E. Renesas Electronics America Inc - UPD78F1014GF-GAS-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1014gf-gas-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.1 78K0R/KC3-L (40-pin products)

(1) Port functions (1/2): 78K0R/KC3-L (40-pin)

Function Name	I/O	Function	After Reset	Alternate Function
P10	I/O	Port 1.	Input port	TI02/TO02
P11		4-bit I/O port.		TI03/TO03
P12		Input/output can be specified in 1-bit units.		TI04/TO04
P13		setting.		TI05/TO05
P20 to P27	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI0 to ANI7
P30	I/O	Port 3. 3-bit I/O port.	Input port	SO10/TxD1
P31		Output of P30 to P32 can be set to N-ch open-drain output (V _{DD} tolerance).		SI10/RxD1/SDA10/ INTP1
P32		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		SCK10/SCL10/ INTP2
P40 ^{Note}	I/O	Port 4. 2-bit I/O port.	Input port	TOOL0
P41		Use of an on-chip pull-up resistor can be specified by a software setting.		TOOL1
P50	I/O	Port 5.	Input port	TI06/TO06
P51		2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		TI07/TO07
P70	I/O	Port 7.	Input port	KR0/SO01/INTP4
P71	1	6-bit I/O port.		KR1/SI01/INTP5
P72	1	Output of P70, P72, P73, and P75 can be set to 112 builder.		KR2/SCK01/INTP6
P73	1	output (VDD tolerance).		KR3/SO00/TxD0
P74	1	Input/output can be specified in 1-bit units.		KR4/SI00/RxD0
P75	1	setting.		KR5/SCK00

Note If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOL0 pin externally.

Function Name	I/O	Function	After Reset	Alternate Function
Vdd	-	Positive power supply (P121 to P124 and other than ports (other than RESET pin and FLMD0 pin))	_	_
EVDD	-	Positive power supply for ports (other than P20 to P27, P150 to P153, P80 to P83, and P121 to P124), and RESET and FLMD0 pin	-	_
AVREF	_	 A/D converter and comparator reference voltage input Positive power supply for P20 to P27, P150 to P153, P80 to P83, A/D converter, programmable gain amplifier, and comparator 	_	_
Vss	-	Ground potential (P121 to P124 and other than ports (other than RESET pin and FLMD0 pin))	-	_
EVss	-	Ground potential for ports (other than P20 to P27, P150 to P153, and P121 to P124), and RESET and FLMD0 pin	_	_
AVss	Ι	Ground potential for A/D converter, programmable gain amplifier, comparator, P20 to P27, P150 to P153 and P80 to P83	-	_
FLMD0		Flash memory programming mode setting	-	-
TOOL0	I/O	Data I/O for flash memory programmer/debugger	Input port	P40
TOOL1	Output	Clock output for debugger	Input port	P41

(2) Non-port functions (3/3): 78K0R/KE3-L

Correspondence between the address values and block numbers in the flash memory are shown below.

