E. Renesas Electronics America Inc - UPD78F1009GB-GAH-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Not For New Designs
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1009gb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

How to Use This Manual

Readers	This manual is intended for user engineers who wish to understand the functions of the 78K0R/Kx3-L and design and develop application systems and programs for these devices.									
	The target products are as follows.									
	 78K0R/KC3-L: μPD78F1000, 78F100 	01 78E1002 78E1003								
	 78K0R/KD3-L: μPD78F1004, 78F100 									
	 78K0R/KE3-L: μPD78F1007, 78F100 									
	• 78K0R/KF3-L: μPD78F1010, 78F101									
	 78K0R/KG3-L: μPD78F1013, 78F10 	14, 76-1029, 76-1030								
Purpose	This manual is intended to give users an	n understanding of the functions described in the								
	Organization below.									
Organization	The 78K0R/Kx3-L manual is separated edition (common to the 78K0R Microcontr	into two parts: this manual and the instructions oller).								
	78K0R/Kx3-L	78K0R Microcontroller								
	User's Manual	User's Manual								
	(This Manual)	Instructions								
	Pin functions	CPU functions								
	 Internal block functions 	Instruction set								
	Interrupts	 Explanation of each instruction 								
	 Other on-chip peripheral functions 									
	Electrical specifications									
How to Read This Manual		manual have general knowledge of electrical								
	engineering, logic circuits, and microcontro									
	To gain a general understanding of fun									
	\rightarrow Read this manual in the order of the CONTENTS . The mark " <r>" shows major revised points. The revised points can be easily searched by copying an "<r>" in the</r></r>									
	PDF file and specifying it in the "Fine	d what:" field.								
	How to interpret the register format:									
	→ For a bit number enclosed in angle brackets, the bit name is defined as a reserved word in the RA78K0R, and is defined as an sfr variable using the #pragma sfr									
	directive in the CC78K0R.									
	To know details of the 78K0R Microcor									
	\rightarrow Refer to the separate document 78 (U17792E).	KOR Microcontroller Instructions User's Manual								

CONTENTS

CHAPT	TER 1 OUTLINE	
1.1	Features	
1.2	Applications	24
1.3	Ordering Information	24
1.4	Pin Configuration (Top View)	25
	1.4.1 78K0R/KC3-L	25
	1.4.2 78K0R/KD3-L	
	1.4.3 78K0R/KE3-L	
	1.4.4 78K0R/KF3-L	
	1.4.5 78K0R/KG3-L	32
1.5	Pin Identification	35
1.6	Block Diagram	
	1.6.1 78K0R/KC3-L	
	1.6.2 78K0R/KD3-L	39
	1.6.3 78K0R/KE3-L	40
	1.6.4 78K0R/KF3-L	41
	1.6.5 78K0R/KG3-L	42
1.7	Outline of Functions	43
	1. 7. 1 78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L	43
	1. 7. 2 78K0R/KF3-L, 78K0R/KG3-L	45
СНАРТ	TER 2 PIN FUNCTIONS (78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L)	47
2.1	Pin Function List	47
	2.1.1 78K0R/KC3-L (40-pin products)	48
	2.1.2 78K0R/KC3-L (44-pin and 48-pin products)	52
	2.1.3 78K0R/KD3-L	57
	2.1.4 78K0R/KE3-L	62
2.2	Description of Pin Functions	67
	2.2.1 P00, P01 (port 0)	67
	2.2.2 P10 to P17 (port 1)	68
	2.2.3 P20 to P27 (port 2)	69
	2.2.4 P30 to P33 (port 3)	70
	2.2.5 P40 to P43 (port 4)	71

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P60/SCL0 P61/SDA0	13-R	I/O	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor, or connect directly to EV _{SS} .
POI/SDAU			Output: Set the port output latch to 0 and leave open with low level out put.
P70/KR0/SO01/INTP4	8-R		Input: Independently connect to EVDD or EVSS via a resistor. Output: Leave open. <when n-ch="" open-drain=""> Set the port output latch to 0 and leave open with low level out put.</when>
P71/KR1/SI01/INTP5	5-AN		Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.
P72/KR2/SCK01/INTP6			Input: Independently connect to EVDD or EVSS via a resistor.
P73/KR3/SO00/TxD0	8-R		Output: Leave open. <when n-ch="" open-drain=""> Set the port output latch to 0 and leave open with low level out put.</when>
P74/KR4/SI00/RxD0	5-AN		Input: Independently connect to EVDD or EVSS via a resistor. Output: Leave open.
P75/KR5/SCK00			Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open. <when n-ch="" open-drain=""> Set the port output latch to 0 and leave open with low level out put.</when>
P76/KR6	8-R		Input: Independently connect to EVDD or EVSS via a resistor.
P77/KR7			Output: Leave open.
P80/CMP0P/INTP3/PGAI	11-J]	Input: Independently connect to AVREF or AVss via a resistor.
P81/CMP0M	11-H]	Output: Leave open.
P82/CMP1P/INTP7	11-I]	
P83/CMP1M	11-H]	
P120/INTP0/EXLVI	8-R		Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.

