

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j94-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
CMP1MD	CMP2MD	CMP3MD	USBMD	IOCMD	LVDMD	_	EMBMD
bit 7							bit C
Logondi							
Legena:	hit.	W = Writchlo	h:t		monted bit read		
		vv = vvritable	UIL		nented bit, read		
-n = value at r	POR	I = BILIS Set		0 = Bit is cle	ared	x = Bit is unk	nown
bit 7	CMP1MD: CA	/IP1 Module Dis	able bit				
	1 = The CMP	1 module is dis	abled: all CMI	P1 registers are	e held in Reset a	and are not wr	itable
	0 = The CMP	1 module is en	abled				
bit 6	CMP2MD: CN	/IP2 Module Dis	able bit				
	1 = The CMP2	2 module is disa	abled; all CMP	2 registers are	held in Reset a	ind are not wri	table
	0 = The CMP2	2 module is ena	bled				
bit 5	CMP3MD: CN	/IP3 Module Dis	able bit				
	1 = The CMP3	3 module is disa	abled; all CMP	'3 registers are	held in Reset a	ind are not wri	table
L:1 4		s module is ena					
DIT 4	USBMD: USB	s Module Disabi	e dit alaalaali Licoa		alal in Decetaria		- I -
	1 = The USB 0 = The USB	module is disa	oled; all USB bled	registers are no	eid in Reset and	are not writa	bie
bit 3	IOCMD: Inter	rupt-on-Chang	e Module Disa	able bit			
Sit 0	1 = The IOC	module is disat	oled: all IOC r	egisters are he	eld in Reset and	are not writab	ble
	0 = The IOC	module is enab	led	- 9			
bit 2	LVDMD: Low	Voltage Detect	Module Disa	ble bit			
	1 = The LVD	module is disal	oled; all LVD i	registers are he	eld in Reset and	l are not writal	ole
	0 = The LVD	module is enab	bled				
bit 1	Unimplemen	ted: Read as ')'				
bit 0	EMBMD: EMI	B Module Disab	le bit				
	1 = The EMB	module is disa	bled; all EMB	registers are h	ield in Reset and	d are not writa	ble
	0 = 1 he EMB	module is enal	bled				

REGISTER 4-9: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4

Register	Арг	Applicable Devices Power-on Reset, Brown-out Reset Reset Stack Res			MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
ALRMRPT	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu
ALRMVALH	64-pin	80-pin	100-pin	XXXX XXXX	uuuu uuuu	uuuu uuuu
ALRMVALL	64-pin	80-pin	100-pin	xxxx xxxx	uuuu uuuu	uuuu uuuu
RTCCON2	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu
IOCP	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
IOCN	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
PADCFG1	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CM1CON	64-pin	80-pin	100-pin	0001 1111	0001 1111	uuuu uuuu
ECCP2AS	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
ECCP2DEL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CCPR2H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR2L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
ECCP2CON	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
ECCP3AS	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
ECCP3DEL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CCPR3H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR3L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
ECCP3CON	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CCPR8H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR8L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP8CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu
CCPR9H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR9L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP9CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu
CCPR10H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR10L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP10CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu
TMR6	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
PR6	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu
T6CON	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu
TMR8	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
PR8	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu
T8CON	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate that conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-2 for Reset value for specific condition.
- 5: Bits 7,6 are unimplemented on 64 and 80-pin devices.
- 6: If the VBAT is always powered, the DSGPx register values will remain unchanged after the first POR.

7.2.2 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the Special Function Register (SFR) space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 7-1 and only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the seven Least Significant bits (LSbs) of the Table Pointer register (TBLPTR<6:0>) determine which of the 64 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 12 Most Significant bits (MSbs) of the TBLPTR (TBLPTR<21:10>) determine which program memory block of 1024 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

When an erase of program memory is executed, the 12 MSbs of the Table Pointer register point to the 1024-byte block that will be erased. The LSbs are ignored.

Figure 7-3 describes the relevant boundaries of the TBLPTR based on Flash program memory operations.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

7.4 Erasing Flash Program Memory

The minimum erase block is 256 words or 512 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 512 bytes of program memory is erased. The Most Significant 12 bits of the TBLPTR<21:10> point to the block being erased; TBLPTR<9:0> are ignored.

The EECON1 register commands the erase operation. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of row being erased.
- 2. Set the WREN and FREE bits (EECON1<2,4>) to enable the erase operation.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit; this will begin the erase cycle.
- The CPU will stall for the duration of the erase for TIE (see Parameter D133B).
- 8. Re-enable interrupts.

