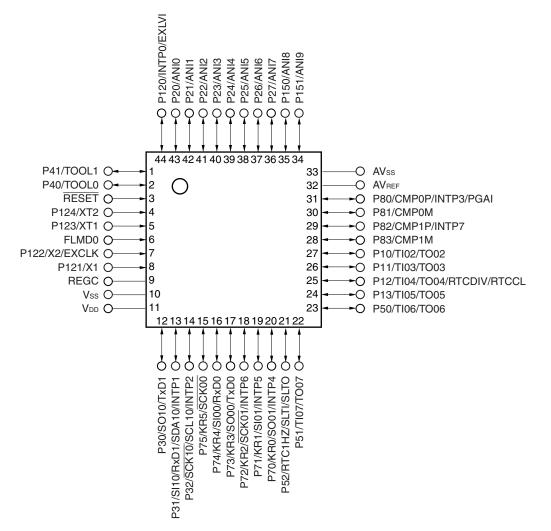


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

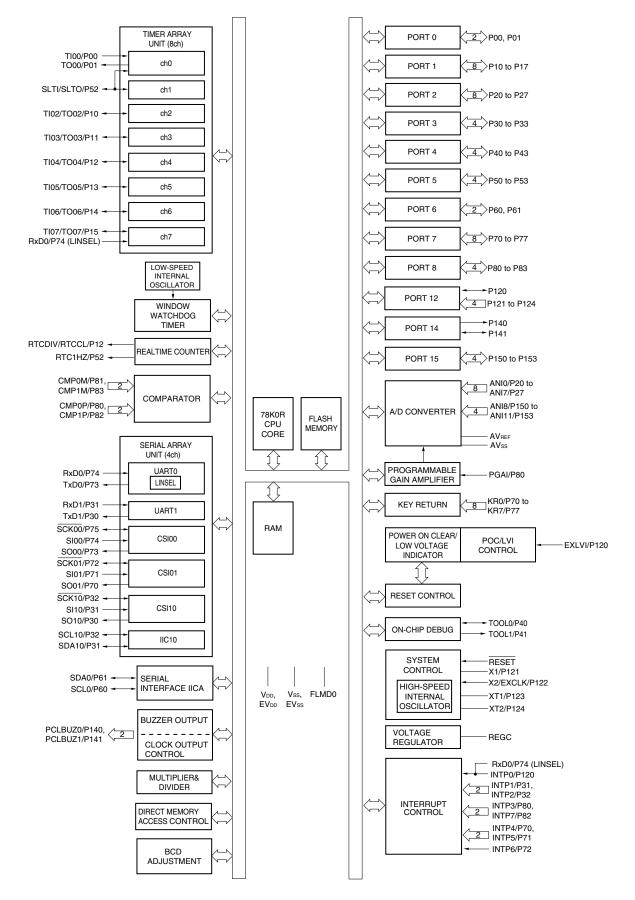

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1012gc-gad-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 44-pin plastic LQFP (10 × 10)



- Cautions 1. Make AVss the same potential as Vss.
 - 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
 - P20/ANI0 to P27/ANI7 and P151/ANI9 are set as analog inputs in the order of P151/ANI9, ..., P27/ANI7, ..., P20/ANI0 by the A/D port configuration register (ADPC). When using P20/ANI0 to P27/ANI7 and P151/ANI9 as analog inputs, start designing from P151/ANI9 (see 13.3 (6) A/D port configuration register (ADPC) for details).

Remark For pin identification, see 1.5 Pin Identification.

1.6.3 78K0R/KE3-L

RENESAS

2.2 Description of Pin Functions

Remark The pins mounted depend on the product. See 1.4 Pin Configuration (Top View) and 2.1 Pin Function List.

2.2.1 P00, P01 (port 0)

P00 and P01 function as an I/O port. These pins also function as timer I/O.

