 4. 78K0R/KF3-L (μ PD78F1027, 78F1028) and 78K0R/KG3-L (μ PD78F1029, 78F1030) only.
- Cautions 1. When setting serial array unit m, be sure to set the SAUmEN bit to 1 first. If SAUmEN = 0, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read.

Note that this does not apply to the following registers.

78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L:

ISC, NFEN0, PIM3, PIM7, POM3, POM7, PM3, PM7, P3, and P7 registers.

78K0R/KF3-L (μ PD78F1010, 78F1011, 78F1012), 78K0R/KG3-L (μ PD78F1013, 78F1014):

ISC, NFEN0, PIM0, PIM1, PIM14, POM0, POM1, POM14, PM0, PM1, PM4, PM14, P0, P1, P4, and P14 registers.

78K0R/KF3-L (μ PD78F1027, 78F1028), 78K0R/KG3-L (μ PD78F1029, 78F1030):

ISC, NFEN0, PIM0, PIM1, PIM14, POM0, POM1, POM14, PM0, PM1, PM4, PM5, PM14, P0, P1, P4, P5, and P14 registers.

2. After setting the SAUmEN bit to 1, be sure to set serial clock select register m (SPSm) after 4 or more fclk clocks have elapsed.

(Caution 3 and Remark are listed on the next page.)

Figure 14-8. Format of Serial Communication Operation Setting Register mn (SCRmn) (4/4)

Address: F0118H, F0119H (SCR00) to F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10) to F015EH, F015FH (SCR13), F020CH, F020DH (SCR20), F020EH, F020FH (SCR21)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	DLS	DLS	DLS
	mn	mn	mn	mn		mn	mn1	mn0	mn		mn1	mn0		mn2	mn1	mn0
	DLS	DLS	DLS		Setting of data length in CSI and UART modes											
	mn2 mn1 mn0															
	1	0	0	5-bit data length (stored in bits 0 to 4 of the SDRmn register) (settable in UART mode only)												

1	1	0	7-bit data length (stored in bits 0 to 6 of the SDRmn register)					
1	1 1 1 8-bit data length (stored in bits 0 to 7 of the SDRmn register)							
Other than above Setting prohibited								
Be sure to set DLSmn0 = 1 in the simplified I^2 C mode.								

Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

```
Remark m: Unit number (m = 0 to 2), n: Channel number (n = 0 to 3)
```

78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L:	mn = 00 to 03
78K0R/KF3-L μ PD78F1010, 78F1011, 78F1012 :	mn = 00 to 03, 10 to 13
78K0R/KF3-L μ PD78F1027, 78F1028 :	mn = 00 to 03, 10 to 13, 20, 21
78K0R/KG3-L μ PD78F1013, 78F1014 :	mn = 00 to 03, 10 to 13
78K0R/KG3-L μ PD78F1029, 78F1030 :	mn = 00 to 03, 10 to 13, 20, 21

R01UH0106EJ0400 Rev.4.00 Mar 31, 2011

(3) Processing flow

Figure 14-100. Timing Chart of Address Field Transmission

 Remark
 m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), r: IIC number (r = 10, 20)
 78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L:
 mn = 02, r = 10
 mn = 02, 10, r = 10, 20
 mn = 02, 10, r = 10, 20

 mn = 02, 10, r = 10, 2

Figure 14-101. Flowchart of Address Field Transmission

SE	MD	MD	SOE	SO	СКО	TXE	RXE	PM	P04	PM03	P03	PM02	P02	Operation mode	Pin Function		
02 Note 1	022	021	02	02	02	02	02	04		NOTE 2	NOTE 2				SCK10/ SCL10/P04	SI10/SDA10/ RxD1/P03 Note 2	SO10/ TxD1/P02
0	0	0	0	1	1	0	0	×	×	×	×	×	×	Operation stop	P04	P03	P02
	0	1						Note 3	mode		P03/RxD1						
	1	0														P03	
1	0	0	0	1	1	0	1	1	×	1	×	× Note 3	× Note 3	Slave CSI10 reception	SCK10 (input)	SI10	P02
			1	0/1 Note 4	1	1	0	1	×	× Note 3	× Note 3	0	1	Slave CSI10 transmission	SCK10 (input)	P03	SO10
			1	0/1 Note 4	1	1	1	1	×	1	×	0	1	Slave CSI10 transmission /reception	SCK10 (input)	SI10	SO10
			0	1	0/1 Note 4	0	1	0	1	1	×	× Note 3	× Note 3	Master CSI10 reception	SCK10 (output)	SI10	P02
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	× Note 3	× Note 3	0	1	Master CSI10 transmission	SCK10 (output)	P03	SO10
			1	0/1 Note 4	0/1 Note 4	1	1	0	1	1	×	0	1	Master CSI10 transmission /reception	SCK10 (output)	SI10	SO10
	0	1	1	0/1 Note 4	1	1	0	× Note 3	× Note 3	× Note 3	× Note 3	0	1	UART1 transmission Note 5	P04	P03/RxD1	TxD1
0	1	0	0	0/1	0/1	0	0	0	1	0	1	× Note 3	× Note 3	IIC10	SCL10	SDA10	P02
						1	0							start condition			
						0	1										
1			1	0/1 Note 4	0/1 Note 4	1	0	0	1	0	1	× Note 3	× Note 3	IIC10 address field transmission	SCL10	SDA10	P02
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	0	1	× Note 3	× Note 3	IIC10 data transmission	SCL10	SDA10	P02
			1	0/1 Note 4	0/1 Note 4	0	1	0	1	0	1	× Note 3	× Note 3	IIC10 data reception	SCL10	SDA10	P02
0			0	0/1	0/1	0	0	0	1	0	1	×	×	IIC10	SCL10	SDA10	P02
				NOLE /	Note /	1	0					14016 3	1401e 3	stop condition			
						0	1										

