

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM Cortex®-M4Core Size32Bit Single-CoreSpeed100HzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPripheralsBrown-out Detect/Reset, DMA, I*S, POR, PWM, WDTNumber of I/O36Program Memory Size64KB (64K x 8)Program Memory TypeFLASHERPGM Size-Nutage Supply (Vccr/Vd)3C x 3Otage Supply (Vccr/Vd)1/V - 3.6VData ConvertersADI 0.1212; D/A 1.1212Oscillator TypeInternalOperating Temperature4.0°C + 35°C (TA)Munting TypeSuface MountProcessor4.0°C PAS°C (TA)Suppler Person8.0°C PASN Pasnel Pas	Details	
Core Size32-Bit Single-CoreSpeed100MHzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size-XAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFN (7x7)	Product Status	Active
Speed100HHzSpeed100HHzConnectivityPPc/, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadAlsu FQFN (Xc7)80-UFQFN (Xc7)	Core Processor	ARM® Cortex®-M4
ConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I*S, POR, PWM, WDTNumber of I/O36Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed Pad	Core Size	32-Bit Single-Core
PeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadVertore Package48-UFQFN (7x7)	Speed	100MHz
Number of I/O36Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type8u-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN (7x7)	Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size32K × 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	Number of I/O	36
EEPROM Size-RAM Size32K × 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFN (7x7)	Program Memory Size	64KB (64K x 8)
RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	EEPROM Size	·
Data ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	RAM Size	32K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	Data Converters	A/D 10x12b; D/A 1x12b
Mounting TypeSurface MountPackage / Case48-UFQFN Exposed PadSupplier Device Package48-UFQFPN (7x7)	Oscillator Type	Internal
Package / Case 48-UFQFN Exposed Pad Supplier Device Package 48-UFQFPN (7x7)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 48-UFQFPN (7x7)	Mounting Type	Surface Mount
	Package / Case	48-UFQFN Exposed Pad
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f410c8u6	Supplier Device Package	48-UFQFPN (7x7)
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f410c8u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.

3.16 Voltage regulator

The regulator has three operating modes:

- Main regulator mode (MR)
- Low power regulator (LPR)
- Power-down

The three power modes configured by software:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop modes
 - The LP regulator mode is configured by software when entering Stop mode.
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

An external ceramic capacitor should be connected to the $V_{CAP 1}$ pin.

3.16.1 Internal power supply supervisor availability

Table 4. Regulator ON/OFF and internal power supply supervisor availability

Package	Power supply supervisor ON	Power supply supervisor OFF
UFQFPN48	Yes	No
WLCSP36	Yes PDR_ON set to VDD	Yes PDR_ON set to V _{SS} ⁽¹⁾
LQFP64	Yes	No

1. An external power supervisor must be used (refer to Section 3.15.2: Internal reset OFF).

3.20.1 Advanced-control timers (TIM1)

The advanced-control timer (TIM1) can be seen as three-phase PWM generator multiplexed on 4 independent channels. It has complementary PWM outputs with programmable inserted dead times. It can also be considered as a complete general-purpose timer. Its 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, it has the same features as the general-purpose TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 supports independent DMA request generation.

3.20.2 General-purpose timers (TIM5, TIM9 and TIM11)

There are three synchronizable general-purpose timers embedded in the STM32F410x8/B (see *Table 5* for differences).

• TIM5

The STM32F410x8/B devices includes a full-featured general-purpose timer, TIM5. TIM5 timer is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. It features four independent channels for input capture/output compare, PWM or one-pulse mode output.

TIM5 can operate in conjunction with the other general-purpose timers and TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM5 general-purpose timer can be used to generate PWM output.

All TIM5 channels have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM9 and TIM11

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM11 features one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with TIM5 full-featured general-purpose timer or used as simple time bases.

3.20.3 Basic timer (TIM6)

This timer is mainly used for DAC triggering and waveform generation. It can also operate as generic 16-bit timers.

TIM6 supports independent DMA request generation.