	78K0R/KC3-L (μPD78F100y: y = 0 to 3)		78K0R/KC3-L (48-pin) (μPD78F100y: y = 1 to 3)	78K0R/KD3-L (μPD78F100y: y = 4 to 6)	78K0R/KE3-L (μPD78F100y: y = 7 to 9)
	40-pin	44-pin			
P00/ TI00	-		_	\checkmark	
P11/TO00	-	_	_	\checkmark	

Remark $\sqrt{}$: Mounted

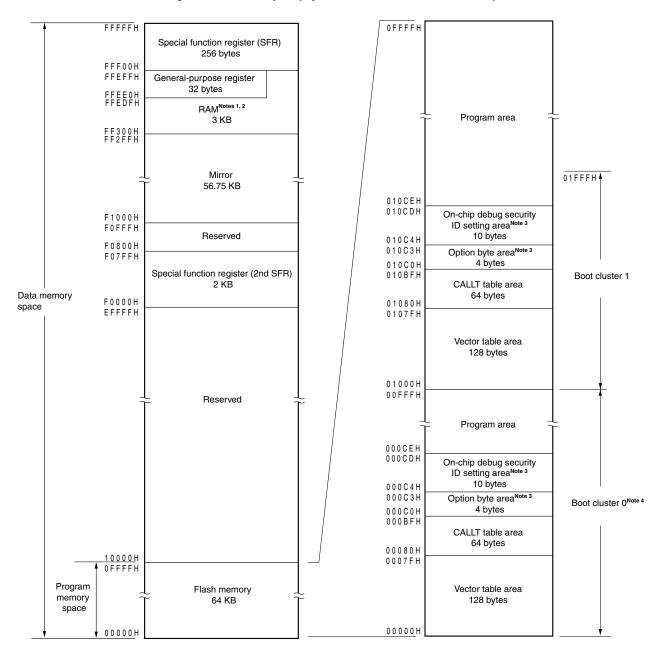
The following operation modes can be specified in 1-bit units.

(1) Port mode

P00 and P01 function as an I/O port. P00 and P01 can be set to input or output port in 1-bit units using port mode register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00 and P01 function as timer I/O.


(a) TI00

This is the pin for inputting an external count clock/capture trigger to 16-bit timer 00.

(b) TO00

This is the timer output pin of 16-bit timer 00.

- **Notes 1.** While using the self-programming function, the area FFE20H to FFEFFH cannot be used as stack memory. Furthermore, the areas of FF300H to FF6FFH also cannot be used with the μ PD78F1003, 78F1006 and 78F1009.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - **3.** When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.
 - When boot swap is used:Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the
on-chip debug security IDs to 000C4H to 000CDH and 010C4H to 010CDH.
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 26.7 Security Setting).

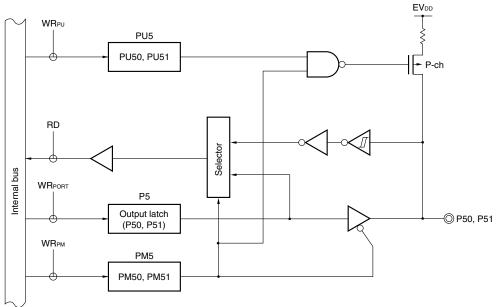

Vector Table Address	Interrupt Source	KC3-L (40pin)	KC3-L (44-pin)	KC3-L (48-pin)	KD3-L	KE3-L	KF3-L	KG3-L
00000H	RESET input, POC, LVI, WDT, TRAP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00004H	INTWDTI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00006H	INTLVI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00008H	INTP0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0000AH	INTP1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0000CH	INTP2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0000EH	INTP3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00010H	INTP4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00012H	INTP5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00014H	INTST3	-	-	-	-	-	\checkmark	\checkmark
00016H	INTSR3	-	-	-	-	-	\checkmark	\checkmark
	INTCMP0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-
00018H	INTSRE3	-	-	-	-	-	\checkmark	\checkmark
	INTCMP1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_	-
0001AH	INTDMA0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0001CH	INTDMA1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0001EH	INTST0/INTCSI00	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00020H	INTSR0/INTCSI01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00022H	INTSRE0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00024H	INTST1/INTCSI10/INTIIC10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00026H	INTSR1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00028H	INTSRE1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0002AH	INTIICA	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0002CH	INTTMOO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0002EH	INTTM01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00030H	INTTM02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
00032H	INTTM03	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 Table 4-3.
 Vector Table (1/2)

