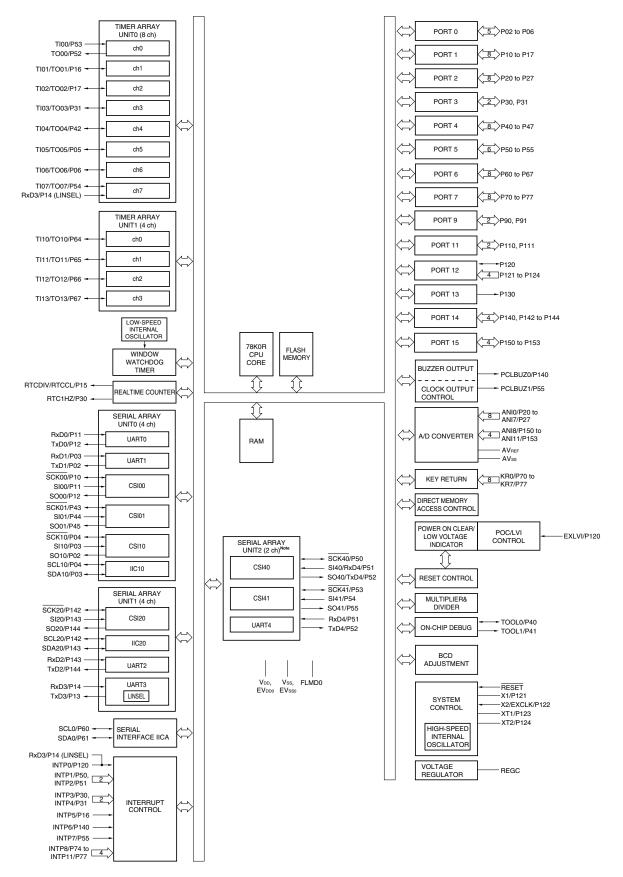


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1010gc-gad-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6.4 78K0R/KF3-L

Note Serial array unit 2 is only mounted in the μ PD78F1027 and 78F1028.

							1			(2/2)				
Iter	n	μ PD78F1010	μ PD78F1011	78K0R/KF3-	r	<u> </u>	r	/KG3-L	~					
				μ PD78F1012	μ PD78F1027	μ PD78F1028	μ PD78F1013	μ PD78F1014	μ PD78F1029 ^{Note 1}	μ PD78F1030 ^{Note 1}				
Clock output/buzze		2												
	(periphe • 256 Hz	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (peripheral hardware clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 												
10-bit resolution A/ (AV _{REF} = 1.8 to 5.5				12 channel	S			16 ch	annels					
Comparators			_											
Programmable gai	n amplifiers					_								
Serial interface	 CSI: 1 d CSI: 1 d UART s 	 CSI: 2 channels/UART: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel UART supporting LIN-bus: 1 channel CSI: 2 channels/UART: 1 channel (µ PD78F1027, 78F1028, 78F1029, 78F1030) 												
	I ² C bus					1 channe	I		-					
Multiplier/divider		 16 bits × 16 bits = 32 bits (multiplication) 32 bits ÷ 32 bits = 32 bits (division) 												
DMA controller		2 channel	2 channels											
Vectored interrupt	Internal		33		3	35	;	33	3	35				
sources	External					13								
Key interrupt		8 channels (KR0 to KR7)												
Reset	InternalInternalInternalInternalInternal	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-clear Internal reset by low-voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by a reset processing check error 												
Power-on-clear cire		 Power-on-reset: 1.61 ±0.09 V Power-down-reset: 1.59 ±0.09 V 												
Low-voltage detect	tor	1.91 V to	1.91 V to 4.22 V (16 stages)											
On-chip debug fun	ction	Provided												
Power supply volta	ige	V _{DD} = 1.8 to 5.5 V												
Operating ambient	temperature	T _A = -40 to +85 °C												

Notes 1. The μ PD78F1029 and μ PD78F1030 don't have the FBGA package.

2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.2.4 P30 to P33 (port 3)

P30 to P33 function as an I/O port. These pins also function as serial interface data I/O, clock I/O, and external interrupt request input.

Input to the P30 and P31 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units, using port input mode register 3 (PIM3).