EXAMPLE 7-2:	ERASING A FLASH PROGRAM MEMORY ROW
--------------	------------------------------------

	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
ERASE_ROW			
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	0x55	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0xAA	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

10.12 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the Fast Return Stack.

If a fast return from interrupt is not used (see **Section 6.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine (ISR). Depending on the user's application, other registers also may need to be saved.

Example 10-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 10-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere
; ; USER ;	ISR CODE	
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

11.4 PORTC, LATC and TRISC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISC and LATC. Only PORTC pins, RC2 through RC7, are digital only pins. The pins have Schmitt Trigger input buffers.

When enabling peripheral functions, use care in defining TRIS bits for each PORTC pin. Some peripherals can override the TRIS bit to make a pin an output or input. Consult the corresponding peripheral section for the correct TRIS bit settings.

Note: These pins are configured as digital inputs on any device Reset.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 11-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
CLRF	LATC	; data latches ; Alternate method ; to clear output ; data latches
MOVLW	OCFh	; Value used to ; initialize data ; direction
MOVWF	TRISC	; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RC0/	RC0	1	-	ST	PORTC<0> data input.		
PWRLCLK/	PWRLCLK	1	Ι	ST	Optional RTCC input from power line clock (50 or 60 Hz).		
30LN#30300	SCLKI	x	Ι	ST	Digital SOSC input.		
	SOSCO	x	0	ANA	Secondary Oscillator (SOSC) feedback output connection.		
RC1/SOSCI	RC1	1	Ι	ST	PORTC<1> data input.		
	SOSCI	x	Ι	ANA	Secondary Oscillator (SOSC) input connection.		
RC2/CTED7/	RC2	0	0	DIG	LATC<2> data output; not affected by analog input.		
RP11/AN9/		1	Ι	ST	PORTC<2> data input; disabled when analog input is enabled.		
32013	CTED7	1	Ι	ST	CTMU Edge 7 input.		
	RP11	х	х	DIG	Reconfigurable Pin 11 for PPS-Lite; TRIS must be set to match input/output of module.		
	AN9	1	-	ANA	A/D Input Channel 9. Default input configuration on POR; does not affect digital output.		
	SEG13	0	0	ANA	LCD Segment 13 output; disables all other pin functions.		
RC3/CTED8/	RC3	0	0	DIG	LATC<3> data output.		
RP15/SCL1/		1	Ι	ST	PORTC<3> data input.		
32017	CTED8	1	Ι	ST	CTMU Edge 8 input.		
	RP15	х	х	DIG	Reconfigurable Pin 15 for PPS-Lite; TRIS must be set to match input/output of module.		
	SCL1	x	I/O	I ² C	Synchronous serial clock input/output for I ² C mode.		
	SEG17	0	0	ANA	LCD Segment 17 output; disables all other pin functions		
RC4/CTED9/	RC4	0	0	DIG	LATC<4> data output.		
RP17/SDA1/		1	-	ST	PORTC<4> data input.		
36010	CTED9	1	-	ST	CTMU Edge 9 input.		
	RP17	х	х	DIG	Reconfigurable Pin 17 for PPS-Lite; TRIS must be set to match input/output of module.		
	SDA1	х	I/O	I ² C	I ² C mode data I/O		
	SEG16	0	0	ANA	LCD Segment 16 output; disables all other pin functions.		

TABLE 11-3: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, $l^2C = l^2C/SMBus$, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

11.12 PORTL, LATL and TRISL Registers

Note:	PORTL	is	available	only	on	100-pin
	devices.					

PORTL is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISL and LATL.

All pins on PORTL are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Each of the PORTL pins has a weak internal pull-up.

The pull-ups are provided to keep the inputs at a known state for the external memory interface while powering up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, RLPU (PADCFG<0>).

The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

EXAMPLE 11-11: INITIALIZING PORTL

BANKSEL PORTL CLRF PORTL	; select correct bank ; Initialize PORTL by ; clearing output latches
CLRF LATL	; Alternate method ; to clear output latches
MOVLW 0CFh	; Value used to ; initialize data ; direction
MOVWF TRISL	; Set RL3:RL0 as inputs ; RL5:RL4 as output ; RL7:RL6 as inputs