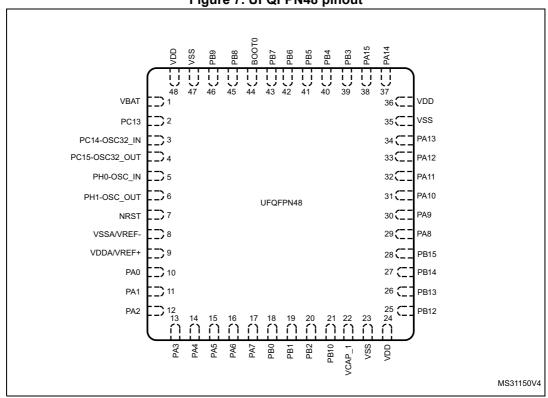


Figure 7. UFQFPN48 pinout

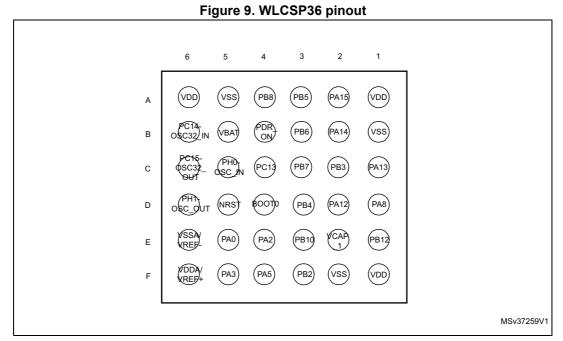

1. The above figure shows the package top view.

Figure 8. UFBGA64 pinout

	1	2	3	4	5	6	7	8	
A	PC14- OSC32_IN	VBAT	PB9	BOOT0	PB3	PC12	PA15	PA12	
В	PC15- OSC32_OUT	PC13- ANTI_TAMP	PB8	PB7	PB11	PC11	PA14	PA9	
с	PH0 - OSC_IN	vss	PDR_ON	PB6	PB4	PC10	PA13	PA8	
D	PH1 - OSC_OUT	VDD	PC0	PB5	PC3	VSS	PA11	PC9	
E	NRST	PC1	PC2	VDD	VDD	PA10	PC7	PC8	
F	VSSA	PC3	PA2	PA5	PB0	PC6	PB15	PB14	
G	VREF+	PA0-WKUP	PA3	PA6	PC4	PB1	PB10	PB13	
н	VDDA	PA1	PA4	PA7	PC5	PB2	VCAP_1	PB12	
									MSv43092\

1. The above figure shows the package top view.

1. The above figure shows the package bump side.

Name	Abbreviation	Definition					
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input/ output pin					
	FT	5 V tolerant I/O					
I/O structure	TC	Standard 3.3 V I/O					
NO structure	В	Dedicated BOOT0 pin					
	NRST	Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected	d through GPIOx_AFR registers					
Additional functions	Functions directly	Functions directly selected/enabled through peripheral registers					

42/142

DocID028094 Rev 5

5

					Tab	le 10. Al	ternate fu	inction m	apping (continu	ed)						
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	SYS_AF	TIM1/LPTIM1	TIM5	TIM9/ TIM11	I2C1/I2C2 /I2C4	SPI1/I2S1/S PI2/I2S2	SPI1/I2S1/ SPI2/I2S2/ SPI5/I2S5	USART1/ USART2	USART6	12C2/ 12C4	-	-	-	-	-	SYS_AF
	PB0	-	TIM1_CH2N	-	-	-	-	SPI5_SCK/ I2S5_CK	-	-	-	-	-	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	-	-	-	-	SPI5_NSS/ I2S5_WS	-	-	-	-	-	-	-	-	EVENTOUT
	PB2	-	LPTIM1_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO- SWO	-	-	-	I2C4_ SDA	SPI1_SCK/I 2S1_CK	-	USART1_ RX	-	I2C2_ SDA	-	-	-	-	-	EVENTOUT
	PB4	JTRST	-	-	-	-	SPI1_MISO	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	LPTIM1_IN1	-	-	I2C1_ SMBA	SPI1_MOSI /I2S1_SD	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB6	-	LPTIM1_ETR	-	-	I2C1_ SCL	-	-	USART1_ TX	-	-	-	-	-	-	-	EVENTOUT
	PB7	-	LPTIM1_IN2	-	-	I2C1_ SDA	-	-	USART1_ RX	-	-	-	-	-	-	-	EVENTOUT
Port B	PB8	-	LPTIM1_OUT	-	-	I2C1_ SCL	-	SPI5_MOSI /I2S5_SD	-	-	-	-	-	-	-	-	EVENTOUT
	PB9	-	-	-	TIM11_ CH1	I2C1_ SDA	SPI2_NSS/ I2S2_WS	-	-	-	I2C2_ SDA	-	-	-	-	-	EVENTOUT
	PB10	-	-	-	-	I2C2_ SCL	SPI2_SCK/ I2S2_CK	I2S1_MCK	-	-	I2C4_ SCL	-	-	-	-	-	EVENTOUT
	PB11	TRACED3	-	TIM5_ CH4	-	I2C2_ SDA	I2S2_CKIN	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	TIM5_ CH1	-	I2C2_ SMBA	SPI2_NSS/ I2S2_WS	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	I2C4_ SMBA	SPI2_SCK /I2S2_CK	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	-	I2C4_ SDA	SPI2_MISO	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB15	RTC_ 50Hz	TIM1_CH3N	-	-	I2C4_ SCL	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENTOUT

