

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M4Core Size32-Bit Single-CoreSpeed100MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12bOscillator TypeInternal
Core Size32-Bit Single-CoreSpeed100MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K × 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
Speed100MHzConnectivityI*C, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I*S, POR, PWM, WDTNumber of I/O36Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
ConnectivityI²C, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
PeripheralsBrown-out Detect/Reset, DMA, I²S, POR, PWM, WDTNumber of I/O36Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
Number of I/O36Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
EEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
RAM Size32K x 8Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
Voltage - Supply (Vcc/Vdd)1.7V ~ 3.6VData ConvertersA/D 10x12b; D/A 1x12b
Data Converters A/D 10x12b; D/A 1x12b
Oscillator Type Internal
Operating Temperature -40°C ~ 85°C (TA)
Mounting Type Surface Mount
Package / Case 48-UFQFN Exposed Pad
Supplier Device Package48-UFQFPN (7x7)
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f410cbu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	duction	11
2	Desc	ription	12
	2.1	Compatibility with STM32F4 series	14
3	Funct	tional overview	16
	3.1	$ARM^{ extsf{R}}$ Cortex $^{ extsf{R}}$ -M4 with FPU core with embedded Flash and SRAM \ldots	16
	3.2	Adaptive real-time memory accelerator (ART Accelerator™)	16
	3.3	Batch Acquisition mode (BAM)	16
	3.4	Memory protection unit	17
	3.5	Embedded Flash memory	17
	3.6	CRC (cyclic redundancy check) calculation unit	17
	3.7	Embedded SRAM	17
	3.8	Multi-AHB bus matrix	18
	3.9	DMA controller (DMA)	18
	3.10	Nested vectored interrupt controller (NVIC)	19
	3.11	External interrupt/event controller (EXTI)	19
	3.12	Clocks and startup	19
	3.13	Boot modes	20
	3.14	Power supply schemes	20
	3.15	Power supply supervisor	21
		3.15.1 Internal reset ON	. 21
		3.15.2 Internal reset OFF	. 21
	3.16	Voltage regulator	22
		3.16.1 Internal power supply supervisor availability	. 22
	3.17	Real-time clock (RTC) and backup registers	23
	3.18	Low-power modes	23
	3.19	V _{BAT} operation	24
	3.20	Timers and watchdogs	24
		3.20.1 Advanced-control timers (TIM1)	. 26
		3.20.2 General-purpose timers (TIM5, TIM9 and TIM11)	
		3.20.3 Basic timer (TIM6)	. 26

DocID028094 Rev 5

1 Introduction

This datasheet provides the description of the STM32F410x8/B microcontrollers.

For information on the Cortex[®]-M4 core, please refer to the $Cortex^{®}$ -M4 programming manual (PM0214) available from *www.st.com*.

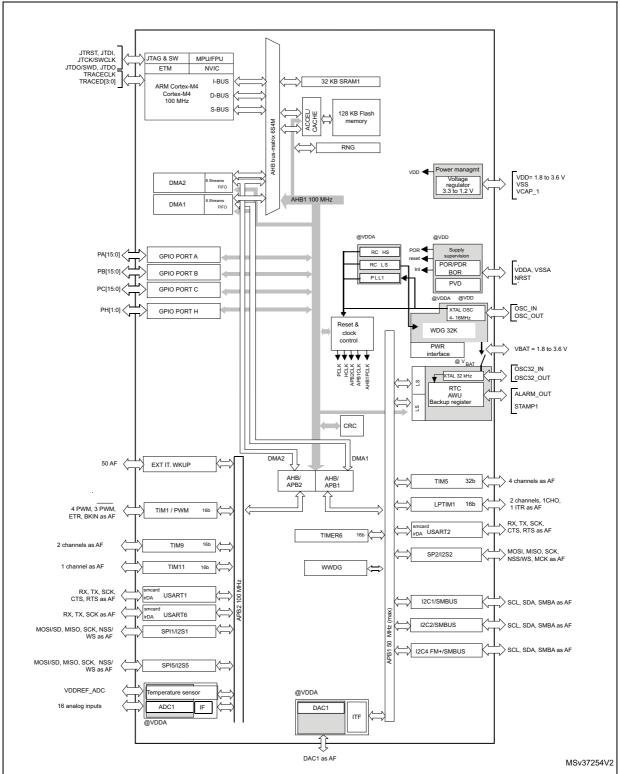


Figure 2. STM32F410x8/B block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 100 MHz.