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RL0/SEG48	RL0	0	0	DIG	LATL<0> data output.
		1	I	ST	PORTL<0> data input.
	SEG48	0	0	ANA	LCD Segment 48 output; disables all other pin functions.
RL1/SEG49	RL1	0	0	DIG	LATL<1> data output.
		1	I	ST	PORTL<1> data input.
	SEG49	0	0	ANA	LCD Segment 49 output; disables all other pin functions.
RL2/SEG50	RL2	0	0	DIG	LATL<2> data output.
		1	I	ST	PORTL<2> data input.
	SEG50	0	0	ANA	LCD Segment 50 output; disables all other pin functions.
RL3/SEG51	RL3	0	0	DIG	LATL<3> data output.
		1	I	ST	PORTL<3> data input.
	SEG51	0	0	ANA	LCD Segment 51 output; disables all other pin functions.
RL4/SEG52	RL4	0	0	DIG	LATL<4> data output.
		1	I	ST	PORTL<4> data input.
	SEG52	0	0	ANA	LCD Segment 52 output; disables all other pin functions.
RL5/SEG53	RL5	0	0	DIG	LATL<5> data output.
		1	I	ST	PORTL<5> data input.
	SEG53	0	0	ANA	LCD Segment 53 output; disables all other pin functions.
RL6/SEG54	RL6	0	0	DIG	LATL<6> data output.
		1	I	ST	PORTL<6> data input.
	SEG54	0	0	ANA	LCD Segment 54 output; disables all other pin functions.
RL7/SEG55	RL7	0	0	DIG	LATL<7> data output.
		1	I	ST	PORTL<7> data input.
	SEG55	0	0	ANA	LCD Segment 55 output; disables all other pin functions.

TABLE 11-11: PORTL FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

13.6 BIAS CONFIGURATIONS

PIC18F97J94 family devices have four distinct circuit configurations for LCD bias generation:

- M0: Regulator with Boost
- M1: Regulator without Boost
- M2: Resistor Ladder with Software Contrast
- · M3: Resistor Ladder with Hardware Contrast

13.6.1 M0 (REGULATOR WITH BOOST)

In M0 operation, the LCD charge pump feature is enabled. This allows the regulator to generate voltages up to +3.6V to the LCD (as measured at LCDBIAS3).

M0 uses a flyback capacitor connected between VLCAP1 and VLCAP2, as well as filter capacitors on LCDBIAS0 through LCDBIAS3, to obtain the required voltage boost (Figure 13-6). The output voltage (VBIAS) is the difference of the potential between LCDBIAS3 and LCDBIAS0. It is set by the BIAS<2:0> bits which adjust the offset between LCDBIAS0 and VSS. The flyback capacitor (CFLY) acts as a charge storage element for large LCD loads. This mode is useful in those cases where the voltage requirements of the LCD are higher than the microcontroller's VDD. It also permits software control of the display's contrast, by adjustment of bias voltage, by changing the value of the BIAS bits.

M0 supports static and 1/3 bias types. Generation of the voltage levels for 1/3 bias is handled automatically, but must be configured in software.

M0 is enabled by selecting a valid regulator clock source (CLKSEL<1:0> set to any value except '00') and setting the CPEN bit. If static bias type is required, the MODE13 bit must be cleared.

13.6.2 M1 (REGULATOR WITHOUT BOOST)

M1 operation is similar to M0, but does not use the LCD charge pump. It can provide VBIAS up to the voltage level supplied directly to LCDBIAS3. It can be used in cases where VDD for the application is expected to never drop below a level that can provide adequate contrast for the LCD. The connection of external components is very similar to M0, except that LCDBIAS3 must be tied directly to VDD (Figure 13-6).

Note:	When the device is put to Sleep while oper-
	ating in mode M0 or M1, make sure that the
	bias capacitors are fully discharged to get
	the lowest Sleep current.

The BIAS<2:0> bits can still be used to adjust contrast in software by changing the VBIAS. As with M0, changing these bits changes the offset between LCDBIAS0 and VSS. In M1, this is reflected in the change between the LCDBIAS0 and the voltage tied to LCDBIAS3. Thus, if VDD should change, VBIAS will also change; where in M0, the level of VBIAS is constant.

Like M0, M1 supports static and 1/3 bias types. Generation of the voltage levels for 1/3 bias is handled automatically but must be configured in software. M1 is enabled by selecting a valid regulator clock source (CLKSEL<1:0> set to any value except '00') and clearing the CPEN bit. If 1/3 bias type is required, the MODE13 bit should also be set.

14.1 Timer0 Operation

Timer0 can operate in one of these two modes:

- As an 8-bit (T08BIT = 1) or 16-bit (T08BIT = 0) timer
- As an asynchronous 8-bit (T08BIT = 1) or 16-bit (T08BIT = 0) counter

14.1.1 TIMER MODE

In Timer mode, Timer0 either increments every CPU clock cycle, or every instruction cycle, depending on the clock select bit, TMR0CS<1:0> (T0CON<7:6>).