Table 2-3. Connection of Unused Pins (2/3)

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	0	0	0	0	0	PU01	PU00	F0030H	00H	R/W
					-		_				
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	F0033H	00H	R/W
PU4	0	0	0	0	PU43	PU42	PU41	PU40	F0034H	00H	R/W
PU5	0	0	0	0	PU53	PU52	PU51	PU50	F0035H	00H	R/W
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	F0037H	00H	R/W
PU12	0	0	0	0	0	0	0	PU120	F003CH	00H	R/W
PU14	0	0	0	0	0	0	PU141	0	F003EH	00H	R/W
	PUmn				Pmn pi	n on-chip	pull-up res	istor selec	tion		

Figure 5-38. Format of Pull-up Resistor Option Register (78K0R/KE3-L)

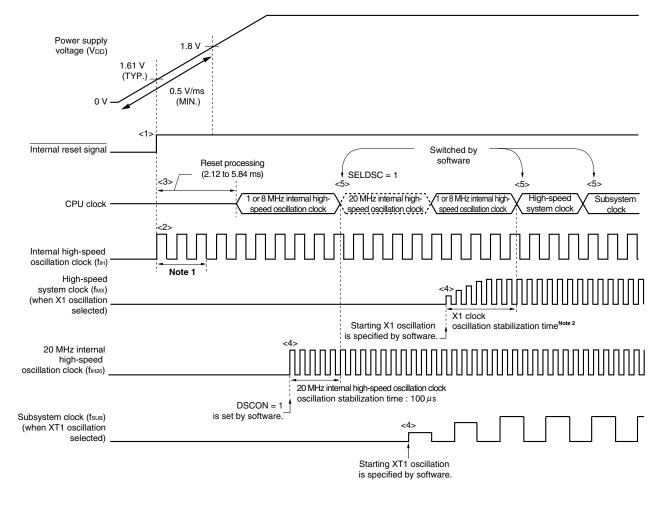
PUmn	Pmn pin on-chip pull-up resistor selection								
	(m = 0, 1, 3 to 5, 7, 12, 14 ; n = 0 to 7)								
0	On-chip pull-up resistor not connected								
1	On-chip pull-up resistor connected								

Address: FF	FA0H Afte	r reset: 00H	R/W								
Symbol	7	6	5 4		3	2	1	0			
CMC	EXCLK	OSCSEL	0	OSCSELS Note	0	AMPHS1	AMPHS0	AMPH			
	EXCLK	OSCSEL		system clock ation mode	X1/P	121 pin	X2/EXCLK/P122 pin				
	0	0	Input port m	ode	Input port	Input port					
	0	1	X1 oscillatio	n mode	Crystal/ceramic resonator connection						
	1	0	Input port m	ode	Input port						
	1	1	External clo	ck input mode	Input port		External clock input				
	OSCSELS Note	Subsystem	i clock pin ope	eration mode	XT1/F	P123 pin	XT2/P124 pin				
	0	Input port m	ode		Input port						
	1	XT1 oscillati	on mode		Crystal res	onator connec	ction				
	AMPHS1	AMPHS0		XT1 os	scillator oscillation mode selection						
	0	0									

Figure 7-4. Format of Clock Operation Mode Control Register (CMC)

AMPHS1	AMPHS0	XT1 oscillator oscillation mode selection
0	0	Low power consumption oscillation (default)
0	1	Normal oscillation
1	0	Ultra-low power consumption oscillation
1	1	

AMPH	Control of X1 clock oscillation frequency
0	$2 \text{ MHz} \le f_x \le 10 \text{ MHz}$
1	$10 \text{ MHz} < f_X \le 20 \text{ MHz}$


Note OSCSELS bit is not provided in the 78K0R/KC3-L (40-pin). In the 78K0R/KC3-L (40-pin), bit 4 is fixed to 0.

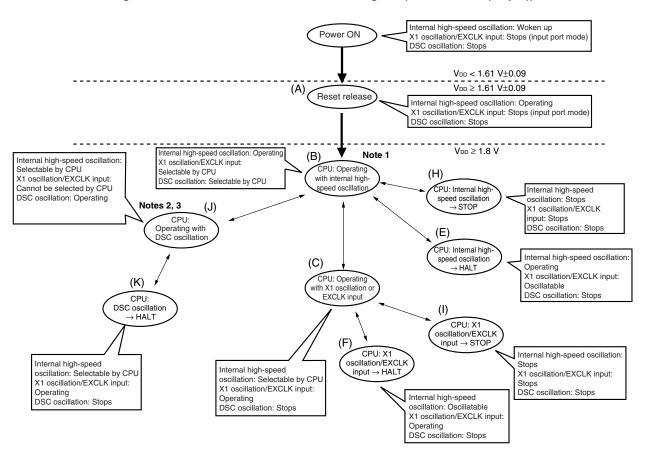
Cautions 1. The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction.