Address Value	Block Number						
00000H to 003FFH	00H	08000H to 083FFH	20H	10000H to 103FFH	40H	18000H to 183FFH	60H
00400H to 007FFH	01H	08400H to 087FFH	21H	10400H to 107FFH	41H	18400H to 187FFH	61H
00800H to 00BFFH	02H	08800H to 08BFFH	22H	10800H to 10BFFH	42H	18800H to 18BFFH	62H
00C00H to 00FFFH	03H	08C00H to 08FFFH	23H	10C00H to 10FFFH	43H	18C00H to 18FFFH	63H
01000H to 013FFH	04H	09000H to 093FFH	24H	11000H to 113FFH	44H	19000H to 193FFH	64H
01400H to 017FFH	05H	09400H to 097FFH	25H	11400H to 117FFH	45H	19400H to 197FFH	65H
01800H to 01BFFH	06H	09800H to 09BFFH	26H	11800H to 11BFFH	46H	19800H to 19BFFH	66H
01C00H to 01FFFH	07H	09C00H to 09FFFH	27H	11C00H to 11FFFH	47H	19C00H to 19FFFH	67H
02000H to 023FFH	08H	0A000H to 0A3FFH	28H	12000H to 123FFH	48H	1A000H to 1A3FFH	68H
02400H to 027FFH	09H	0A400H to 0A7FFH	29H	12400H to 127FFH	49H	1A400H to 1A7FFH	69H
02800H to 02BFFH	0AH	0A800H to 0ABFFH	2AH	12800H to 12BFFH	4AH	1A800H to 1ABFFH	6AH
02C00H to 02FFFH	0BH	0AC00H to 0AFFFH	2BH	12C00H to 12FFFH	4BH	1AC00H to 1AFFFH	6BH
03000H to 033FFH	0CH	0B000H to 0B3FFH	2CH	13000H to 133FFH	4CH	1B000H to 1B3FFH	6CH
03400H to 037FFH	0DH	0B400H to 0B7FFH	2DH	13400H to 137FFH	4DH	1B400H to 1B7FFH	6DH
03800H to 03BFFH	0EH	0B800H to 0BBFFH	2EH	13800H to 13BFFH	4EH	1B800H to 1BBFFH	6EH
03C00H to 03FFFH	0FH	0BC00H to 0BFFFH	2FH	13C00H to 13FFFH	4FH	1BC00H to 1BFFFH	6FH
04000H to 043FFH	10H	0C000H to 0C3FFH	30H	14000H to 143FFH	50H	1C000H to 1C3FFH	70H
04400H to 047FFH	11H	0C400H to 0C7FFH	31H	14400H to 147FFH	51H	1C400H to 1C7FFH	71H
04800H to 04BFFH	12H	0C800H to 0CBFFH	32H	14800H to 14BFFH	52H	1C800H to 1CBFFH	72H
04C00H to 04FFFH	13H	0CC00H to 0CFFFH	33H	14C00H to 14FFFH	53H	1CC00H to 1CFFFH	73H
05000H to 053FFH	14H	0D000H to 0D3FFH	34H	15000H to 153FFH	54H	1D000H to 1D3FFH	74H
05400H to 057FFH	15H	0D400H to 0D7FFH	35H	15400H to 157FFH	55H	1D400H to 1D7FFH	75H
05800H to 05BFFH	16H	0D800H to 0DBFFH	36H	15800H to 15BFFH	56H	1D800H to 1DBFFH	76H
05C00H to 05FFFH	17H	0DC00H to 0DFFFH	37H	15C00H to 15FFFH	57H	1DC00H to 1DFFFH	77H
06000H to 063FFH	18H	0E000H to 0E3FFH	38H	16000H to 163FFH	58H	1E000H to 1E3FFH	78H
06400H to 067FFH	19H	0E400H to 0E7FFH	39H	16400H to 167FFH	59H	1E400H to 1E7FFH	79H
06800H to 06BFFH	1AH	0E800H to 0EBFFH	ЗАН	16800H to 16BFFH	5AH	1E800H to 1EBFFH	7AH
06C00H to 06FFFH	1BH	0EC00H to 0EFFFH	3BH	16C00H to 16FFFH	5BH	1EC00H to 1EFFFH	7BH
07000H to 073FFH	1CH	0F000H to 0F3FFH	3CH	17000H to 173FFH	5CH	1F000H to 1F3FFH	7CH
07400H to 077FFH	1DH	0F400H to 0F7FFH	3DH	17400H to 177FFH	5DH	1F400H to 1F7FFH	7DH
07800H to 07BFFH	1EH	0F800H to 0FBFFH	3EH	17800H to 17BFFH	5EH	1F800H to 1FBFFH	7EH
07C00H to 07FFFH	1FH	0FC00H to 0FFFFH	3FH	17C00H to 17FFFH	5FH	1FC00H to 1FFFFH	7FH

Table 4-1. Correspondence Between Address Values and Block Numbers in Flash Memory (1/2)

Remark µPD78F10

μPD78F1000:	Block numbers 00H to 0FH
μPD78F1001, 78F1004, 78F1007:	Block numbers 00H to 1FH
μPD78F1002, 78F1005, 78F1008:	Block numbers 00H to 2FH
μPD78F1003, 78F1006, 78F1009, 78F1010:	Block numbers 00H to 3FH
μPD78F1011, 78F1013:	Block numbers 00H to 5FH
μPD78F1012, 78F1014:	Block numbers 00H to 7FH