DocID028094 Rev 5

3.10 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\$}$ -M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.11 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 50 GPIOs can be connected to the 16 external interrupt lines.

3.12 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the AHB bus, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB bus and high-speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB domain is 50 MHz.

3.20.4 Low-power timer (LPTIM1)

The devices embed one low-power timer. This timer features an independent clock and runs in Stop mode if it is clocked by LSE, LSI or by an external clock. It is able to wake up the system from Stop mode.

The low-power timer main features are the following:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous/ one shot mode
- Selectable software/hardware input trigger
- Selectable clock source
 - Internal clock sources: LSE, LSI, HSI or APB1 clock
 - External clock source over LPTIM input (working even when no internal clock source is running and used by pulse-counter applications).
- Programmable digital glitch filter
- Encoder mode
- Active in Stop mode.

3.20.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

3.20.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.20.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.21 Inter-integrated circuit interface (I²C)

The devices feature up to three I^2C bus interfaces which can operate in multimaster and slave modes:

- One I²C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to 400 kHz) modes and Fast-mode plus (up to 1 MHz).
- Two I²C interfaces support the Standard mode (up to 100 KHz) and the Fast mode (up to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on the complete solution, refer to the nearest STMicroelectronics sales office.

All I²C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave) and embed a hardware CRC generation/verification.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see *Table 6*).

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

Table 6. Comparison of I2C analog and digital filters

3.22 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART6).

These three interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 12.5 Mbit/s. The USART2 interface communicates at up to 6.25 bit/s.

USART1 and USART2 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	X ⁽¹⁾	х	х	х	х	6.25	12.5	APB2 (max. 100 MHz)
USART2	х	X ⁽¹⁾	х	X ⁽¹⁾	х	X ⁽¹⁾	3.12	6.25	APB1 (max. 50 MHz)
USART6	х	N.A	х	X ⁽¹⁾⁽²⁾	х	X ⁽¹⁾⁽²⁾	6.25	12.5	APB2 (max. 50 MHz)

 Table 7. USART feature comparison

1. Not available on WLCSP36 package.

2. Not available on UFQFPN48 package.

3.23 Serial peripheral interface (SPI)

The devices feature three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 and SPI5 can communicate at up to 50 Mbit/s, SPI2 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.24 Inter-integrated sound (I²S)

Three standard I^2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be operated in master or slave mode, in simplex communication modes and can be configured to operate with a 16-/32-bit resolution as an input or output channel. All the I2Sx audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I²Sx can be served by the DMA controller.

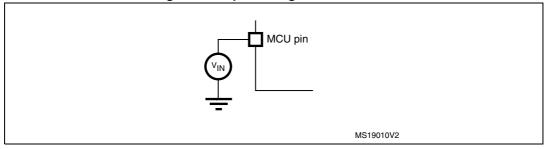
3.25 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

	Р	in Num	ber			_	e			
WLCSP36	LQFP48	UFQFPN48	LQFP64	UFBGA64	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
D1	29	29	41	C8	PA8	I/O	FT	-	MCO_1, TIM1_CH1, I2C4_SCL, USART1_CK, EVENTOUT	-
-	30	30	42	B8	PA9	I/O	FT	-	TIM1_CH2, USART1_TX, EVENTOUT	-
-	31	31	43	E6	PA10	I/O	FT	-	TIM1_CH3, SPI5_MOSI/I2S5_SD, USART1_RX, EVENTOUT	-
-	32	32	44	D7	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, USART6_TX, EVENTOUT	-
D2	33	33	45	A8	PA12	I/O	FT	-	TIM1_ETR, SPI5_MISO, USART1_RTS, USART6_RX, EVENTOUT	-
C1	34	34	46	C7	PA13	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
B1	35	35	47	D5	VSS	S	-	-	-	-
-	36	36	48	-	VDD	S	-	-	-	-
A1	-	-	-	-	VDD	S	-	-	-	-
B2	37	37	49	B7	PA14	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
A2	38	38	50	A7	PA15	I/O	FT	-	JTDI, SPI1_NSS/I2S1_WS, USART1_TX, EVENTOUT	-
-	-	-	51	C6	PC10	I/O	FT	-	TRACED0, TIM5_CH2, EVENTOUT	-
-	-	-	52	B6	PC11	I/O	FT	-	TRACED1, TIM5_CH3, EVENTOUT	-
-	-	-	53	A6	PC12	I/O	FT	-	TRACED2, TIM11_CH1, EVENTOUT	-