- 2. After reset release, set the CMC register before X1 or XT1 oscillation is started as set by the clock operation status control register (CSC).
- 3. Be sure to set the AMPH bit to 1 if the X1 clock oscillation frequency exceeds 10 MHz.
- 4. When the CMC register is used at the default value (00H), be sure to set 00H to this register after reset release in order to prevent malfunctioning during a program loop.
- 5. The XT1 oscillator is a circuit with low amplification in order to achieve low-power consumption. Note the following points when designing the circuit.
 - Pins and circuit boards include parasitic capacitance. Therefore, perform oscillation evaluation using a circuit board to be actually used and confirm that there are no problems.
 - When using the ultra-low power consumption oscillation (AMPHS1 = 1) as the mode of the XT1 oscillator, use the recommended resonators described in CHAPTER 30 ELECTRICAL SPECIFICATIONS (78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L) or CHAPTER 31 ELECTRICAL SPECIFICATIONS (78K0R/KF3-L, 78K0R/KG3-L).

(Cautions and Remark are given on the next page.)

Figure 7-16. Clock Generator Operation When Power Supply Voltage Is Turned On (When LVI Default Start Function Stopped Is Set (Option Byte: LVIOFF = 1))

- <1> When the power is turned on, an internal reset signal is generated by the power-on-clear (POC) circuit.
- <2> When the power supply voltage exceeds 1.61 V (TYP.), the reset is released and the internal high-speed oscillator ^{Note 3} automatically starts oscillation.
- <3> The CPU starts operation on the internal high-speed oscillation clock ^{Note 3} after a reset processing such as waiting for the voltage of the power supply or regulator to stabilize has been performed after reset release.
- <4> Set the start of oscillation of the X1 or XT1 clock ^{Note 4} via software (see **7.6.4 Example of setting X1 oscillation clock** and **7.6.5 Example of setting XT1 oscillation clock**). Switch to oscillation using the 20 MHz internal high-speed oscillation clock after confirming that the power supply voltage is at least 2.7 V and setting the DSCON bit to 1 by using software.
- <5> When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see 7.6.4 Example of setting X1 oscillation clock and 7.6.5 Example of setting XT1 oscillation clock).


Switch to the 20 MHz internal high-speed oscillation clock by setting the DSCON bit (bit 0 of the 20 MHz internal high-speed oscillation control register (DSCCTL)), waiting for 100 μ s, and then setting the SELDSC bit to 1 by using software ^{Note 5}.

(Notes and Cautions are listed on the next page.)

7.6.6 CPU clock status transition diagram

Figure 7-18 and Figure 7-19 show the CPU clock status transition diagram of this product.

- **Notes 1.** After reset release, an operation at one of the following operating frequencies is started, because $f_{CLK} = f_{IH}/2$ has been selected by setting the system clock control register (CKC) to 09H.
 - When 1 MHz has been selected by using the option byte: 500 kHz (1 MHz/2)
 - When 8 MHz or 20 MHz has been selected by using the option byte: 4 MHz (8 MHz/2)
 - 2. Specify 20 MHz internal oscillation after checking that VDD is at least 2.7 V.
 - 3. 20 MHz internal oscillation cannot be used if 1 MHz internal oscillation is selected by using the option byte.
- Remarks 1. If the low-power-supply detector (LVI) is set to ON by default by the option bytes, the reset will not be released until the power supply voltage (VDD) exceeds 2.07 V±0.2 V.
 After the reset operation, the status will shift to (B) in the above figure.
 - After the reset operation, the status will shift to (B) in the above lig
 - 2. DSC: 20 MHz internal high-speed oscillation clock

(2) Timer clock select register m (TPSm)

The TPSm register is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of the TPSm register, and CKm0 is selected by bits 3 to 0.

Rewriting of the TPSm register during timer operation is possible only in the following cases.

If the PRSm00 to PRSm03 bits can be rewritten:

All channels for which CKm0 is selected as the operation clock (CKSmn = 0) are stopped (TEmn = 0). If the PRSm10 to PRSm13 bits can be rewritten:

All channels for which CKm1 is selected as the operation clock (CKSmn = 1) are stopped (TEmn = 0).

The TPSm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TPSm register can be set with an 8-bit memory manipulation instruction with TPSmL. Reset signal generation clears this register to 0000H.