Output from the P30 to P32 pins can be specified as normal CMOS output or N-ch open-drain output (V_{DD} tolerance) in 1-bit units, using port output mode register 3 (POM3).

	78K0R/KC3-L (μPD78F100y: y = 0 to 3)				78K0R/KC3-L (48-pin) (μPD78F100y: y = 1 to 3)	78K0R/KD3-L (μPD78F100y: y = 4 to 6)	78K0R/KE3-L (μPD78F100y: y = 7 to 9)
	40-pin	44-pin					
P30/SO10/TxD1	r	V	\checkmark	\checkmark	\checkmark		
P31/SI10/RxD1/ SDA10/INTP1	n	\checkmark	\checkmark	\checkmark	\checkmark		
P32/SCK10/ SCL10/INTP2	\checkmark		\checkmark	\checkmark	\checkmark		
P33	-	-	_	_	\checkmark		

Remark $\sqrt{}$: Mounted

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P33 function as an I/O port. P30 to P33 can be set to input or output port in 1-bit units using port mode register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P33 function as serial interface data I/O, clock I/O, and external interrupt request input.

(a) SI10

This is a serial data input pin of serial interface CSI10.

(b) SO10

This is a serial data output pin of serial interface CSI10.

(c) SCK10

This is a serial clock I/O pin of serial interface CSI10.

(d) TxD1

This is a serial data output pin of serial interface UART1.

(e) RxD1

This is a serial data input pin of serial interface UART1.

(2) Non-port functions (1/3): 78K0R/KF3-L

Function Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI7	Input	A/D converter analog input	Digital input	P20 to P27
ANI8 to ANI11			port	P150 to P153
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
INTP0	Input	External interrupt request input for which the valid edge (rising	Input port	P120/EXLVI
INTP1		edge, falling edge, or both rising and falling edges) can be		P50/SCK40 ^{Note}
INTP2		specified		P51/SI40 ^{Note} /RxD4 ^{Note}
INTP3				P30/RTC1HZ
INTP4				P31/TI03/TO03
INTP5				P16/TI01/TO01
INTP6				P140/PCLBUZ0
INTP7				P55/PCLBUZ1/ SO41 ^{Note}
INTP8 to INTP11				P74/KR4 to P77/KR7
KR0 to KR3	Input	Key interrupt input	Input port	P70 to P73
KR4 to KR7				P74/INTP8 to P77/INTP11
PCLBUZ0	Output	Clock output/buzzer output	Input port	P140/INTP6
PCLBUZ1				P55/INTP7
REGC	_	Connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to 1 μ F: target).	_	-
RTCDIV	Output	Real-time counter clock (32 kHz divided frequency) output	Input port	P15/RTCCL
RTCCL	Output	Real-time counter clock (32 kHz original oscillation) output	Input port	P15/RTCDIV
RTC1HZ	Output	Real-time counter correction clock (1 Hz) output	Input port	P30/INTP3
RESET	Input	System reset input	-	-
RxD0	Input	Serial data input to UART0	Input port	P11/SI00
RxD1	Input	Serial data input to UART1	Input port	P03/SI10/SDA10
RxD2	Input	Serial data input to UART2	Input port	P143/SI20/SDA20
RxD3	Input	Serial data input to UART3	Input port	P14
RxD4 ^{Note}	Input	Serial data input to UART4	Input port	P51/INTP2/SI40 ^{Note}
SCK00	I/O	Clock input/output for CSI00, CSI01, CSI10, CSI20, CSI40, and	Input port	P10
SCK01		CSI41		P43
SCK10				P04/SCL10
SCK20				P142/SCL20
SCK40				P50/INTP1
SCK41				P53/TI00
SCL0	I/O	Clock input/output for I ² C	Input port	P60
SCL10	I/O	Clock input/output for simplified I ² C	Input port	P04/SCK10
SCL20				P142/SCK20

Note SCK40, SCK41, SI40, SI41, SO40, SO41, TxD4, RxD4 are only mounted in the μ PD78F1027 and 78F1028.

4.2.4 Special function registers (SFRs)

Unlike a general-purpose register, each SFR has a special function. SFRs are allocated to the FFF00H to FFFFFH area.

SFRs can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulable bit units, 1, 8, and 16, depend on the SFR type.

Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit). This manipulation can also be specified with an address.