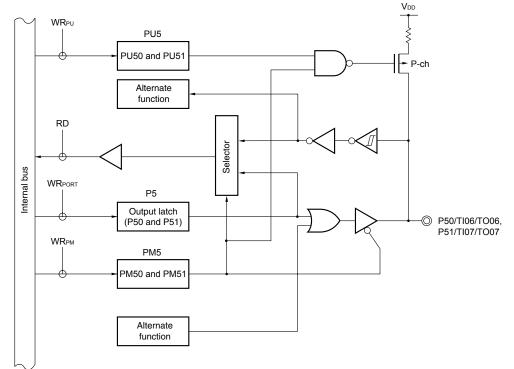


Figure 5-11. Block Diagram of P50 and P51

(1) 78K0R/KE3-L

(2) Products other than 78K0R/KE3-L

- P5: Port register 5
- PU5: Pull-up resistor option register 5
- PM5: Port mode register 5
- RD: Read signal
- WR××: Write signal

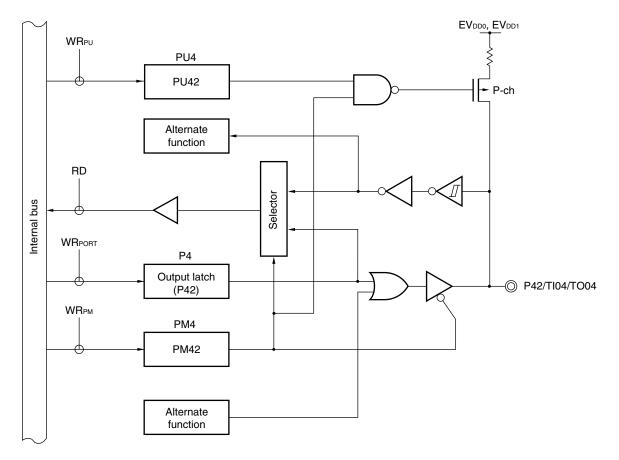
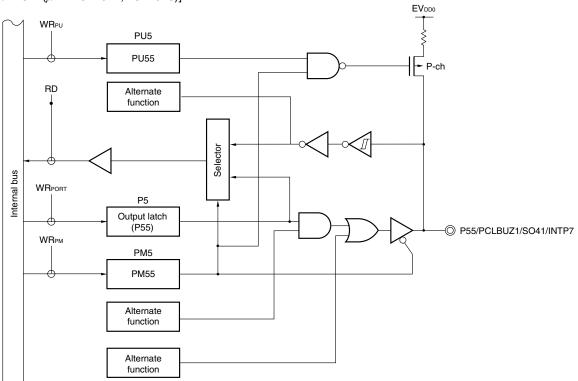



Figure 6-17. Block Diagram of P42

- P4: Port register 4
- PU4: Pull-up resistor option register 4
- PM4: Port mode register 4
- RD: Read signal
- WR××: Write signal

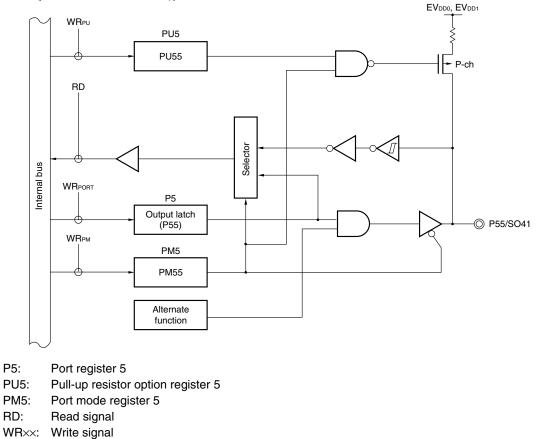
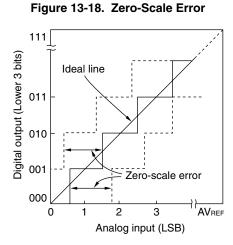