Figure 4-24. Configuration of General-Purpose Registers

(a) Function name

(b) Absolute name

5.2.4 Port 3

	78K0R/KC3-L (µPD78F100y: y = 0 to 3)		78K0R/KC3-L (48-pin) (μPD78F100y: y = 1 to 3)	78K0R/KD3-L (μPD78F100y: y = 4 to 6)	78K0R/KE3-L (μPD78F100y: y = 7 to 9)
	40-pin	44-pin			
P30/SO10/TxD1	\checkmark		\checkmark	\checkmark	\checkmark
P31/SI10/RxD1/ SDA10/INTP1	\checkmark		\checkmark	\checkmark	\checkmark
P32/SCK10/ SCL10/INTP2		N	\checkmark	\checkmark	\checkmark
P33		_	-	-	\checkmark

Remark $\sqrt{:}$ Mounted

Port 3 is an I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units using port mode register 3 (PM3). When the P30 to P33 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 3 (PU3).

Input to the P31 and P32 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 3 (PIM3).

Output from the P30 to P32 pins can be specified as N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 3 (POM3).

This port can also be used for serial interface data I/O, clock I/O, and external interrupt request input.

Reset signal generation sets port 3 to input mode.

Figures 5-6 to 5-8 show block diagrams of port 3.

Caution To use P30/SO10/TxD1, P31/SI10/RxD1/SDA10/INTP1, P32/SCK10/SCL10/INTP2 as a general-purpose port, note the serial array unit setting. For details, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2: CSI10, UART1 Transmission, IIC10) and Table 14-8 Relationship Between Register Settings and Pins (Channel 3: UART1 Reception).

Figure 5-15. Block Diagram of P70 and P73

- PM7: Port mode register 7
- RD: Read signal
- WR××: Write signal

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM0	1	1	1	1	1	1	PM01	PM00	FFF20H	FFH	R/W
		1	r	r	r	T	r	1			
PM1	1	1	1	1	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
DM2	1	1	1	1	1	DM22	DM21	DM20	EEE00L	EEU	
1 1010		1	I	1	1	1 10132	1 10101	1 1000	1112011		11/ VV
PM4	1	1	1	1	1	1	PM41	PM40	FFF24H	FFH	R/W
PM5	1	1	1	1	1	PM52	PM51	PM50	FFF25H	FFH	R/W
	-	ī	T	r	r	T	r	1			
PM6	1	1	1	1	1	1	PM61	PM60	FFF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
DMQ	4	1	1	1	DM02	DM92	DM91	DM90	EEEOOL	EEU	
I WO			I	1	1 1000	1 10102		1 1000	1112011		11/ VV
PM12	1	1	1	1	1	1	1	PM120	FFF2CH	FFH	R/W
				l	l	l	l				
PM15	1	1	1	1	1	PM152	PM151	PM150	FFF2FH	FFH	R/W
		I									
	PMmn				ļ	Pmn pin I/C	D mode se	lection			
		<u> </u>			(r	n = 0 to 8,	12, 15; n =	= 0 to 7)			
	0	Output m	iode (outpi	ut butter or	1)						
	1	Input mo	de (output	butter off)							

Figure 5-30. Format of Port Mode Register (78K0R/KD3-L)

Caution Be sure to set bits 2 to 7 of the PM0 register, bits 4 to 7 of the PM1 register, bits 3 to 7 of the PM3 register, bits 2 to 7 of the PM4 register, bits 3 to 7 of the PM5 register, bits 2 to 7 of the PM6 register, bits 4 to 7 of the PM8 register, bits 1 to 7 of the PM12 register, and bits 3 to 7 of the PM15 register to 1.

(2) Setting procedure when using I/O pins of simplified IIC10 functions

- <1> After reset release, the port mode is the input mode (Hi-Z).
- <2> Externally pull up the pin to be used (on-chip pull-up resistor cannot be used).

In case of simplified IIC10: P31, P32

- <3> Set the output latch of the corresponding port to 1.
- <4> Set the corresponding bit of the POM3 register to 1 to set the N-ch open drain output (VDD withstand voltage) mode.
- <5> Set the corresponding bit of the PM3 register to the output mode (data I/O is possible in the output mode). At this time, the output data is high level, so the pin is in the Hi-Z state.
- <6> Enable the operation of the serial array unit and set the mode to the simplified l^2C mode.

Figure 6-44. Block Diagram of P123 and P124

CMC: Clock operation mode control register RD: Read signal

Note This is not mounted onto 44-pin product of the 78K0R/KC3-L.