• 8-bit manipulation

Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (sfr). This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (sfrp). When specifying an address, describe an even address.

Table 4-5 gives a list of the SFRs. The meanings of items in the table are as follows.

Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0R, and is defined as an sfr variable using the #pragma sfr directive in the CC78K0R. When using the RA78K0R, ID78K0R-QB, and SM+ for 78K0R, symbols can be written as an instruction operand.

• R/W

Indicates whether the corresponding SFR can be read or written.

R/W: Read/write enable

R: Read only

W: Write only

Manipulable bit units

" $\sqrt{}$ " indicates the manipulable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon reset signal generation.

Caution Do not access addresses to which extended SFRs are not assigned.

Remark For extended SFRs (2nd SFRs), see 4.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

(6) 20 MHz internal high-speed oscillation control register (DSCCTL)

This register controls the 20 MHz internal high-speed oscillation clock (DSC) function.

This register can be used to control oscillation of the 20 MHz internal high-speed oscillation clock (fiH20) and select the 20 MHz internal high-speed oscillation clock (fiH20) as the CPU/peripheral hardware clock.

The DSCCTL register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-9. Format of 20 MHz Internal High-Speed Oscillation Control Register (DSCCTL)

Address: F00F6H After reset: 00H R/WNote

Symbol	7	6	5	4	<3>	<2>	1	<0>
DSCCTL	0	0	0	0	DSCS	SELDSC	0	DSCON

DSCS	20 MHz internal high-speed oscillation supply status flag
0	Not supplied
1	Supplied (The CPU/peripheral hardware clock (fcLK) operates on the 20 MHz internal high-speed oscillation clock.)

SELDSC	Selection of 20 MHz internal high-speed oscillation for CPU/peripheral hardware clock (fcuk)
0	Does not select 20 MHz internal high-speed oscillation (clock selected by the system clock control register (CKC) is supplied to f_{CLK})
1	Selects 20 MHz internal high-speed oscillation (20 MHz internal high-speed oscillation is supplied to $f_{\mbox{\tiny CLK}})$

DSCON	Operating or stopping 20 MHz internal high-speed oscillation clock (fiH20)
0	Stopped
1	Operated

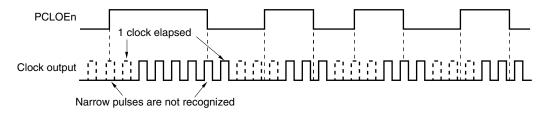
Note Bit 3 is read-only.

- Cautions 1. 20 MHz internal oscillation can only be used if $VDD \ge 2.7 V$.
 - 2. Set the SELDSC bit when 100 μ s have elapsed after the DSCON bit has been set with VDD \geq 2.7 V.
 - 3. The internal high-speed oscillator must be operated (HIOSTOP = 0) when DSCON = 1.
 - 4. If 1 MHz internal oscillation is selected by using the option byte, 20 MHz internal high-speed oscillation cannot be used. Do not set (1) the DSCON bit.

11.4 Operations of Clock Output/Buzzer Output Controller

One pin can be used to output a clock or buzzer sound.

The PCLBUZ0 pin outputs a clock/buzzer selected by the clock output select register 0 (CKS0).


The PCLBUZ1 pin outputs a clock/buzzer selected by the clock output select register 1 (CKS1).

11.4.1 Operation as output pin

The PCLBUZn pin is output as the following procedure.

- <1> Select the output frequency with bits 0 to 3 (CCSn0 to CCSn2, CSELn) of the clock output select register (CKSn) of the PCLBUZn pin (output in disabled status).
- <2> Set bit 7 (PCLOEn) of the CKSn register to 1 to enable clock/buzzer output.
- Remarks 1. The controller used for outputting the clock starts or stops outputting the clock one clock after enabling or disabling clock output (PCLOEn bit) is switched. At this time, pulses with a narrow width are not output. Figure 11-4 shows enabling or stopping output using the PCLOEn bit and the timing of outputting the clock.
 - **2.** n = 0: 78K0R/KC3-L (48-pin), 78K0R/KD3-L
 - n = 0, 1: 78K0R/KE3-L, 78K0R/KF3-L, 78K0R/KG3-L

Figure 11-4. Remote Control Output Application Example

(11) Serial output enable register m (SOEm)

The SOEm register is a register that is used to enable or stop output of the serial communication operation of each channel.