Pinouts and pin description

Bus	Boundary address	Peripheral
	0x4000 7800 - 0x4000 FFFF	Reserved
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6400 - 0x4000 6FFF	Reserved
	0x4000 6000 - 0x4000 63FF	I2C4 FM+
	0x4000 5C00 - 0x4000 5FFF	Reserved
	0x4000 5800 - 0x4000 5BFF	12C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 4800 - 0x4000 53FF	Reserved
	0x4000 4400 - 0x4000 47FF	USART2
APB1	0x4000 4000 - 0x4000 43FF	Reserved
	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	Reserved
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 1400 - 0x4000 27FF	Reserved
	0x4000 1000 - 0x4000 13FF	ТІМ6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0000 - 0x4000 0BFF	Reserved

Table 11. STM32F410x8/B register boundary	/ addresses ⁽¹⁾

1. The gray color is used for reserved boundary address.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		LQFP48	-	-	364	
	Maximum allowed package	LQFP64	-	-	435	
	power dissipation at $T_A = 85 \degree C$ (range 6) or 105 $\degree C$	UFQFPN48	-	-	606	
T _A = 85 °C (range 6) o (range 7) ⁽⁷⁾	$T_A = 85 \degree C (range 6) \text{ or } 105 \degree C (range 7)^{(7)}$	WLCSP36	-	-	328	1
D	P _D	UFBGA64	-	-	253	mW
ГD		LQFP48	-	-	91	11100
		LQFP64	-	-	108	1
	Power dissipation at T _A = 125 °C for range 3 ⁽⁷⁾	UFQFPN48	-	-	151	
		WLCSP36	-	-	81	
		UFBGA64	-	- 151 - 81 - 63 0 - 85 0 - 105		
	Ambient temperature for	Maximum power dissipation	-40	-	85	
	range 6	Low power dissipation ⁽⁸⁾	-40	-	105	
Та	Ambient temperature for	Maximum power dissipation	-40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	1
IA	range 7	Low power dissipation ⁽⁸⁾	-40	-	125	
Ambient temp	Ambient temperature for	Maximum power dissipation	-40	-	110	°C
	range 3	Low power dissipation ⁽⁸⁾	-40	-	130	1
		Range 6	-40	-	105	
TJ	Junction temperature range	Range 7	-40	-	125	1
		Range 3	-40	-	130	

Table 15. General operating conditions (continued)

1. V_{DD}/V_{DDA} minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.15.2: Internal reset OFF).

2. When the ADC is used, refer to Table 66: ADC characteristics.

- 3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
- 4. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.
- 5. Guaranteed by test in production.
- 6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 7. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax}.
- 8. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 20* are derived from tests performed under ambient temperature and V_{DD} supply voltage @ 3.3V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	-	
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08		
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37		
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25		
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51		
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39		
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65		
M	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V	
	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V	
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71		
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99		
	_{/st} ⁽²⁾ PVD hysteresis	PLS[2:0]=101 (falling edge)	2.65	2.84	3.02		
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10		
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99		
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21		
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09		
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV	
	Power-on/power-down	Falling edge	1.60 ⁽¹⁾	1.68	1.76	V	
V _{POR/PDR}	reset threshold	Rising edge	1.64	1.72	1.80	V	
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV	
	Brownout level 1	Falling edge	2.13	2.19	2.24		
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33		
M	Brownout level 2	Falling edge	2.44	2.50	2.56	v	
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V	
M	Brownout level 3	Falling edge	2.75	2.83	2.88		
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97		
V _{BORhyst} ⁽²⁾	BOR hysteresis	-	-	100	-	mV	
T _{RSTTEMPO}	POR reset timing	-	0.5	1.5	3.0	ms	