Table 14-11. Relationship between register settings and pins(Channel 2 of unit 0: CSI10, UART1 transmission, IIC10)

Notes 1. Serial channel enable register 0 (SE0) is a read-only status register which is set using serial channel statrt register 0 (SS0) and serial channel stop register 0 (ST0).

 When channel 3 of unit 0 is set to UART1 reception, this pin becomes an RxD1 function pin (refer to Table 14-12). In this case, operation stop mode or UART1 transmission must be selected for channel 2 of unit 0.

3. This pin can be set as a port function pin.

 This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).

5. When using UART1 transmission and reception in a pair, set channel 3 of unit 0 to UART1 reception (refer to **Table 14-12**).

6. Set the CKO02 bit to 1 before a start condition is generated. Clear the SO02 bit from 1 to 0 when the start condition is generated.

7. Set the CKO02 bit to 1 before a stop condition is generated. Clear the SO02 bit from 0 to 1 when the stop condition is generated.

Remark X: Don't care

(4) Operation without communication

(a) Start ~ Code ~ Data ~ Data ~ Stop

ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	D7 to D0	ĀCK	SP
$\Delta 1$								
∆1: IICS = 00000001B								
Remark \triangle : Generated only when SPIE = 1								

(5) Arbitration loss operation (operation as slave after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS bit each time interrupt request signal INTIICA has occurred to check the arbitration result.

(a) When arbitration loss occurs during transmission of slave address data

(i) When WTIM = 0

17.3 Registers Controlling DMA Controller

DMA controller is controlled by the following registers.

- DMA mode control register n (DMCn)
- DMA operation control register n (DRCn)

Remark n: DMA channel number (n = 0, 1)

Figure 20-5. STOP Mode Release by Interrupt Request Generation (2/2)

(2) When high-speed system clock (external clock input) is used as CPU clock

(3) When internal high-speed oscillation clock is used as CPU clock

Remark The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

Figure 23-10. Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 1)

- Notes 1. The LVIMK flag is set to "1" by reset signal generation.
 - 2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
 - 3. If LVI operation is disabled (clears the LVION bit) when the input voltage of the external input pin (EXLVI) is less than or equal to the detection voltage (VEXLVI), an interrupt request signal (INTLVI) is generated and the LVIIF flag may be set to 1.
- Remark <1> to <7> in Figure 23-10 above correspond to <1> to <7> in the description of "When starting operation" in 23.4.2 (2) When detecting level of input voltage from external input pin (EXLVI).

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCL10 clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 \mbox{ k} \Omega \end{array}$		400 ^{Note}	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{k}\Omega \end{array}$		300 ^{Note}	kHz
Hold time when SCL10 = "L"	tLOW	$eq:delta_$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1500		ns
Hold time when SCL10 = "H"	tніgн	$\label{eq:def_def_def_def} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1500		ns
Data setup time (reception)	tsu:dat	$\label{eq:def_def_def_def} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	1/fмск+120		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1/fмск+230		ns
Data hold time (transmission)	t hd:dat	$\label{eq:def_def_def} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 3 \ k\Omega \end{array}$	0	660	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 5 \ k\Omega \end{array}$	0	710	ns

(4) During communication at same potential (simplified I^2C mode) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} = EV_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = AV_{SS} = 0 V)

Note The value must also be fMCK/4 or more.

Simplified I²C mode connection diagram (during communication at same potential)

CHAPTER 32 PACKAGE DRAWINGS

32.1 78K0R/KC3-L (40-pin products)

μ PD78F1000K8-4B4-AX, 78F1001K8-4B4-AX, 78F1002K8-4B4-AX, 78F1003K8-4B4-AX (Under development)

40-PIN PLASTIC WQFN(6x6)

DETAIL OF A PART

	(UNIT:mm)
ITEM	DIMENSIONS
D	$6.00\pm\!0.05$
Е	$6.00\!\pm\!0.05$
D2	4.50
E2	4.50
A	0.75±0.05
A1	0.00 to 0.02
b	0.25 + 0.05 - 0.07
С	$0.20\!\pm\!0.05$
е	0.50
Lp	0.40 ± 0.10
х	0.05
У	0.05
	P40K8-50-4B4