Channel n that enables serial output cannot rewrite by software the value of the SOmn bit of serial output register m (SOm) to be described below, and a value reflected by a communication operation is output from the serial data output pin.

For channel n, whose serial output is stopped, the SOmn bit value of the SOm register can be set by software, and that value can be output from the serial data output pin. In this way, any waveform of the start condition and stop condition can be created by software.

The SOEm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SOEm register can be set with an 1-bit or 8-bit memory manipulation instruction with SOEmL.

Reset signal generation clears the SOEm register to 0000H.

Figure 14-15. Format of Serial Output Enable Register m (SOEm)

Address: F012AH, F012BH After reset: 0000H R/W																
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE0	0	0	0	0	0	0	0	0	0	0	0	0	0	SOE 02	SOE 01	SOE 00
Address: F01	6AH, F(016BH	After	reset: C	000H	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE1	0	0	0	0	0	0	0	0	0	0	0	0	0	SOE 12	0	SOE 10
Address: F021AH, F021BH After reset: 0000H R/W																
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE2 Note	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SOE 21	SOE 20
	SOE mn					9	Serial o	utput er	nable/st	op of ch	nannel r	ı				
	0	Stops	output	by seria	l comm	unicatio	on opera	ation.								
	1	Enable	es outp	ut by se	rial con	nmunica	ation op	eration.								
Note	 Enables output by serial communication operation. Note SOE2 register is only mounted in the 78K0R/KF3-L (μ PD78F1027, 78F1028) and 78K0R/KG3-L (μ PD78F1029, 78F1030). 															
Caution Be sure to clear bits 15 to 3 of the SOE0 register, bits 1 and 15 to 3 of the SOE1 register, and bits 15 to 2 of the SOE2 registers to "0".																
Rem	Remark m: Unit number (m = 0 to 2), n: Channel number (n = 0 to 2) 78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L: mn = 00 to 02 78K0R/KF3-L μ PD78F1010, 78F1011, 78F1012 mn = 00 to 02, 10, 12 78K0R/KF3-L μ PD78F1007, 78F1012 mn = 00 to 02, 10, 12															

(2) Operation procedure

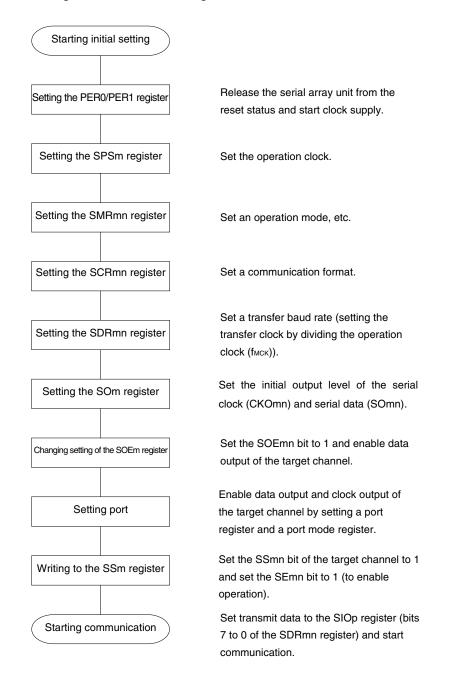
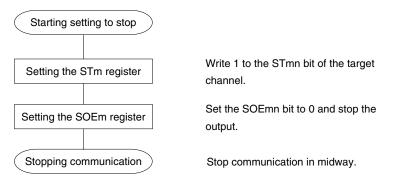
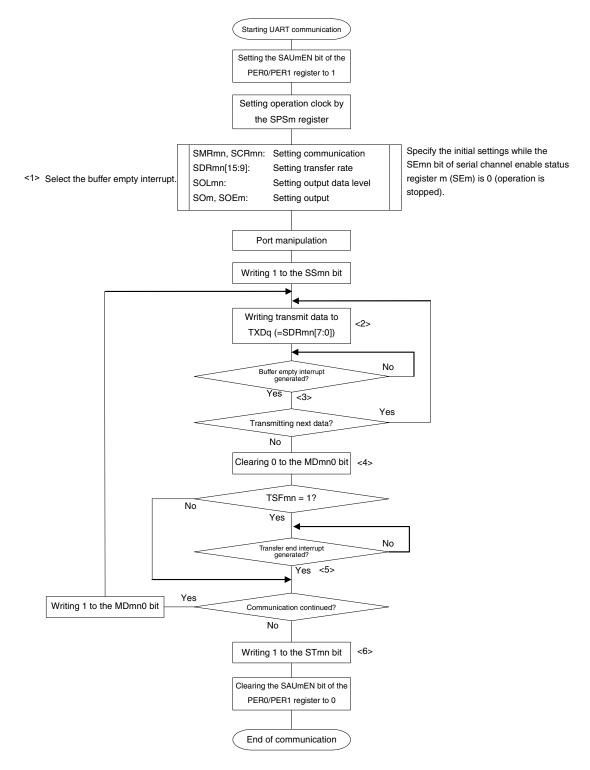