Table 20. Embedded reset and p	ower control block characteristics
--------------------------------	------------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{RUSH} ⁽²⁾	In-Rush current on voltage regulator power- on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽²⁾	In-Rush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 125 °C, I _{RUSH} = 171 mA for 31 µs	-	-	5.4	μC

 Table 20. Embedded reset and power control block characteristics (continued)

1. The product behavior is guaranteed by design down to the minimum V_{POR/PDR} value.

2. Guaranteed by design.

3. The reset timing is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is fetched by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to both f_{HCLK} frequency and VDD ranges (refer to *Table 16: Features depending on the operating power supply range*).
- The voltage scaling is adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 64$ MHz
 - Scale 2 for 64 MHz < $f_{HCLK} \le 84$ MHz
 - Scale 1 for 84 MHz < f_{HCLK} ≤ 100 MHz
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/2$, and $f_{PCLK2} = f_{HCLK}$.
- External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

		accelerator di	sableu)	running			• <u>• DD</u> -	J.U V			
			£	Voltage	PLL VCO	Тур		Ма	ax ⁽²⁾		Unit
Symbol	Parameter	er Conditions	f _{HCLK} (MHz)	scale	(MHz) (1)	Т _А = 25 °С	Т _А = 25 °С	Т _А = 85 °С	T _A = 105 °C	T _A = 125 °C	
			100	S1	200	17.7	19.1 ⁽⁵⁾	19.3	19.7 ⁽⁶⁾	20.5 ⁽⁵⁾	
			84	S2	168	14.4	15.3 ⁽⁵⁾	15.7	16.0 ⁽⁶⁾	16.8 ⁽⁵⁾	
		External clock, all peripherals	64	S3	128	10.1	10.6 ⁽⁵⁾	11.0	11.3 ⁽⁶⁾	12.0 ⁽⁵⁾	
		enabled ⁽³⁾⁽⁴⁾	50	S3	100	8.0	8.4	8.8	9.1	9.8	
	Supply current in		25	S3	100	4.4	4.7	4.9	5.2	5.9	-
			20	S3	160	3.8	4.1	4.3	4.6	5.3	
		HSI, PLL off, all peripherals enabled ⁽³⁾⁽⁴⁾	16	S3	off	2.5	2.6	2.9	3.2	4.0	
1			1	S3	off	0.4	0.5	0.8	1.2	2.0	mA
I _{DD}	Run mode		100	S1	200	12.1	13.1 ⁽⁵⁾	13.1	13.5 ⁽⁶⁾	14.3 ⁽⁵⁾	
		External clock, all peripherals	84	S2	168	9.8	10.6 ⁽⁵⁾	10.7	11.0 ⁽⁶⁾	11.8 ⁽⁵⁾	
			64	S3	128	7.0	7.4 ⁽⁵⁾	7.6	7.9 ⁽⁶⁾	8.6 ⁽⁵⁾	
		disabled ⁽³⁾	50	S3	100	5.6	5.9	6.1	6.4	7.2	
			25	S3	100	3.1	3.3	3.5	3.9	4.8	
			20	S3	160	2.8	3.0	3.2	3.5	4.4	
		HSI, PLL off, all	16	S3	off	1.7	1.8	2.1	2.4	3.3	
		peripherals disabled ⁽³⁾	1	S3	off	0.4	0.4	0.7	1.1	1.8	

Table 22. Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - V_{DD} = 3.6 V

1. Refer to Table 44 and RM0401 for the possible PLL VCO setting

2. Guaranteed by characterization.

3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.

4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register)