Figure 6-31. Block Diagram of P55

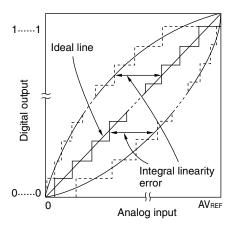
[78K0R/KF3-L (µ PD78F1027, 78F1028)]

[78K0R/KG3-L (µ PD78F1029, 78F1030)]

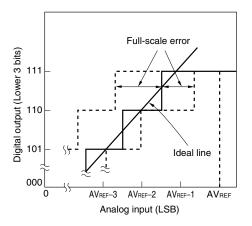
(5) Full-scale error


This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale -3/2LSB) when the digital output changes from 1.....110 to 1.....111.

(6) Integral linearity error


This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(7) Differential linearity error


While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

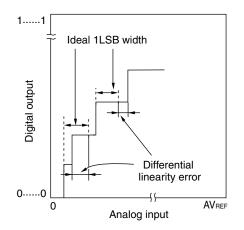
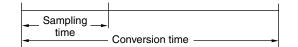

Figure 13-20. Integral Linearity Error

Figure 13-19. Full-Scale Error

Figure 13-21. Differential Linearity Error



(8) Conversion time

This expresses the time from the start of sampling to when the digital output is obtained. The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

<R>

Figure 14-44. Example of Contents of Registers for Master Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20, CSI40, CSI41) (2/2)

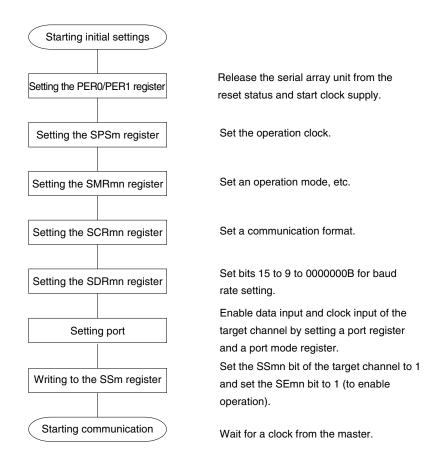
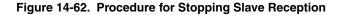
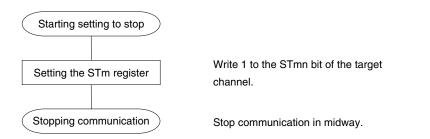
(e) Se	(e) Serial output enable register m (SOEm) Sets only the bits of the target channel to 1.															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 0/1 Note 1	SOEm1 0/1 Note 2	SOEm0 0/1
(f) Se	rial ch	anne	start	regist	ter m	(SSm)	Se	ts on	y the	bits o	f the t	arget	chanr	nel to ⁻	1.	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 ×	SSm2 0/1 Note 2	SSm1 0/1	SSm0 0/1

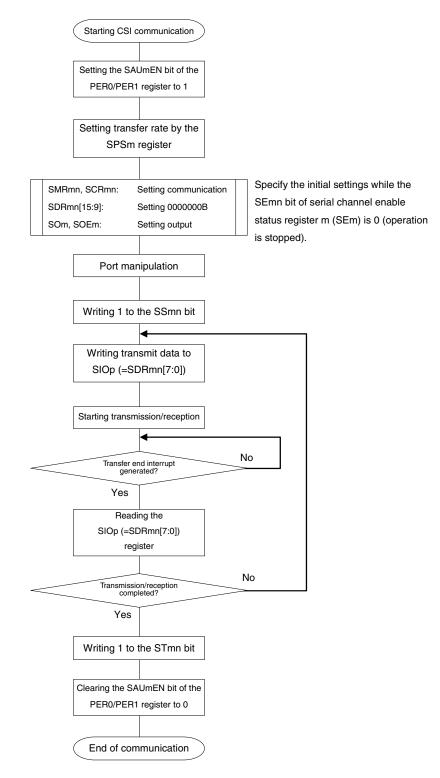
(e) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1.