Figure 14-29. Initial Setting Procedure for Master Transmission

Caution After setting the SAUmEN bit of peripheral enable register 0/1 (PER0/PER1) to 1, be sure to set serial clock select register m (SPSm) after 4 or more fcLK clocks have elapsed.



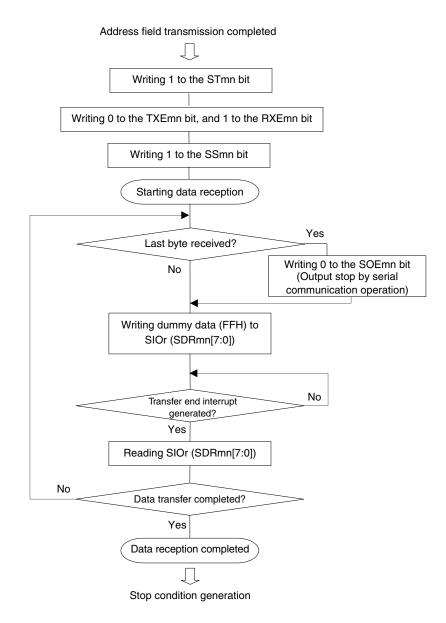

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set serial output register m (SOm) (see Figure 14-78 Procedure for Resuming UART Transmission).

Figure 14-82. Flowchart of UART Transmission (in Continuous Transmission Mode)

- Caution After setting the SAUmEN bit of peripheral enable register 0/1 (PER0/PER1) to 1, be sure to set serial clock select register m (SPSm) after 4 or more fclk clocks have elapsed.
- **Remark** <1> to <6> in the figure correspond to <1> to <6> in **Figure 14-81 Timing Chart of UART Transmission (in Continuous Transmission Mode)**.

Figure 14-107. Flowchart of Data Reception

Caution ACK is not output when the last data is received (NACK). Communication is then completed by setting "1" to the STmn bit of serial channel stop register m (STm) to stop operation and generating a stop condition.

Table 14-17. Relationship between register settings and pins (Channel 0 of unit 2: CSI40, UART4 transmission)

SE	MD	MD	SOE	SO	СКО	TXE	RXE	PM	P50	PM	P51 Note 2	РМ	P52	Operation mode		Pin Functio	n
20 Note 1	202	201	20	20	20	20	20	50		51 Note 2	Hold I	52			SCK40/ INTP1/ P50	SI40/ RxD4/ INTP2/ P51 ^{Note 2}	SO40/ TxD4/ TO00/P52
0	0	0	0	1	1	0	0	× Note 3	× Note 3	× Note 3	× Note 3	× Note 3	× Note 3	Operation stop mode	INTP1/ P50	INTP2/ P51	TO00/P52
	0	1														INTP2/ P51/RxD4	
1	0	0	0	1	1	0	1	1	×	1	×	× Note 3	× Note 3	Slave CSI40 reception	SCK40 (input)	SI40	TO00/P52
			1	0/1 Note 4	1	1	0	1	×	× Note 3	× Note 3	0	1	Slave CSI40 transmission	SCK40 (input)	INTP2/P51	SO40
			1	0/1 Note 4	1	1	1	1	×	1	×	0	1	Slave CSI40 transmission/ reception	SCK40 (input)	SI40	SO40
			0	1	0/1 Note 4	0	1	0	1	1	×	× Note 3	× Note 3	Master CSI40 reception	SCK40 (output)	SI40	TO00/P52
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	× Note 3	× Note 3	0	1	Master CSI40 transmission	SCK40 (output)	INTP2/P51	SO40
			1	0/1 Note 4	0/1 Note 4	1	1	0	1	1	×	0	1	Master CSI40 transmission/ reception	SCK40 (output)	SI40	SO40
	0	1	1	0/1 Note 4	1	1	0	× Note 3	× Note 3	× Note 3	× Note 3	0	1	UART4 transmission ^{Note 5}	INTP1/ P50	INTP2/ P51/RxD4	TxD4