8.6 Channel Input (TImn Pin) Control

8.6.1 TImn edge detection circuit

(1) Edge detection basic operation timing

Edge detection circuit sampling is done in accordance with the operation clock (fmcк).

Figure 8-40. Edge Detection Basic Operation Timing

fc∟ĸ	
Operation clock (fмск)	
Synchronized (noise filter) internal TImn signal	
Rising edge detection internal trigger	
Falling edge detection internal trigger	

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)

However, in case of the timer input pin (TImn) and the timer output pin (TOmn), mn changes as below.

 78K0R/KC3-L (40-pin):
 mn = 02 to 07

 78K0R/KC3-L (44-pin, 48-pin):
 mn = 00 to 07

 78K0R/KD3-L, 78K0R/KE3-L:
 mn = 00 to 07

 78K0R/KF3-L, 78K0R/KG3-L:
 mn = 00 to 07, 10 to 13

CHAPTER 12 WATCHDOG TIMER

12.1 Functions of Watchdog Timer

The watchdog timer operates on the internal low-speed oscillation clock.

The watchdog timer is used to detect an inadvertent program loop. If a program loop is detected, an internal reset signal is generated.

Program loop is detected in the following cases.

- If the watchdog timer counter overflows
- If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- If data other than "ACH" is written to the WDTE register
- If data is written to the WDTE register during a window close period

When a reset occurs due to the watchdog timer, bit 4 (WDRF) of the reset control flag register (RESF) is set to 1. For details of the RESF register, see **CHAPTER 21 RESET FUNCTION**.

When 75% of the overflow time is reached, an interval interrupt can be generated.

<R>

Table 13-2. A/D Conversion Time Selection (2/3)

A/D C	Converter	Mode R	legister (ADM)	Mode		Conversion Time Selection							
FR2	FR1	FR0	LV1	LV0		fclk = 2 MHz		fclk = 5 MHz	fclk = 10 MHz	fclk = 20 MHz	Clock (fad)			
0	0	0	0	0	Normal	342/f ськ	Setting	Setting prohibited 34.2 μ s 17.1 μ s		17.1 <i>µ</i> s	fclк/20			
0	0	1				172/fськ	prohibited	34.4 <i>µ</i> s	17.2 <i>µ</i> s	8.6 <i>µ</i> s	fclк/10			
0	1	0				138/fclк		27.6 <i>µ</i> s	13.8 <i>µ</i> s	Setting prohibited	fськ/8			
0	1	1				104/fclк	52.0 <i>µ</i> s	20.8 <i>µ</i> s	10.4 <i>µ</i> s		fс∟к/6			
1	0	0				70/f ськ	35.0 <i>µ</i> s	14.0 <i>µ</i> s	Setting prohibited		fс∟к/4			
1	0	1				53/f ськ	26.5 <i>μ</i> s	10.6 <i>µ</i> s			fс∟к/З			
1	1	0				36/f ськ	18.0 <i>µ</i> s	Setting prohibited			fськ/2			
1	1	1				19/f ськ	9.5 <i>μ</i> s				fclк			
×	×	×	0	1	Low- voltage	Setting p	Setting prohibited							
×	×	×	1	0	High speed 1	Setting p	rohibited				-			
0	0	0	1	1	High	342/f ськ	Setting	Setting prohibited	34.2 <i>µ</i> s	17.1 <i>µ</i> s	fclк/20			
0	0	1			speed 2	172/fclк	prohibited	34.4 <i>µ</i> s	17.2 <i>µ</i> s	8.6 <i>µ</i> s	fclк/10			
0	1	0				138/fclк		27.6 <i>µ</i> s	13.8 <i>µ</i> s	6.9 <i>µ</i> s	fськ/8			
0	1	1				104/fськ	52.0 <i>µ</i> s	20.8 <i>µ</i> s	10.4 <i>µ</i> s	5.2 <i>μ</i> s	fс∟к/6			
1	0	0				70/fclк	35.0 <i>µ</i> s	14.0 <i>µ</i> s	7.0 <i>µ</i> s	3.5 <i>μ</i> s	fськ/4			
1	0	1				53/f ськ	26.5 <i>µ</i> s	10.6 <i>µ</i> s	5.3 <i>μ</i> s	Setting prohibited	fськ/3			
1	1	0				36/f ськ	18.0 <i>µ</i> s	7.2 <i>μ</i> s	3.6 <i>µ</i> s		fськ/2			
1	1	1				19/f ськ	9.5 <i>μ</i> s	3.8 <i>µ</i> s	Setting prohibited		fclк			

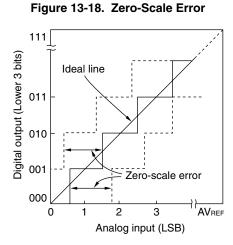
(2) 2.7 V \leq AV_{REF} \leq 5.5 V

Cautions 1. When rewriting the FR2 to FR0, LV1, and LV0 bits to other than the same data, stop A/D conversion once (ADCS = 0) beforehand.