Table 9. STM32F410x8/B pin definitions (continued)

Bus	Boundary address	Peripheral
	0x4001 5400- 0x4001 FFFF	Reserved
	0x4001 5000 - 0x4001 53FF	SPI5/I2S5
	0x4001 4C00- 0x4001 4FFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	Reserved
	0x4001 4000 - 0x4001 43FF	ТІМ9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
APB2	0x4001 3400 - 0x4001 37FF	Reserved
	0x4001 3000 - 0x4001 33FF	SPI1/I2S1
	0x4001 2400 - 0x4001 2FF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0400 - 0x4001 0FFF	Reserved
	0x4001 0000 - 0x4001 03FF	TIM1


Table 11. STM32F410x8/B register boundary addresses⁽¹⁾

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

Figure 12. Input voltage measurement

6.3 Operating conditions

6.3.1 General operating conditions

Table 15. G	Seneral	operating	conditions
-------------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Power Scale3: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x01	0	-	64		
f _{HCLK}	Internal AHB clock frequency	Power Scale2: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x10	0	-	84	MHz	
		Power Scale1: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x11	0	-	100		
f _{PCLK1}	Internal APB1 clock frequency	-	0	-	50	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	-	100	MHz	
V _{DD}	Standard operating voltage	-	1.7 ⁽¹⁾	-	3.6	V	
V _{DDA} ⁽²⁾⁽³⁾	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $V_{DD}^{(4)}$		-	2.4	v	
V DDA	Analog operating voltage (ADC limited to 2.4 M samples)			-	3.6	v	
V _{BAT}	Backup operating voltage	-	1.65	-	3.6	V	
		VOS[1:0] bits in PWR_CR register = 0x01 Max frequency 64 MHz	1.08 (5)	1.14	1.20 ⁽⁵⁾		
V ₁₂	Regulator ON: 1.2 V internal voltage on VCAP_1 pins	VOS[1:0] bits in PWR_CR register = 0x10 Max frequency 84 MHz	1.20 (5)	1.26	1.32 ⁽⁵⁾	V	
		VOS[1:0] bits in PWR_CR register = 0x11 Max frequency 100 MHz	1.26	1.32	1.38		
	Regulator OFF: 1.2 V external	Max frequency 64 MHz	1.10	1.14	1.20		
V ₁₂	voltage must be supplied on	Max frequency 84 MHz	1.20	1.26	1.32	V	
	VCAP_1 pins	Max frequency 100 MHz	1.26	1.32	1.38	†	
	Input voltage on RST, FT and	$2 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	-0.3	-	5.5		
V _{IN}	TC pins ⁽⁶⁾	$V_{DD} \leq 2 V$	-0.3	-	5.2	V	
	Input voltage on BOOT0 pin	-	0	-	9]	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{RUSH} ⁽²⁾	In-Rush current on voltage regulator power- on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽²⁾	In-Rush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 125 °C, I _{RUSH} = 171 mA for 31 µs	-	-	5.4	μC

 Table 20. Embedded reset and power control block characteristics (continued)

1. The product behavior is guaranteed by design down to the minimum V_{POR/PDR} value.

2. Guaranteed by design.

3. The reset timing is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is fetched by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

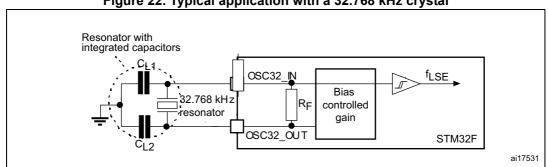
Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to both f_{HCLK} frequency and VDD ranges (refer to *Table 16: Features depending on the operating power supply range*).
- The voltage scaling is adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \le 64$ MHz
 - Scale 2 for 64 MHz < $f_{HCLK} \le 84$ MHz
 - Scale 1 for 84 MHz < f_{HCLK} ≤ 100 MHz
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/2$, and $f_{PCLK2} = f_{HCLK}$.
- External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

The LSE high-power mode allows to cover a wider range of possible crystals but with a cost of higher power consumption.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor	-	-	18.4	-	MΩ
I _{DD}	LSE current consumption	Low-power mode (default)	-	-	1	μA
		High-drive mode	-	-	3	
C crit may	Maximum critical crystal g _m	Startup, low-power mode	-	-	0.56	
G _m _crit_max		Startup, high-drive mode	-	-	1.50	μA/V
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	s


Table 41. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is guaranteed by characterization. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

For information about the LSE high-power mode, refer to the reference manual RM0401.