Notes 1. Those bits are invalid while operating serial allay unit 1.2. Those bits are invalid while operating serial allay unit 2.

- Remarks 1.m: Unit number (m = 0 to 2), n: Channel number (n = 0 to 2), p: CSI number (p = 00, 01, 10, 20, 40, 41)
78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L:mn = 00 to 2), p: CSI number (p = 00, 01, 10, 20, 40, 41)
mn = 00 to 02, p = 00, 01, 1078K0R/KF3-L (μ PD78F1010, 78F1011, 78F1012):mn = 00 to 02, 10, p = 00, 01, 10, 20
mn = 00 to 02, 10, p = 00, 01, 10, 20, 40, 41
mn = 00 to 02, 10, p = 00, 01, 10, 20, 40, 4178K0R/KG3-L (μ PD78F1027, 78F1028):mn = 00 to 02, 10, 20, 21, p = 00, 01, 10, 20, 40, 41
mn = 00 to 02, 10, p = 00, 01, 10, 20
mn = 00 to 02, 10, 20, 21, p = 00, 01, 10, 20, 40, 41
 - 2. : Setting is fixed in the CSI master transmission/reception mode
 : Setting disabled (set to the initial value)
 - ×: Bit that cannot be used in this mode (set to the initial value when not used in any mode)
 - 0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

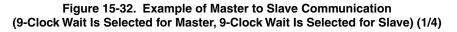

Figure 14-61. Initial Setting Procedure for Slave Reception

Caution After setting the SAUmEN bit of peripheral enable register 0/1 (PER0/PER1) to 1, be sure to set serial clock select register m (SPSm) after 4 or more f_{CLK} clocks have elapsed.

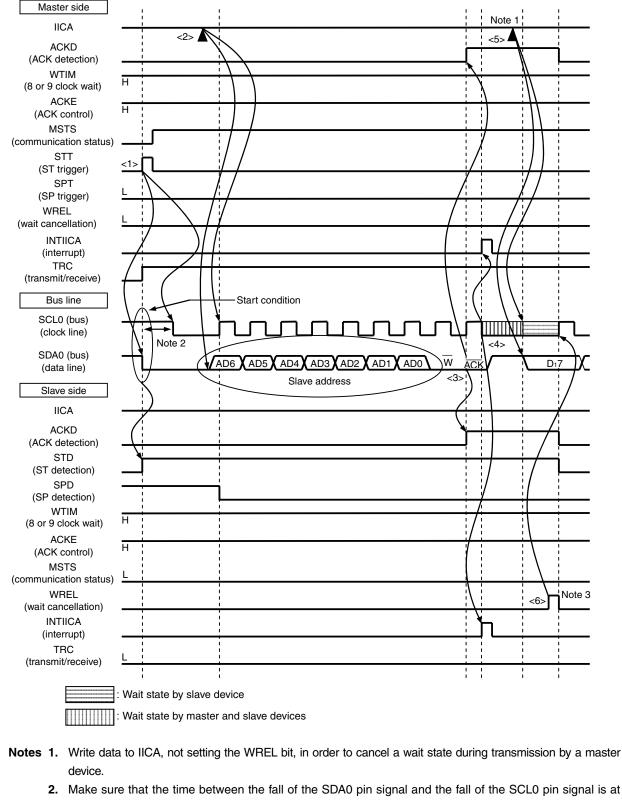
Figure 14-71. Flowchart of Slave Transmission/Reception (in Single-Transmission/Reception Mode)

- Cautions 1. After setting the SAUmEN bit of peripheral enable register 0/1 (PER0/PER1) to 1, be sure to set serial clock select register m (SPSm) after 4 or more fcLK clocks have elapsed.
 - 2. Be sure to set transmit data to the SIOp register before the clock from the master is started.