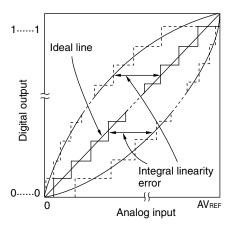
2. The above conversion time does not include clock frequency errors. Select conversion time, taking clock frequency errors into consideration.

Remark fclk: CPU/peripheral hardware clock frequency

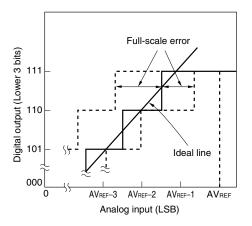
(5) Full-scale error


This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale -3/2LSB) when the digital output changes from 1.....110 to 1.....111.

(6) Integral linearity error


This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(7) Differential linearity error


While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

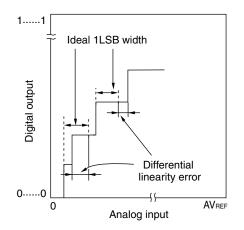
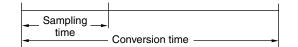

Figure 13-20. Integral Linearity Error

Figure 13-19. Full-Scale Error

Figure 13-21. Differential Linearity Error



(8) Conversion time

This expresses the time from the start of sampling to when the digital output is obtained. The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

Figure 14-8. Format of Serial Communication Operation Setting Register mn (SCRmn) (3/4)

Address: F0118H, F0119H (SCR00) to F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10) to F015EH, F015FH (SCR13), F020CH, F020DH (SCR20), F020EH, F020FH (SCR21)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	DLS	DLS	DLS
	mn	mn	mn	mn		mn	mn1	mn0	mn		mn1	mn0		mn2	mn1	mn0

PTC	PTC	Setting of parity b	bit in UART mode				
mn1	mn0	Transmission	Reception				
0	0	Does not output the parity bit.	Receives without parity				
0	1	Outputs 0 parity ^{Note} .	No parity judgment				
1	0	Outputs even parity.	Judged as even parity.				
1	1	Outputs odd parity.	Judges as odd parity.				
Be su	Be sure to set PTCmn1, PTCmn0 = 0, 0 in the CSI mode and simplified I^2 C mode.						

DIR	Selection of data transfer sequence in CSI and UART modes						
mn							
0	Inputs/outputs data with MSB first.						
1	Inputs/outputs data with LSB first.						
Be su	Be sure to clear DIRmn = 0 in the simplified l^2 C mode.						

SLC mn1	SLC mn0	Setting of stop bit in UART mode						
0	0	No stop bit						
0	1	Stop bit length = 1 bit						
1	0	Stop bit length = 2 bits						
1	1	Setting prohibited						
transfe	When the transfer end interrupt is selected, the interrupt is generated when all stop bits have been completely transferred.							
	Set 1 bit (SLCmn1, SLCmn0 = 0, 1) during UART reception and in the simplified I^2C mode. Set no stop bit (SLCmn1, SLCmn0 = 0, 0) in the CSI mode.							

Note 0 is always added regardless of the data contents.

Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

Remark	m: Unit number (m = 0 to 2), n: Channel number (n = 0 to 3)
	78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L:	mn = 00 to 03
	78K0R/KF3-L μ PD78F1010, 78F1011, 78F1012 :	mn = 00 to 03, 10 to 13
	78K0R/KF3-L μPD78F1027, 78F1028 :	mn = 00 to 03, 10 to 13, 20, 21
	78K0R/KG3-L μ PD78F1013, 78F1014 :	mn = 00 to 03, 10 to 13
	78K0R/KG3-L μ PD78F1029, 78F1030 :	mn = 00 to 03, 10 to 13, 20, 21

1

TTL input buffer

(16) Port input mode registers 0, 1, 3, 7, 14 (PIM0, PIM1, PIM3, PIM7, PIM14)

These registers set the input buffer of ports 0, 1, 3, 7, and 14 in 1-bit units. The port input mode registers to be set differ depending on the product.

78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L: PIM3, PIM7 78K0R/KF3-L, 78K0R/KG3-L: PIM0, PIM1, PIM14

The PIM0, PIM1, PIM3, PIM7, and PIM14 registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears the PIM0, PIM1, PIM3, PIM7, and PIM14 registers to 00H.