(Remark is listed on the next page after next.)

341

(8) Timer input select register m (TISm)

The TISm register is used to select whether a signal input to the timer input pin (TImn) or the subsystem clock divided by four $(f_{SUB}/4)^{Note}$ is valid for each channel.

The TISm register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Note The 78K0R/KC3-L (40-pin) doesn't have the subsystem clock.

Figure 8-21. Format of Timer Input Select register m (TISm)

Address: FFF	3EH After re	eset: 00H R/V	V							
Symbol	7	6	5	4	3	2	1	0		
TIS0	TIS07	TIS06	TIS05	TIS04	TIS03	TIS02	TIS01	TIS00		
Address: FFF	3FH After re	eset: 00H R/V	V							
Symbol	7	6	5	4	3	2	1	0		
TIS1	0	0	0	0	TIS13	TIS12	TIS11	TIS10		
	TISmn Selection of timer input/subsystem clock used with channel n									
	0	Input signal of timer input pin (TImn)								
	1	Subsystem clock divided by 4 (fsuB/4)								
Note	The 78	K0R/KC3-L (4	0-pin) doesn'	t have the sul	osystem clock	κ.				
Rema	Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7) However, in case of the timer input pin (TImn), mn changes as below.									
	78K0R/	KC3-L (40-pin	ı): n	nn = 02 to 07						
	78K0R/	KC3-L (44-pin	i, 48-pin): n	nn = 00 to 07						
	78K0R/	KD3-L, 78K0F	R/KE3-L: n	nn = 00 to 07						
	78K0R/	KF3-L, 78K0F	R/KG3-L: n	nn = 00 to 07	, 10 to 13					

Correction example <1>

Example of correcting from 32772.3 Hz to 32768 Hz (32772.3 Hz - 131.2 ppm)

[Measuring the oscillation frequency]

The oscillation frequency^{Note} of each product is measured by outputting about 32.768 kHz from the RTCCL pin or outputting about 1 Hz from the RTC1HZ pin when the watch error correction register (SUBCUD) is set to its initial value (00H).

Note See 9.4.5 1 Hz output of real-time counter for the setting procedure of outputting about 1 Hz from the RTC1HZ pin, and 9.4.6 32.768 kHz output of real-time counter for the setting procedure of outputting about 32 kHz from the RTCCL pin.

[Calculating the correction value]

(When the output frequency from the RTCCL pin is 32772.3 Hz)

If the target frequency is assumed to be 32768 Hz (32772.3 Hz - 131.2 ppm), the correction range for -131.2 ppm is -63.1 ppm or less, so assume DEV to be 0.

The expression for calculating the correction value when DEV is 0 is applied.

Correction value = Number of correction counts in 1 minute ÷ 3

= (Oscillation frequency \div Target frequency -1) \times 32768 \times 60 \div 3 = (32772.3 \div 32768 -1) \times 32768 \times 60 \div 3 = 86

[Calculating the values to be set to (F6 to F0)]

(When the correction value is 86)

If the correction value is 0 or more (when delaying), assume F6 to be 0. Calculate (F5, F4, F3, F2, F1, F0) from the correction value.

{ (F5, F4, F3, F2, F1, F0) $- 1$ } $ imes$ 2	= 86
(F5, F4, F3, F2, F1, F0)	= 44
(F5, F4, F3, F2, F1, F0)	= (1, 0, 1, 1, 0, 0)

Consequently, when correcting from 32772.3 Hz to 32768 Hz (32772.3 Hz – 131.2 ppm), setting the correction register such that DEV is 0 and the correction value is 86 (bits 6 to 0 of SUBCUD register: 0101100) results in 32768 Hz (0 ppm).

Figure 9-26 shows the operation when (DEV, F6, F5, F4, F3, F2, F1, F0) is (0, 0, 1, 0, 1, 1, 0, 0).

13.2 Configuration of A/D Converter

The A/D converter includes the following hardware.

(1) ANI0 to ANI15 pins

These are the analog input pins of the sixteen channels of the A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as I/O port pins.

Remark ANI0 to ANI9: 78K0R/KC3-L (40-pin, 44-pin) ANI0 to ANI10: 78K0R/KC3-L (48-pin) and 78K0R/KD3-L ANI0 to ANI11: 78K0R/KE3-L, 78K0R/KF3-L ANI0 to ANI15: 78K0R/KG3-L

(2) PGAO (78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L only)

This is the programmable gain amplifier output signal from the PGAI pin. The A/D converter can perform A/D conversion by selecting the output signal of the programmable gain amplifier as the analog input.