Figure 22. Typical application with a 32.768 kHz crystal

- 1. Guaranteed by design.
- 2. The maximum programming time is measured after 100K erase operations.
- 3. V_{PP} should only be connected during programming/erasing.

Cumhal	Devenator	Conditions	Value	11	
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	$T_A = -40 \text{ to } +85 \text{ °C } (6 \text{ suffix versions})$ $T_A = -40 \text{ to } +105 \text{ °C } (7 \text{ suffix versions})$ $T_A = -40 \text{ to } +125 \text{ °C } (3 \text{ suffix versions})$	10	Kcycle	
		1 kcycle ⁽²⁾ at T _A = 85 °C	30		
tRET	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years	
		1 kcycle ⁽²⁾ at T _A = 125 °C	3	rears	
		10 kcycle ⁽²⁾ at T _A = 55 °C	20		

Table 49. Flash memor	y endurance and data retention
-----------------------	--------------------------------

1. Guaranteed by characterization.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 51*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 100 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, \text{LQFP64}, \text{T}_{A} = +25 \text{ °C},$ f _{HCLK} = 100 MHz, conforms to IEC 61000-4-4	4A

Table 50. EMS characteristics

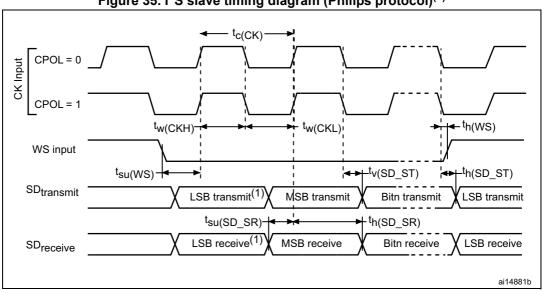
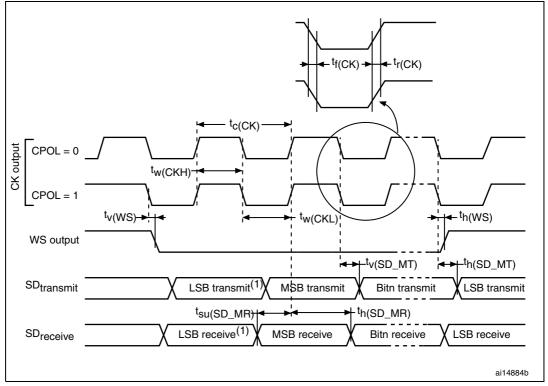



Figure 35. I²S slave timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 36. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 66* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 15*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	N N 10 10 10 10	1.7 ⁽¹⁾	-	3.6	
V _{REF+}	Positive reference voltage	V _{DDA} –V _{REF+} < 1.2 V	1.7 ⁽¹⁾	-	V _{DDA}	V
V _{REF-}	Negative reference voltage -		-	0	-	
£		$V_{DDA} = 1.7^{(1)}$ to 2.4 V	0.6	15	18	MHz
f _{ADC}	ADC clock frequency	V _{DDA} = 2.4 to 3.6 V	0.6	30	36	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	κΩ
$R_{ADC}^{(2)(4)}$	Sampling switch resistance	-	-	-	6	кΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	7	pF
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
'lat` '	latency	-	-	-	3 ⁽⁵⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	1	0.067	μs
Yatr	latency	-	-	-	2 ⁽⁵⁾	1/f _{ADC}
ts ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	1	16	μs
Ũ		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	V _{DDA} = 2.4 to 3.6 V,	±1.5	±4	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V, V _{DDA} –V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 68. ADC accuracy at $f_{ADC} = 30 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted $\mathrm{V}_{\mathrm{DD}},$ frequency and temperature ranges.