(µPD78F1027, 78F1028, 78F1029, 78F1030 only)

- **Notes 1.** Serial channel enable register 2 (SE2) is a read-only status register which is set using serial channel start register 2 (SS2) and serial channel stop register 2 (ST2).
 - When channel 1 of unit 2 is set to UART4 reception, this pin becomes an RxD4 function pin (refer to Table 14-18). In this case, operation stop mode or UART4 transmission must be selected for channel 0 of unit 2.
 - 3. This pin can be set as a port function pin.
 - This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
 - 5. When using UART4 transmission and reception in a pair, set channel 1 of unit 2 to UART4 reception (refer to **Table 14-18**).

Remark X: Don't care

Figure 15-7. Format of IICA Status Register (IICS) (3/3)

ACKD	Detection of acknowledge (ACK)								
0	Acknowledge was not detected.	Acknowledge was not detected.							
1	Acknowledge was detected.								
Condition f	or clearing (ACKD = 0)	Condition for setting (ACKD = 1)							
At the risiCleared to	stop condition is detected ing edge of the next byte's first clock by LREL = 1 (exit from communications) e IICE bit changes from 1 to 0 (operation	After the SDA0 line is set to low level at the rising edge of SCL0 line's ninth clock							
 Reset 									

STD	Detection of start condition							
0	Start condition was not detected.							
1	Start condition was detected. This indicates that the address transfer period is in effect.							
Condition f	for clearing (STD = 0)	Condition for setting (STD = 1)						
 At the ris following Cleared I 	stop condition is detected ing edge of the next byte's first clock address transfer by LREL = 1 (exit from communications) e IICE bit changes from 1 to 0 (operation	When a start condition is detected						

SPD	Detection of stop condition					
0	Stop condition was not detected.					
1	Stop condition was detected. The master device's communication is terminated and the bus is released.					
Condition f	or clearing (SPD = 0)	Condition for setting (SPD = 1)				
clock follo start cono	ing edge of the address transfer byte's first owing setting of this bit and detection of a dition e IICE bit changes from 1 to 0 (operation	When a stop condition is detected				

Remark LREL: Bit 6 of IICA control register 0 (IICCTL0)

IICE: Bit 7 of IICA control register 0 (IICCTL0)

(4) IICA flag register (IICF)

This register sets the operation mode of I^2C and indicates the status of the I^2C bus.

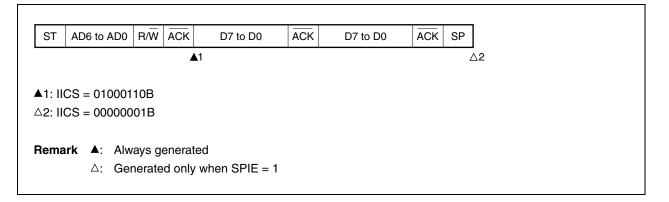
The IICF register can be set by a 1-bit or 8-bit memory manipulation instruction. However, the STT clear flag (STCF) and I^2C bus status flag (IICBSY) bits are read-only.

The IICRSV bit can be used to enable/disable the communication reservation function.

The STCEN bit can be used to set the initial value of the IICBSY bit.

The IICRSV and STCEN bits can be written only when the operation of I^2C is disabled (bit 7 (IICE) of IICA control register 0 (IICCTL0) = 0). When operation is enabled, the IICF register can be read.

Reset signal generation clears this register to 00H.