5. Guaranteed by tests in production.

6. Guaranteed by test in production for temperature range 7 salestypes only.

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				PLL	Тур			x ⁽²⁾		,
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Voltage scale	VCO (MHz) (1)	Т _А = 25 °С	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	T _A = 125 °C	Unit
		All peripherals disabled,	100	S1	200	2.2	2.3 ⁽⁵⁾	2.6	3.0 ⁽⁶⁾	3.8 ⁽⁵⁾	
			84	S2	168	1.8	1.9	2.2	2.6	3.4	
		External clock, PLL ON, Flash	64	S3	128	1.4	1.5	1.8	2.1	2.9	
		memory in Deep	50	S3	100	1.2	1.3	1.6	1.9	2.7	
		power down mode	25	S3	100	0.9	1.0	1.3	1.7	2.5	
		mode	20	S3	160	1.0	1.2	1.4	1.7	2.5	
		All peripherals disabled, HSI, PLL OFF, Flash memory in Deep power down mode	16	S3	off	0.3	0.4	0.7	1.1	1.9	
I _{DD}	Supply current in		PLL OFF, Flash memory in Deep power down	1	S3	off	0.3	0.3	0.7	1.0	1.8
(continued)	Sleep mode		100	S1	200	2.6	2.7	3.0	3.4	4.2	mA
	(continued)	All peripherals	84	S2	168	2.2	2.3	2.6	3.0	3.8	
		disabled, External clock,	64	S3	128	1.8	1.9	2.1	2.5	3.3	
		PLL ON, Flash	50	S3	100	1.5	1.6	1.9	2.2	3.1	
		memory ON	25	S3	100	1.2	1.4	1.6	2.0	2.8	
			20	S3	160	1.3	1.4	1.7	2.0	2.8	
		All peripherals	16	S3	off	0.6	0.6	1.0	1.3	2.0	
	disabled, HSI, PLL OFF, Flash memory in Deep power down mode	1	S3	off	0.5	0.6	0.9	1.3	2.0		

Table 28. Typical and maximum current consumption in Sleep mode - V_{DD} = 3.6 V (continued)

1. Refer to Table 44 and RM0401 for the possible PLL VCO setting

2. Guaranteed by characterization, unless otherwise specified.

3. When the ADC is ON (ADON bit set in ADC_CR2), an additional power consumption of 1.6 mA must be added.

4. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register)

5. Guaranteed by tests in production.

6. Guaranteed by test in production on temperature range 7 salestypes only.

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 36: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

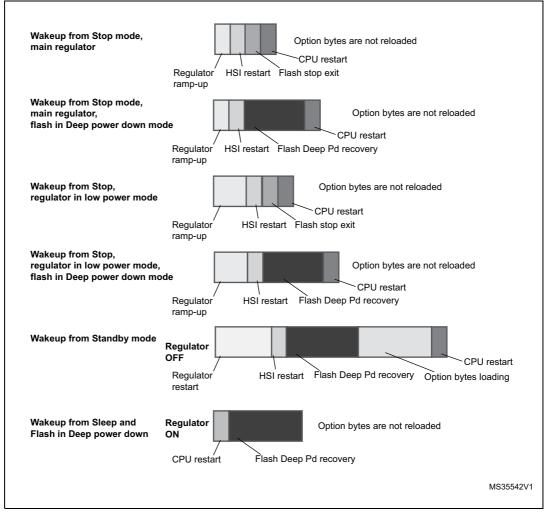
C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit	
			2 MHz	0.05		
			8 MHz	0.15		
			25 MHz	6 MHz 0.45		
		V _{DD} = 3.3 V C = C _{INT}	50 MHz	0.85		
		0 - 0 _{N1}	60 MHz	1.00		
			84 MHz	1.40		
			90 MHz	1.67		
			2 MHz	0.10		
			8 MHz	0.35		
		V _{DD} = 3.3 V	25 MHz	1.05		
		$C_{EXT} = 0 \text{ pF}$ C = C _{INT} + C _{EXT} + C _S	50 MHz	2.20		
			60 MHz	2.40		
			84 MHz	3.55		
	I/O switching		90 MHz	4.23		
IDDIO			2 MHz	0.20	mA	
סוממו	current		8 MHz	0.65		
		V _{DD} = 3.3 V	25 MHz	1.85		
		C _{EXT} =10 pF	50 MHz	2.45		
		$C = C_{INT} + C_{EXT} + C_{S}$	60 MHz	4.70		
			84 MHz	8.80		
			90 MHz	10.47		
			2 MHz	0.25		
		V _{DD} = 3.3 V	8 MHz	1.00		
		C _{EXT} = 22 pF	25 MHz	3.45		
		$C = C_{INT} + C_{EXT} + C_{S}$	50 MHz	7.15		
			60 MHz	11.55		
			2 MHz	0.32		
		V _{DD} = 3.3 V C _{EXT} = 33 pF	8 MHz	1.27		
		$C = C_{INT} + C_{EXT} + C_S$	25 MHz	3.88		
			50 MHz	12.34		

Table 35. Switching output I/O current consumption

1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).