Figure 14-20. Format of Port Input Mode Registers 3 and 7 (PIM3 and PIM7) (78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L)

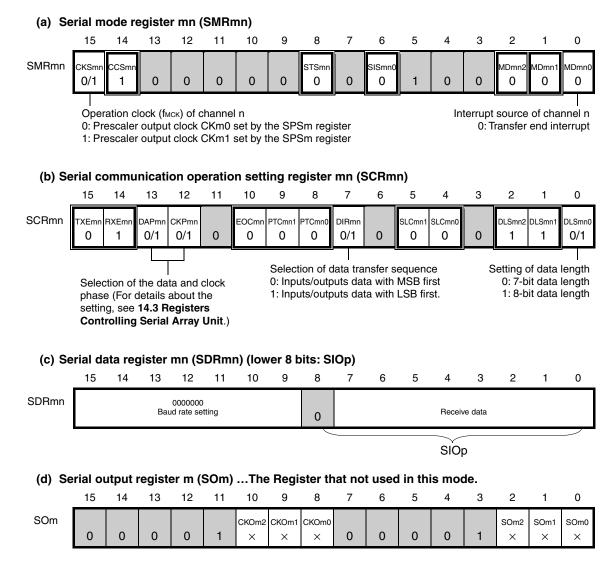

Address F004	I3H After re	set: 00H	R/W								
Symbol	7	6	5	4	3	2	1	0			
PIM3	0	0	0	0	0	PIM32	PIM31	0			
Address F004	Address F0047H After reset: 00H R/W										
Symbol	7	6	5	4	3	2	1	0			
PIM7	0	0	PIM75	PIM74	0	PIM72	PIM71	0			
PIMmn			Pmn pin input buffer selection (m = 3, 7; n = 1, 2, 4, 5)								
	0 Normal input buffer										

Figure 14-21. Format of Port Input Mode Registers 0, 1, and 14 (PIM0, PIM1, PIM14) (78K0R/KF3-L, 78K0R/KG3-L)

Address F004	10H After re	eset: 00H F	R/W					
Symbol	7	6	5	4	3	2	1	0
PIM0	0	0	0	PIM04	PIM03	0	0	0
Address F004	11H After re	eset: 00H F	R/W					
Symbol	7	6	5	4	3	2	1	0
PIM1	0	0	0	0	0	0	PIM11	PIM10
Address F004	1EH After re	eset: 00H F	R/W					
Symbol	7	6	5	4	3	2	1	0
PIM14	0	0	0	0	PIM143	PIM142	0	0
	PIMmn		Pmn	pin input buffe	r selection (m =	0, 1, 14; n = 0	to 4)	
	0	Normal input	t buffer					
	1	TTL input bu	ıffer					

(1) Register setting

Figure 14-60. Example of Contents of Registers for Slave Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20, CSI40, CSI41) (1/2)

Notes 1. Those bits are invalid while operating serial allay unit 1.

2. Those bits are invalid while operating serial allay unit 2.

(Remark is listed on the next page.)

<R>

SE	MD	MD	SOE	SO	СКО	TXE		PM	P142		P143 Note 2	PM	P144	Operation mode		Pin Function	
10 Note 1	102	101	10	10	10	10	10	142		143 Note 2	Note 2	144			SCK20/ SCL20/P142	SI20/SDA20/ RxD2/P143 Note 2	SO20/ TxD2/P144
0	0	0	0	1	1	0	0	× Note 3	× Note 3	× Note 3	× Note 3	× Note 3	× Note 3	Operation stop	P142	P143	P144
	0	1						Note 3	Note 3	Note 3	Note 3	Note 3	Note 3	mode		P143/RxD2	
	1	0														P143	
1	0	0	0	1	1	0	1	1	×	1	×	× Note 3	× Note 3	Slave CSI20 reception	SCK20 (input)	SI20	P144
			1	0/1 Note 4	1	1	0	1	×	× Note 3	× Note 3	0	1	Slave CSI20 transmission	SCK20 (input)	P143	SO20
			1	0/1 Note 4	1	1	1	1	×	1	×	0	1	Slave CSI20 transmission/reception	SCK20 (input)	SI20	SO20
			0	1	0/1 Note 4	0	1	0	1	1	×	× Note 3	× Note 3	Master CSI20 reception	SCK20 (output)	SI20	P144
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	× Note 3	× Note 3	0	1	Master CSI20 transmission	SCK20 (output)	P143	SO20
			1	0/1 Note 4	0/1 Note 4	1	1	0	1	1	×	0	1	Master CSI20 transmission/reception	SCK20 (output)	SI20	SO20
	0	1	1	0/1 Note 4	1	1	0	× Note 3	× Note 3	× Note 3	× Note 3	0	1	UART2 transmission Note 5	P142	P143/RxD2	TxD2
0	1	0	0	0/1 Note 6	0/1 Note 6	0	0	0	1	0	1	× Note 3	× Note 3	IIC20	SCL20	SDA20	P144
				NOLE O	Note o	1	0					Note 5	Note 5	start condition			
						0	1										
1			1	0/1 Note 4	0/1 Note 4	1	0	0	1	0	1	imesNote 3	imesNote 3	IIC20 address field transmission	SCL20	SDA20	P144
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	0	1	× Note 3	× Note 3	IIC20 data transmission	SCL20	SDA20	P144
			1	0/1 Note 4	0/1 Note 4	0	1	0	1	0	1	× Note 3	× Note 3	IIC20 data reception	SCL20	SDA20	P144
0]		0	0/1	0/1	0	0	0	1	0	1	×	×	IIC20	SCL20	SDA20	P144
				Note 7	Note 7	1	0					Note 3	Note 3	stop condition			
						0	1										