(ii) When WTIM = 1

	ST A	D6 to AD0	R/W	ACK	D7 to D0	ACK	D7 to D0	ACK S	sР
				▲1 ▲2			}	▲4	
	1: IICS	= 0110×	010B						
A ;	2: IICS	= 0010×	110B						
▲;	3: IICS	= 0010×	100B						
A	4: IICS	= 0010×	×00B						
Δ	5: IICS	= 00000	001B						
R	emark	▲: Al	ways g	enerate	d				
		∆: G	enerate	ed only v	when SPIE = 1	1			
		×: Do	on't car	e					

(6) Operation when arbitration loss occurs (no communication after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS bit each time interrupt request signal INTIICA has occurred to check the arbitration result.

(a) When arbitration loss occurs during transmission of slave address data (when WTIM = 1)

(3) In self programming mode

It is recommended to leave this pin open when using the self programming function. To pull it down externally, use a resistor of 100 k Ω to 200 k Ω .

In the self programming mode, the setting is switched to pull up in the self programming library.

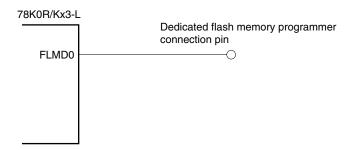
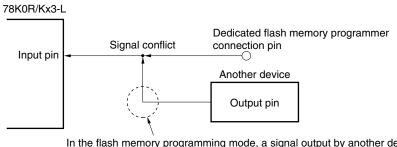


Figure 26-11. FLMD0 Pin Connection Example

26.4.2 TOOL0 pin

In the flash memory programming mode, connect this pin directly to the dedicated flash memory programmer or pull it up by connecting it to EV_{DD} via an external resistor.


When on-chip debugging is enabled in the normal operation mode, pull this pin up by connecting it to EV_{DD} via an external resistor, and be sure to keep inputting the V_{DD} level to the TOOL0 pin before reset is released (pulling down this pin is prohibited).

Remark The SAU and IICA pins are not used for communication between the 78K0R/Kx3-L and dedicated flash memory programmer, because single-line UART is used.

26.4.3 RESET pin

Signal conflict will occur if the reset signal of the dedicated flash memory programmer is connected to the RESET pin that is connected to the reset signal generator on the board. To prevent this conflict, isolate the connection with the reset signal generator.

The flash memory will not be correctly programmed if the reset signal is input from the user system while the flash memory programming mode is set . Do not input any signal other than the reset signal of the dedicated flash memory programmer.

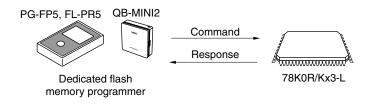
In the flash memory programming mode, a signal output by another device will conflict with the signal output by the dedicated flash memory programmer. Therefore, isolate the signal of another device.

26.6.3 Selecting communication mode

Communication mode of the 78K0R/Kx3-L as follows.

Table 26-5.	Communication Modes
-------------	---------------------

Communication		Pins Used			
Mode	Port	Speed Note 2	Frequency	Multiply Rate	
1-line mode	UART	115200 bps,	-	-	TOOL0
(dedicated		250000 bps,			
single-line		500000 bps,			
UART)		1 Mbps ^{Note 3}			


Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.

- **2.** Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.
- 3. When using a transfer rate of 1 Mbps, do not use the wide voltage mode.

26.6.4 Communication commands

The 78K0R/Kx3-L communicates with the dedicated flash memory programmer by using commands. The signals sent from the flash memory programmer to the 78K0R/Kx3-L are called commands, and the signals sent from the 78K0R/Kx3-L to the dedicated flash memory programmer are called response.

Figure 26-16. Communication Commands

The flash memory control commands of the 78K0R/Kx3-L are listed in the table below. All these commands are issued from the programmer and the 78K0R/Kx3-L perform processing corresponding to the respective commands.

Classification	Command Name	Function
Verify	Verify	Compares the contents of a specified area of the flash memory with data transmitted from the programmer.
Erase	Chip Erase	Erases the entire flash memory.
	Block Erase	Erases a specified area in the flash memory.
Blank check	Block Blank Check	Checks if a specified block in the flash memory has been correctly erased.
Write	Programming	Writes data to a specified area in the flash memory.
Getting information	Silicon Signature	Gets the 78K0R/Kx3-L information (such as the part number and flash memory configuration).
	Version Get	Gets the 78K0R/Kx3-L firmware version.
	Checksum	Gets the checksum data for a specified area.
Security	Security Set	Sets security information.
Others	Reset	Used to detect synchronization status of communication.
	Baud Rate Set	Sets baud rate when UART communication mode is selected.