(3) Sample & hold circuit

The sample & hold circuit samples each of the analog input voltages sequentially sent from the input circuit, and sends them to the A/D voltage comparator. This circuit also holds the sampled analog input voltage during A/D conversion.

(4) A/D voltage comparator

This A/D voltage comparator compares the voltage generated from the voltage tap of the array with the analog input voltage. If the analog input voltage is found to be greater than the reference voltage ($1/2 \text{ AV}_{\text{REF}}$) as a result of the comparison, the most significant bit (MSB) of the successive approximation register (SAR) is set. If the analog input voltage is less than the reference voltage ($1/2 \text{ AV}_{\text{REF}}$), the MSB bit of the SAR is reset.

After that, bit 10 of the SAR register is automatically set, and the next comparison is made. The voltage tap of the array is selected by the value of bit 11, to which the result has been already set.

Bit 11 = 0: (1/4 AV_{REF}) Bit 11 = 1: (3/4 AV_{REF})

The voltage tap of the array and the analog input voltage are compared and bit 10 of the SAR register is manipulated according to the result of the comparison.

Analog input voltage \geq Voltage tap of array: Bit 10 = 1 Analog input voltage \leq Voltage tap of array: Bit 10 = 0

Comparison is continued like this to bit 0 of the SAR register.

(5) Array

The array generates the comparison voltage input from an analog input pin.

14.5 Operation of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20, CSI40, CSI41) Communication

This is a clocked communication function that uses three lines: serial clock (\overline{SCK}) and serial data (SI and SO) lines. [Data transmission/reception]

- Data length of 7 or 8 bits
- Phase control of transmit/receive data
- MSB/LSB first selectable
- Level setting of transmit/receive data

[Clock control]

- Master/slave selection
- Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel
- Maximum transfer rate

During master communication: Max. fcLk/4, during slave communication: Max. fMck/6 Note

[Interrupt function]

- Transfer end interrupt/buffer empty interrupt
- [Error detection flag]
 - Overrun error
 - Note Use the clocks within a range satisfying the SCK cycle time (tkcr) characteristics (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L), CHAPTER 31 ELECTRICAL SPECIFICATIONS (78K0R/KF3-L, 78K0R/KG3-L)).

<R>

Figure 14-66. Example of Contents of Registers for Slave Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20, CSI40, CSI41) (2/2)

(e) Se	(e) Serial output enable register m (SOEm) Sets only the bits of the target channel to 1.															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 0/1 Note 2	SOEm1 0/1 Note 1	SOEm0 0/1
(f) Serial channel start register m (SSm) Sets only the bits of the target channel to 1. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 ×	SSm2 0/1 Note 2	SSm1 0/1	SSm0 0/1
Notes 1. ⁻ 2. ⁻	Those Those	bits ar bits ar	e inva e inva	lid whi lid whi	ile ope ile ope	rating rating	serial serial	allay ι allay ι	ınit 1. ınit 2.							

- **Remarks** 1. m: Unit number (m = 0 to 2), n: Channel number (n = 0 to 2), p: CSI number (p = 00, 01, 10, 20, 40, 41) 78K0R/KC3-L, 78K0R/KD3-L, 78K0R/KE3-L: mn = 00 to 02, p = 00, 01, 1078K0R/KF3-L (μ PD78F1010, 78F1011, 78F1012): mn = 00 to 02, 10, p = 00, 01, 10, 20 78K0R/KF3-L (*µ* PD78F1027, 78F1028): mn = 00 to 02, 10, 20, 21, p = 00, 01, 10, 20, 40, 41 78K0R/KG3-L (μ PD78F1013, 78F1014): mn = 00 to 02, 10, p = 00, 01, 10, 2078K0R/KG3-L (µ PD78F1029, 78F1030): mn = 00 to 02, 10, 20, 21, p = 00, 01, 10, 20, 40, 41
 - 2. 🔲 : Setting is fixed in the CSI master transmission mode, 📃 : Setting disabled (set to the initial value) ×: Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

R01UH0106EJ0400 Rev.4.00 Mar 31, 2011

Figure 15-29. Master Operation in Multi-Master System (3/3)

Remarks 1. Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.