Table 14-13. Relationship between register settings and pins(Channel 0 of unit 1: CSI20, UART2 transmission, IIC20)

Notes 1. Serial channel enable register 1 (SE1) is a read-only status register which is set using serial channel statrt register 1 (SS1) and serial channel stop register 1 (ST1).

 When channel 1 of unit 1 is set to UART2 reception, this pin becomes an RxD2 function pin (refer to Table 14-14). In this case, operation stop mode or UART2 transmission must be selected for channel 0 of unit 1.

3. This pin can be set as a port function pin.

 This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).

- 5. When using UART2 transmission and reception in a pair, set channel 1 of unit 1 to UART2 reception (refer to Table 14-14).
- **6.** Set the CKO10 bit to 1 before a start condition is generated. Clear the SO10 bit from 1 to 0 when the start condition is generated.
- **7.** Set the CKO10 bit to 1 before a stop condition is generated. Clear the SO10 bit from 0 to 1 when the stop condition is generated.

Remark X: Don't care

18.4 Registers Controlling Interrupt Functions (78K0R/KF3-L, 78K0R/KG3-L)

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)
- Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)
- Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H)
- External interrupt rising edge enable registers (EGP0, EGP1)
- External interrupt falling edge enable registers (EGN0, EGN1)
- Program status word (PSW)

Table 18-4 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Interrupt	Interrupt Request	Flag	Interrupt Mask F	lag	Priority Specificatio	n Flag
Source		Register		Register		Register
INTWDTI	WDTIIF	IF0L	WDTIMK	MKOL	WDTIPR0, WDTIPR1	PR00L,
INTLVI	LVIIF		LVIMK		LVIPR0, LVIPR1	PR10L
INTP0	PIF0		PMK0		PPR00, PPR10	
INTP1	PIF1		PMK1		PPR01, PPR11	
INTP2	PIF2		PMK2		PPR02, PPR12	
INTP3	PIF3		РМК3		PPR03, PPR13	
INTP4	PIF4		PMK4		PPR04, PPR14	
INTP5	PIF5		PMK5		PPR05, PPR15	
INTST3	STIF3	IF0H	STMK3	МКОН	STPR03, STPR13	PR00H,
INTSR3	SRIF3		SRMK3		SRPR03, SRPR13	PR10H
INTSRE3	SREIF3		SREMK3		SREPR03, SREPR13	
INTDMA0	DMAIF0		DMAMK0		DMAPR00, DMAPR10	
INTDMA1	DMAIF1		DMAMK1		DMAPR01, DMAPR11	
INTST0 ^{Note 1}	STIF0 ^{Note 1}		STMK0 ^{Note 1}		STPR00, STPR10 ^{Note 1}	
INTCSI00 ^{Note 1}	CSIIF00 ^{Note 1}		CSIMK00 ^{Note 1}		CSIPR000, CSIPR100 ^{Note 1}	
INTSR0 ^{Note 2}	SRIF0 ^{Note 2}		SRMK0 ^{Note 2}		SRPR00, SRPR10 ^{Note 2}	
INTCSI01 ^{Note 2}	CSIIF01 ^{Note 2}		CSIMK01 ^{Note 2}		CSIPR001, CSIPR101 ^{Note 2}	
INTSRE0	SREIF0		SREMK0		SREPR00, SREPR10	

Table 18-4. Flags Corresponding to Interrupt Request Sources (1/3)

Notes 1. Do not use UART0 and CSI00 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTST0 and INTCSI00 is generated, bit 5 of the IF0H register is set to 1. Bit 5 of the MK0H, PR00H, and PR10H registers supports these three interrupt sources.

2. Do not use UART0 and CSI01 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTSR0 and INTCSI01 is generated, bit 6 of the IF0H register is set to 1. Bit 6 of the MK0H, PR00H, and PR10H registers supports these three interrupt sources.