Table 14-17. Relationship between register settings and pins (Channel 0 of unit 2: CSI40, UART4 transmission)


SE	MD	MD	SOE	SO	СКО	TXE	RXE	PM	P50	PM	P51 Note 2	PM	P52	Operation mode		Pin Functio	n
20 Note 1	202	201	20	20	20	20	20	50		51 Note 2	1010 2	52			SCK40/ INTP1/ P50	SI40/ RxD4/ INTP2/ P51 ^{Note 2}	SO40/ TxD4/ TO00/P52
0	0	0	0	1	1	0	0	× Note 3	× Note 3	× Note 3	× Note 3	× Note 3	× Note 3	Operation stop mode	INTP1/ P50	INTP2/ P51	TO00/P52
	0	1														INTP2/ P51/RxD4	
1	0	0	0	1	1	0	1	1	×	1	×	× Note 3	× Note 3	Slave CSI40 reception	SCK40 (input)	SI40	TO00/P52
			1	0/1 Note 4	1	1	0	1	×	× Note 3	× Note 3	0	1	Slave CSI40 transmission	SCK40 (input)	INTP2/P51	SO40
			1	0/1 Note 4	1	1	1	1	×	1	×	0	1	Slave CSI40 transmission/ reception	SCK40 (input)	SI40	SO40
			0	1	0/1 Note 4	0	1	0	1	1	×	× Note 3	× Note 3	Master CSI40 reception	SCK40 (output)	SI40	TO00/P52
			1	0/1 Note 4	0/1 Note 4	1	0	0	1	× Note 3	× Note 3	0	1	Master CSI40 transmission	SCK40 (output)	INTP2/P51	SO40
			1	0/1 Note 4	0/1 Note 4	1	1	0	1	1	×	0	1	Master CSI40 transmission/ reception	SCK40 (output)	SI40	SO40
	0	1	1	0/1 Note 4	1	1	0	× Note 3	× Note 3	× Note 3	× Note 3	0	1	UART4 transmission ^{Note 5}	INTP1/ P50	INTP2/ P51/RxD4	TxD4

(µPD78F1027, 78F1028, 78F1029, 78F1030 only)


- **Notes 1.** Serial channel enable register 2 (SE2) is a read-only status register which is set using serial channel start register 2 (SS2) and serial channel stop register 2 (ST2).
 - When channel 1 of unit 2 is set to UART4 reception, this pin becomes an RxD4 function pin (refer to Table 14-18). In this case, operation stop mode or UART4 transmission must be selected for channel 0 of unit 2.
 - 3. This pin can be set as a port function pin.
 - This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
 - 5. When using UART4 transmission and reception in a pair, set channel 1 of unit 2 to UART4 reception (refer to **Table 14-18**).

Remark X: Don't care

(1) Start condition ~ address ~ data

least 4.0 μ s when specifying standard mode and at least 0.6 μ s when specifying fast mode. **3.** For releasing wait state during reception of a slave device, write "FFH" to IICA or set the WREL bit.

<R>

<R>

CHAPTER 17 DMA CONTROLLER

The 78K0R/Kx3-L has an internal DMA (Direct Memory Access) controller.

Data can be automatically transferred between the peripheral hardware supporting DMA, SFRs, and internal RAM without via CPU.

As a result, the normal internal operation of the CPU and data transfer can be executed in parallel with transfer between the SFR and internal RAM, and therefore, a large capacity of data can be processed. In addition, real-time control using communication, timer, and A/D can also be realized.

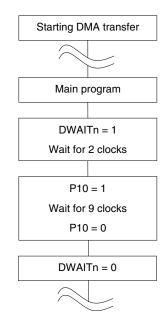
17.1 Functions of DMA Controller

- O Number of DMA channels: 2
- O Transfer unit: 8 or 16 bits
- O Maximum transfer unit: 1024 times
- O Transfer type: 2-cycle transfer (One transfer is processed in 2 clocks and the CPU stops during that processing.)
- O Transfer mode: Single-transfer mode
- O Transfer request: Selectable from the following peripheral hardware interrupts
 - A/D converter
 - Serial interface (CSI00, CSI01, CSI10, UART0, UART1, UART3^{Note}, or IIC10)
 - Timer (channel 0, 1, 4, or 5)
- O Transfer target: Between SFR and internal RAM

Note 78K0R/KF3-L, 78K0R/KG3-L only.