- 2. To use the device as a master in a multi-master system, read the MSTS bit each time interrupt INTIICA has occurred to check the arbitration result.
- **3.** To use the device as a slave in a multi-master system, check the status by using the IICA status register (IICS) and IICA flag register (IICF) each time interrupt INTIICA has occurred, and determine the processing to be performed next.

(2) Address ~ data ~ data

Figure 15-33. Example of Slave to Master Communication (8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (2/3)

<R>

Notes 1. For releasing wait state during reception of a master device, write "FFH" to IICA or set the WREL bit.

2. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during transmission by a slave device.

RENESAS

(4) External interrupt rising edge enable register 0 (EGP0), external interrupt falling edge enable register 0 (EGN0)

These registers specify the valid edge for INTP0 to INTP7^{Note}.

The EGP0 and EGN0 registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Figure 18-5. Format of External Interrupt Rising Edge Enable Register 0 (EGP0) and External Interrupt Falling Edge Enable Register 0 (EGN0)

Address: FFF		reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
EGP0	EGP7 ^{Note} EGP6		EGP5	EGP4	EGP3	EGP2	EGP1	EGP0
Address: FFF		reset: 00H	R/W					

Symbol	7	6	5	4	3	2	1	0
EGN0	EGN7 ^{Note}	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

EGPn	EGNn	INTPn pin valid edge selection (n = 0 to 7^{Note})
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Table 18-3 shows the ports corresponding to the EGPn and EGNn bits.

Detection Enable Bit		Edge Detection Port	Interrupt Request Signal		
EGP0	EGN0	P120	INTP0		
EGP1	EGN1	P31	INTP1		
EGP2	EGN2	P32	INTP2		
EGP3	EGN3	P80	INTP3		
EGP4	EGN4	P70	INTP4		
EGP5	EGN5	P71	INTP5		
EGP6	EGN6	P72	INTP6		
EGP7 ^{Note}	EGN7 ^{Note}	P82 ^{Note}	INTP7 ^{Note}		

Table 18-3. Ports Corresponding to EGPn and EGNn Bits

Note Those are not provided in the 40-pin product of the 78K0R/KC3-L.

Caution Select the port mode by clearing the EGPn and EGNn bits to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remark	78K0R/KC3-L (40-pin):	n = 0 to 6
	78K0R/KC3-L (44-pin, 48-pin), 78K0R/KD3-L, 78K0R/KE3-L:	n = 0 to 7
	78K0R/KF3-L, 78K0R/KG3-L:	n = 0 to 7

Figure 18-15. Examples of Multiple Interrupt Servicing (2/2)

Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled

Interrupts are not enabled during servicing of interrupt INTxx (EI instruction is not issued), therefore, interrupt request

Interrupts are not enabled during servicing of interrupt INTxx (EI instruction is not issued), therefore, interrupt request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

- PR = 00: Specify level 0 with \times PR1 \times = 0, \times PR0 \times = 0 (higher priority level)
- PR = 01: Specify level 1 with \times PR1 \times = 0, \times PR0 \times = 1

PR = 10: Specify level 2 with \times PR1 \times = 1, \times PR0 \times = 0

- PR = 11: Specify level 3 with \times PR1 \times = 1, \times PR0 \times = 1 (lower priority level)
- IE = 0: Interrupt request acknowledgment is disabled
- IE = 1: Interrupt request acknowledgment is enabled.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1}$	\leq 5.5 V, 1.8 V \leq AVref \leq	VDD, VSS = EVSS0 = EVSS1 = AVS	s
= 0 V)			

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90, P91, P110, P111, P120, P131, P140 to P145, FLMD0, RESET	$V_{I} = V_{DD}$ $V_{I} = AV_{REF}$ $AV_{REF} = V_{DD}$				1	μA
	Ilih2	P20 to P27, P150 to P157					1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2)	$V_{I} = V_{DD}$	In input port			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90, P91, P110, P111, P120, P131, P140 to P145, FLMD0, RESET	VI = Vss				-1	μA
	Ilil2	P20 to P27, P150 to P157	VI = VSS AVREF = VDD				-1	μA
	Ililis	P121 to P124	$V_{I} = V_{SS}$	In input port			-1	μA
		(X1, X2, XT1, XT2)		In resonator connection			-10	μA

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