Interrupt	Interrupt Request	Flag	Interrupt Mask F	lag	Priority Specification	n Flag
Source		Register		Register		Register
INTP11	PIF11	IF2H	PMK11	MK2H	PPR011, PPR111	PR02H,
INTSRE4 ^{Note}	SREIF4 ^{Note}		SREMK4 ^{Note}		SREPR04, SREPR14 ^{Note}	PR12H
INTTM10	TMIF10		TMMK10		TMPR010, TMPR110	
INTTM11	TMIF11		TMMK11		TMPR011, TMPR111	
INTTM12	TMIF12		TMMK12		TMPR012, TMPR112	
INTSRE2	SREIF2		SREMK2		SREPR02, SREPR12	
INTMD	MDIF		MDMK		MDPR0, MDPR1	
INTST4 ^{Note}	STIF4 ^{Note}		STMK4 ^{Note}		STPR04, STPR14 ^{Note}	
INTCSI40 ^{Note}	CSIIF40 ^{Note}		CSIMK40 ^{Note}		CSIPR040, CSIPR140 ^{Note}	
INTSR4 ^{Note}	SRIF4 ^{Note}		SRMK4 ^{Note}]	SRPR04, SRPR14 ^{Note}	
INTCSI41 ^{Note}	CSIIF41 ^{Note}		CSIMK41 ^{Note}		CSIPR041, CSIPR141 ^{Note}	

Table 18-4. Flags Corresponding to Interrupt Request Sources (3/3)

Note Those are only mounted in the μ PD78F1027, 78F1028, 78F1029, and 78F1030.

	STOP Mode	e Setting	When STOP Instruction Is Executed While CPU Is Operating on Main System Clock						
Ite	m		When CPU Is Operating on Internal High-Speed When CPU Is Operating on X1 Clock (fx) When CPU Is Operating on External Main System Clock (fex)						
Sy	stem clock		Clock supply to the CPU is stop	ped					
	Main system clock	fін	Stopped						
		fx							
		fex							
	Subsystem clock ^{Note 1}	fхт	Status before STOP mode was	set is retained					
fı∟			Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H) • WDTON = 0: Stops • WDTON = 1 and WDSTBYON = 1: Oscillates • WDTON = 1 and WDSTBYON = 0: Stops						
CP	U		Operation stopped						
Fla	sh memory		Operation stopped						
RA	М		The value is retained						
Po	rt (latch)		Status before STOP mode was set is retained						
Tin	ner array unit		Operation disabled						
Re	al-time counter (RTC) ^{Note 1}	Operable						
Wa	atchdog timer		Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H) • WDTON = 0: Stops • WDTON = 1 and WDSTBYON = 1: Operates • WDTON = 1 and WDSTBYON = 0: Stops						
Clo	ock output/buzzer out	put Note 2	Operable only when subsystem clock is selected as the count clock						
A/[D converter		Operation disabled						
Pro	ogrammable gain amp	lifier ^{Note 3}							
Co	mparator Note 3								
Se	rial array unit (SAU)								
Se	rial interface (IICA) [№]	ote 2	Wakeup by address match operable						
Mu	ltiplier/divider		Operation disabled						
DMA controller									
Power-on-clear function			Operable						
Low-voltage detection function									
Ex	ternal interrupt								
Ke	y interrupt function								

Table 20-2. Operating Statuses in STOP Mode

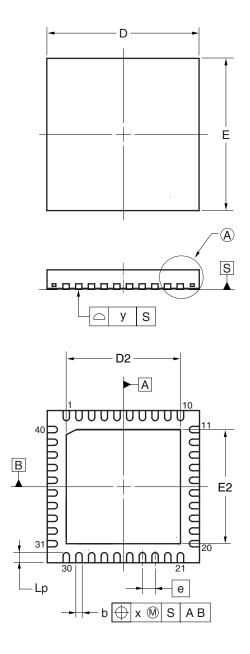
Notes 1. Those are not mounted onto 40-pin product of the 78K0R/KC3-L.

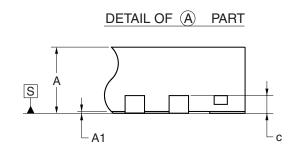
2. Those are not mounted onto 40-pin and 44-pin products of the 78K0R/KC3-L.

3. 78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L only.

Remark fin: Internal high-speed oscillation clock

- fx: X1 clock
- fex: External main system clock
- fxT: XT1 clock
- fil: Internal low-speed oscillation clock




CHAPTER 32 PACKAGE DRAWINGS

32.1 78K0R/KC3-L (40-pin products)

μ PD78F1000K8-4B4-AX, 78F1001K8-4B4-AX, 78F1002K8-4B4-AX, 78F1003K8-4B4-AX (Under development)

40-PIN PLASTIC WQFN(6x6)

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.00 ± 0.05
Е	$6.00\!\pm\!0.05$
D2	4.50
E2	4.50
А	0.75±0.05
A1	0.00 to 0.02
b	0.25 + 0.05 - 0.07
С	0.20±0.05
е	0.50
Lp	0.40±0.10
х	0.05
У	0.05
	P40K8-50-4B4