6.3.7 Wakeup time from low-power modes

The wakeup times given in *Table 37* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

6.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 51: EMI characteristics for LQFP64*). It is available only on the main PLL.

Symbol	Symbol Parameter		Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	kHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	(Modulation period) * (Increment Step)	-	-	2 ¹⁵ -1	-

Table 45	SSCG	parameter	constraints
	0000	parameter	constraints

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

MODEPER = round[$f_{PLL | IN} / (4 \times f_{Mod})$]

f_{PLL IN} and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round $[10^{6}/(4 \times 10^{3})] = 250$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

f_{VCO OUT} must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

$$md_{guantized} \% = (250 \times 126 \times 100 \times 5) / ((2^{15} - 1) \times 240) = 2.002\%$$
(peak)

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	
		Program/erase parallelism (PSIZE) = x 8	-	2	4	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	1.4	2.8	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
		32-bit program operation	2.7	-	3.6	V
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

Table 47. Flash memory programming

1. Guaranteed by characterization.

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs	
t _{ERASE16KB}	Sector (16 KB) erase time	$T_A = 0$ to +40 °C	-	230	-		
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms	
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-		
t _{ME}	Mass erase time		-	3.50	-	s	
V _{prog}	Programming voltage	-	2.7	-	3.6	V	
V _{PP}	V _{PP} voltage range	-	7	-	9	V	
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA	
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour	

Electrical characteristics

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
			C _L = 50 pF, V _{DD} ≥ 2.70 V	-	-	25		
	£	(3)	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	12.5	MHz	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	50		
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	20		
01			C _L = 50 pF, V _{DD} ≥2.7 V	-	-	10		
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	ne	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	6	ns	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	50 ⁽⁴⁾		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25		
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-		100 ⁽ 4)	MHz	
10			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾		
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	6		
	t _{f(IO)out} /	Output high to low level fall	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10		
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	4	_ ns	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6		
	F _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽ 4)	MHz	
	a.(i.e.)eat		C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾		
11			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	4		
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	6	n 0	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	2.5	ns	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	4		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns	

Table 57. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by characterization.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 28*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

6.3.19 Communications interfaces

I²C interface characteristics

The I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 60*. Refer also to *Section 6.3.16*: I/O port *characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

The I^2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The I^2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative.

Symbol	Parameter		rd mode (1)(2)	Fast mod	Unit	
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	μs
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	3450 ⁽³⁾	0	900 ⁽⁴⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}			300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard fast mode 0 50 ⁽⁵⁾		0	50 ⁽⁵⁾	ns	
Cb	Capacitive load for each bus line	-	- 400		400	pF

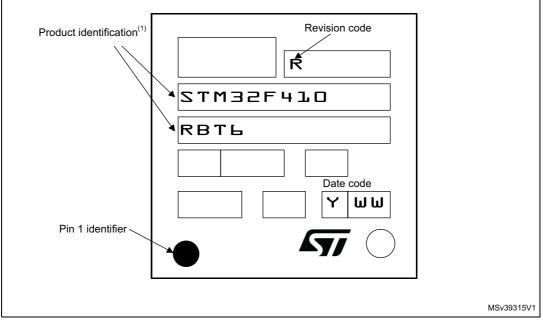
Table 60. I²C characteristics

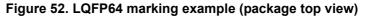
1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Table 77. DAC characteristics (continued)							
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Comments
	DAC DC VDDA	-	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	current consumption in quiescent mode ⁽³⁾	-	-	475	625	μA	With no load, worst code $(0xF1C)$ at $V_{REF+} = 3.6$ V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code- 1LSB)	-	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference	-	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error (difference	-	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	between measured value at Code (0x800) and	-	-	-	±3	LSB	Given for the DAC in 10-bit at $V_{REF+} = 3.6 V$
	the ideal value = $V_{\text{REF+}}/2$)	-	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{REF+} = 3.6 V$
Gain error ⁽⁴⁾	Gain error	-	-	-	±0.5	%	Given for the DAC in 12-bit configuration
	Total Harmonic Distortion Buffer ON	-	-	3	6	μs	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
THD ⁽⁴⁾	-	-	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	-	1	MS/ s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$


Table 77. DAC characteristics (continued)



LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