Table 26-6. Flash Memory Control Commands

The 78K0R/Kx3-L returns a response for the command issued by the dedicated flash memory programmer. The response names sent from the 78K0R/Kx3-L are listed below.

Table 26-7. Response Names

Response Name	Function				
ACK	Acknowledges command/data.				
NAK	Acknowledges illegal command/data.				

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS1} = \text{AV}_{SS2} = \text{AV}_{S$,
= 0 V)	

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL1	P01, P02, P12, P13, P15, P41, P45, P P80 to P87, P90, P91, P111, P123, P1	0		0.3Vdd	V	
	VIL2	P00, P03 to P06, P10, P11, P14, P16, P17, P30, P31, P40, P42 to P44, P46, P47, P50, P51, P53 to P55, P64 to P67, P70 to P77, P110, P120 to P122, P131, P140 to P143, P145, EXCLK, RESET	Normal input buffer	0		0.2V _{DD}	V
	VIL3	P03, P04, P10, P11, P142, P143	TTL input buffer $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0		0.2	V
	VIL4	P20 to P27, P150 to P157	AVREF = VDD	0		0.3AV _{REF}	V
	VIL5	P60 to P63		0		0.3VDD	V
	VIL6	FLMD0 ^{Note}		0		0.1VDD	V

- **Note** When disabling writing of the flash memory, connect the FLMD0 pin processing directly to Vss, and maintain a voltage less than 0.1VDD.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 1	HALT	fsub = 32.768 kHz ^{Note 2} ,	$V_{DD} = 5.0 \text{ V}$		1.0	3.7	μA
current		mode	$T_A = -40$ to +50 °C	V _{DD} = 3.0 V		1.0	3.7	μA
				$V_{DD} = 2.0 V$		1.0	3.7	μA
			fsub = 32.768 kHz ^{Note 2} ,	V _{DD} = 5.0 V		1.0	6.1	μA
			$T_A = -40$ to +70 °C	V _{DD} = 3.0 V		1.0	6.1	μA
				$V_{DD} = 2.0 V$		1.0	6.1	μA
			fsub = 32.768 kHz ^{Note 2} ,	$V_{DD} = 5.0 V$		1.0	8.9	μA
			$T_A = -40$ to +85 °C	V _{DD} = 3.0 V		1.0	8.9	μA
				$V_{DD} = 2.0 V$		1.0	8.9	μA
	DD3 ^{Note 3}	STOP	$T_{A} = -40 \text{ to } +50 \ ^{\circ}\text{C}$			0.37	2.8	μA
		mode	$T_A = -40 \text{ to } +70 \ ^{\circ}\text{C}$			0.37	5.2	μA
			T _A = −40 to +85 °C			0.37	7.9	μA

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD0 = EVDD1 \leq 5.5 V, 1.8 V \leq AVREF \leq VDD, VSS = EVSS0 = EVSS1 = AVSS = 0 V)

Notes 1. Total current flowing into V_{DD}, EV_{DD0}, EV_{DD1}, and AV_{REF}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The maximum value include the peripheral operation current. However, not including the current flowing into the A/D converter, LVI circuit, I/O port, and on-chip pull-up/pull-down resistors. During HALT instruction execution by flash memory.

- 2. When operating real-time counter (RTC) and setting ultra-low current consumption (AMPHS1 (bit2 of CMC register) = 1, OSMC = 82H). When internal high-speed oscillation, 20 MHz internal high-speed oscillation, and high-speed system clock are stopped. When watchdog timer is stopped. When RTCLPC = 1 (stops supply of subsystem clock to peripheral functions other than real-time counter). When output function of RTC is stopped.
- **3.** Total current flowing into V_{DD}, EV_{DD0}, EV_{DD1}, and AV_{REF}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The maximum value includes the peripheral operation current and STOP leakage current. However, not including the current flowing into the A/D converter, LVI circuit, I/O port, and on-chip pull-up/pull-down resistors. When subsystem clock is stopped. When watchdog timer is stopped.
- Remarks 1. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 2. RTCLPC: bit 7 of the operation speed mode control register (OSMC)
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