2. Guaranteed by characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit				
ET	Total unadjusted error		±4	±7					
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V,	±2	±3					
EG	Gain error	V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±3	±6	LSB				
ED	Differential linearity error	$V_{DDA} - V_{REF} < 1.2 V$	±2	±3					
EL	Integral linearity error		±3	±6					

Table 69. ADC accuracy at $f_{ADC} = 36 \text{ MHz}^{(1)}$

1. Better performance could be achieved in restricted V_{DD} , frequency and temperature ranges.

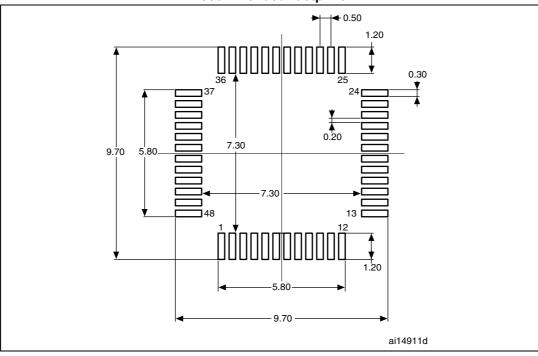
2. Guaranteed by characterization.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	e number of bits f _{ADC} =18 MHz		10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	-	-72	-67	

1. Guaranteed by characterization.

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} = 36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	-	-72	-70	

1. Guaranteed by characterization.



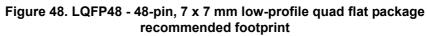

6.3.24 DAC electrical characteristics

Table 77. DAC characteristics										
Symbol	Parameter	Cond	itions	Min	Тур	Мах	Unit	Comments		
V _{DDA}	Analog supply voltage	-		1.7 ⁽¹⁾	-	3.6	V	-		
V _{REF+}	Reference supply voltage	-		1.7 ⁽¹⁾	-	3.6	V	V _{REF+} ⊴V _{DDA}		
V_{SSA}	Ground		-	0	-	0	V	-		
R _{LOAD} ⁽²⁾	Resistive load	DAC to V _{SSA}	kΩ	-						
, LOAD		buffer ON	R _{LOAD} connected to V _{DDA}	25	-	-	kΩ	-		
R _O ⁽²⁾	Impedance output with buffer OFF	-		-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω		
C _{LOAD} ⁽²⁾	Capacitive load	-		-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).		
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON		-	0.2	-	-	v	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input		
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON		-	-	-	V _{DDA} - 0.2	V	code (0x0E0) to (0xF1C) at V _{REF+} = 3.6 V and (0x1C7) to (0xE38) at V _{REF+} = 1.7 V		
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF		-	-	0.5	-	mV	It gives the maximum output		
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF		-	-	-	V _{REF+} _ 1LSB	V	excursion of the DAC.		
L	DAC DC V _{REF} current		-	-	170	240		With no load, worst code ($0x800$) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs		
I _{VREF+} ⁽⁴⁾	consumption in quiescent mode (Standby mode)		-	-	50	75	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs		

Table 77. DAC characteristics

1. Dimensions are expressed in millimeters.

Revision history

Dete	Devision	Table 89. Document revision history
Date	Revision	Changes
28-Sep-2015	1	Initial release.
07-Dec-2015	2	Junction temperature range changed to –40 to + 110 °C for WLCSP49 package. Updated <i>Figure 7: UFQFPN48 pinout</i> .
10-Aug-2016	3	Updated: - Table 2: STM32F410x8/B features and peripheral counts - Table 9: STM32F410x8/B pin definitions - Table 14: Thermal characteristics - Table 15: General operating conditions - Table 20: Embedded reset and power control block characteristics - Tables from Table 21: Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V to Table 34: Typical and maximum current consumptions in VBAT mode (LSE and RTC ON, LSE low- drive mode) - Table 42: HSI oscillator characteristics - Table 43: LSI oscillator characteristics - Table 52: ESD absolute maximum ratings - Table 66: ADC characteristics - Table 75: Embedded internal reference voltage - Table 87: Ordering information scheme - Figure 16: Typical VBAT current consumption (LSE and RTC ON/LSE oscillator in "low power" mode selection - Section 7: Package information Added: - Figure 8: UFBGA64 pinout - Figure 49: LQFP48 marking example (package top view) - Figure 55: UFBGA64 marking example (package top view)

Table 8	89. D	ocument	revision	history
---------	-------	---------	----------	---------