Here are examples of functions using DMA.

- Successive transfer of serial interface
- Batch transfer of analog data
- Capturing A/D conversion result at fixed interval
- Capturing port value at fixed interval


17.5.4 Holding DMA transfer pending by DWAITn bit

When DMA transfer is started, transfer is performed while an instruction is executed. At this time, the operation of the CPU is stopped and delayed for the duration of 2 clocks. If this poses a problem to the operation of the set system, a DMA transfer can be held pending by setting the DWAITn bit to 1. The DMA transfer for a transfer trigger that occurred while DMA transfer was held pending is executed after the pending status is canceled. However, because only one transfer trigger can be held pending for each channel, even if multiple transfer triggers occur for one channel during the pending status, only one DMA transfer is executed after the pending status is canceled.

To output a pulse with a width of 10 clocks of the operating frequency from the P10 pin, for example, the clock width increases to 12 if a DMA transfer is started midway. In this case, the DMA transfer can be held pending by setting the DWAITn bit to 1.

After setting the DWAITn bit to 1, it takes two clocks until a DMA transfer is held pending.

Figure 17-10. Example of Setting for Holding DMA Transfer Pending by DWAITn Bit

- Caution When DMA transfer is held pending while using both DMA channels, be sure to held the DMA transfer pending for both channels (by setting DWAIT0 and DWAIT1 to 1). If the DMA transfer of one channel is executed while that of the other channel is held pending, DMA transfer might not be held pending for the latter channel.
- Remarks 1. n: DMA channel number (n = 0, 1)
 - 2. 1 clock: 1/fclk (fclk: CPU clock)

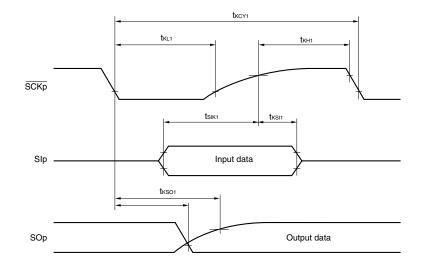
- Cautions 6. It can be selected by the option byte whether the internal low-speed oscillator continues oscillating or stops in the HALT or STOP mode. For details, see CHAPTER 25 OPTION BYTE.
 - 7. The STOP instruction cannot be executed when the CPU operates on the 20 MHz internal highspeed oscillation clock. Be sure to execute the STOP instruction after shifting to internal highspeed oscillation clock operation.

20.1.2 Registers controlling standby function

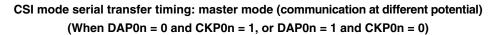
The standby function is controlled by the following two registers.

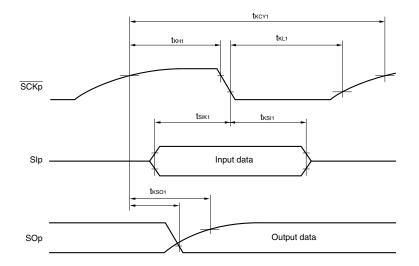
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

Remark For the registers that start, stop, or select the clock, see CHAPTER 7 CLOCK GENERATOR.



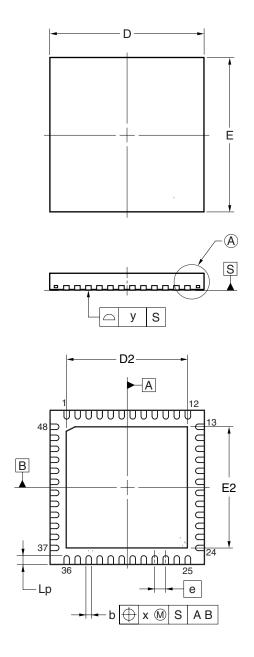
	Hardware							
Program counter (P	The contents of the reset vector table (0000H, 0001H) are set.							
Stack pointer (SP)		Undefined						
Program status wor	rd (PSW)	06H						
RAM	Data memory	Undefined ^{Note 2}						
	General-purpose registers	Undefined ^{Note 2}						
Processor mode co	ntrol register (PMC)	00H						
Port registers (P0 to	P9, P11 to P15) (output latches)	00H						
Port mode registers	PM0 to PM9, PM11 to PM15 ^{Note 3}	FFH						
Port input mode reg	jisters 0, 1, 3, 7, 8, 14 (PIM0, PIM1, PIM3, PIM7, PIM8, PIM14)	00H						
Port output mode re	egisters 0, 1, 3, 7, 14 (POM0, POM1, POM3, POM7, POM14)	00H						
Pull-up resistor opti	on registers (PU0, PU1, PU3 to PU9, PU11 to PU14)	00H						
Clock operation mo	de control register (CMC)	00H						
Clock operation stat	tus control register (CSC)	СОН						
System clock contro	ol register (CKC)	09H						
20 MHz internal hig	h-speed oscillation control register (DSCCTL)	00H						
Oscillation stabilizat	tion time counter status register (OSTC)	00H						
Oscillation stabilizat	tion time select register (OSTS)	07H						
Noise filter enable r	egisters 0, 1, 2 (NFEN0, NFEN1, NFEN2)	00H						
Peripheral enable re	egisters 0, 1, 2 (PER0, PER1, PER2)	00H						
Operation speed me	ode control register (OSMC)	00H						
Timer array unit	Timer data registers 00 to 07, 10 to 13 (TDR00 to TDR07, TDR10 to TDR13)	0000H						
	Timer mode registers 00 to 07, 10 to 13 (TMR00 to TMR07, TMR10 to TMR13)	0000H						
	Timer status registers 00 to 07, 10 to 13 (TSR00 to TSR07, TSR10 to TSR13)	0000H						
	Timer input select registers 0, 1 (TIS0, TIS1)	00H						
	Timer counter registers 00 to 07, 10 to 13 (TCR00 to TCR07, TCR10 to TCR13)	FFFFH						
	Timer channel enable status registers 0, 1 (TE0, TE1)	0000H						
	Timer channel start registers 0, 1 (TS0, TS1)	0000H						
	Timer channel stop registers 0, 1 (TT0, TT1)	0000H						
	Timer clock select registers 0, 1 (TPS0, TPS1)	0000H						
	Timer output registers 0, 1 (TO0, TO1)	0000H						
	Timer output enable registers 0 , 1(TOE0, TOE1)	0000H						
	Timer output level registers 0, 1 (TOL0, TOL1)	0000H						
	Timer output mode registers 0, 1 (TOM0, TOM1)	0000H						


Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.


- 2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
- **3.** In the 78K0R/KC3-L, 78K0R/KD3-L, and 78K0R/KE3-L, the reset value of the PM14 register is FEH. In the 78K0R/KF3-L and 78K0R/KG3-L, the reset value of the PM13 register is FEH.
- Remark The special function register (SFR) mounted depend on the product. See 4.2.4 Special function registers (SFRs) and 4.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

CSI mode serial transfer timing: master mode (communication at different potential) (When DAP0n = 0 and CKP0n = 0, or DAP0n = 1 and CKP0n = 1)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00, 01, 10), n: Channel number (n = 0 to 2), g: PIM and POM number (g = 3, 7)

 μ PD78F1001K8-5B4-AX, 78F1002K8-5B4-AX, 78F1003K8-5B4-AX (Under development)

48-PIN PLASTIC WQFN(7x7)

DETAIL OF (A) PART

	(UNIT:mm)
ITEM	DIMENSIONS
D	$7.00\!\pm\!0.05$
Е	7.00±0.05
D2	5.50
E2	5.50
А	0.75±0.05
A1	0.00 to 0.02
b	$0.25 \frac{+0.05}{-0.07}$
с	0.20±0.05
е	0.50
Lp	0.40±0.10
х	0.05
у	0.05
	P48K8-50-5B4