14.1.2 COUNTER MODE

In this mode, Timer0 is incremented via a rising or falling edge of an external source on the T0CKI pin. The clock select bits, TMR0CS<1:0>, must be set to '1x'.

14.2 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is not directly readable nor writable (see Figure 14-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 14-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)

FIGURE 17-6:	TIMER PULSE GENERATION
RTCEN bi	t
ALRMEN bi	t
RTCC Alarm Even	
RTCC Pir	

17.4 Sleep Mode

The timer and alarm continue to operate while in Sleep mode. The operation of the alarm is not affected by Sleep, as an alarm event can always wake-up the CPU.

The Idle mode does not affect the operation of the timer or alarm.

17.5 Reset

17.5.1 DEVICE RESET

When a device Reset occurs, the ALRMRPT register is forced to its Reset state, causing the alarm to be disabled (if enabled prior to the Reset). If the RTCC was enabled, it will continue to operate when a basic device Reset occurs.

17.5.2 POWER-ON RESET (POR)

The RTCCON1 and ALRMRPT registers are reset only on a POR. Once the device exits the POR state, the clock registers should be reloaded with the desired values.

The timer prescaler values can be reset only by writing to the SECONDS register. No device Reset can affect the prescalers.

REGISTER 19-2: CCPTMRS1: CCP TIMER SELECT REGISTER 1

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C7TSEL1	C7TSEL0	—	C6TSEL0	—	C5TSEL0	C4TSEL1	C4TSEL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	C7TSEL<1:0>	CCP7 Timer	Selection bits	6			
	00 =CCP7 is l	based off of TN	/IR1/TMR2				
	01 =CCP7 is I	based off of TN	/R5/TMR4				
	10 =CCP7 is I	based off of IN	/R5/IMR6				
DIT 5	Unimplement	ted: Read as 1	0.				
bit 4	C6TSEL0: CC	CP6 Timer Sele	ection bit				
	0 = CCP6 is l	based off of TN	/R1/TMR2				
	1 = CCP6 is l	based off of TN	/IR5/TMR2				
bit 3	Unimplement	ted: Read as '	0'				
bit 2	C5TSEL0: CC	CP5 Timer Sele	ection bit				
	0 = CCP5 is t	based off of TN	/IR1/TMR2				
	1 = CCP5 is l	based off of TN	/IR5/TMR4				
bit 1-0	C4TSEL<1:0>	CCP4 Timer	Selection bits	3			
	00 =CCP4 is l	based off of TN	/IR1/TMR2				
	01 =CCP4 is I	based off of TN	/R3/TMR4				
	10 =CCP4 is I	based off of TN	/IR3/TMR6				
	⊥⊥ =Reserved	i, do not use					

R/HS/HC-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
bit 7							bit 0			
Legend:										
R = Reada	R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'									
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
			o							
bit /	ACKIIM: AC	cknowledge ווחי וס	e Status bit							
hit 6	PCIE: Stop (Condition Interru	nt Enable bit ⁽¹	1)						
bit o	1 = Enable	interrupt on dete	ection of Stop	condition						
	0 = Stop de	tection interrupt	s are disabled							
bit 5	SCIE: Start	Condition Interru	pt Enable bit ^{(*}	1)						
	1 = Enable i	nterrupt on dete	ction of Start o	or Restart condit	tions					
b :# 4		ection interrupts	are disabled							
DIL 4		Er Overwrite Ena E undates everv	time a new da	uta hvto is shifto	d in ianorina t	he BE hit				
	0 = If a new	byte is received	with BF bit all	ready set, SSP(DV is set, and	the buffer is not	updated			
bit 3	SDAHT: SD	A Hold Time Sel	ection bit	•						
	Unused in S	PI.								
bit 2	SBCDE: Sla	ve Mode Bus C	ollision Detect	Enable bit						
	Unused in S	PI.								
bit 1	bit 1 AHEN: Address Hold Enable bit									
	Unused in S	PI.								
bit 0	DHEN: Data	Hold Enable bit								
	Unused in S	PI.								
Note 1:	This bit has no e	effect in Slave m	odes that Star	t and Stop cond	lition detection	is explicitly liste	ed as enabled.			

REGISTER 20-3: SSPxCON3: MSSP CONTROL REGISTER 3 (SPI MODE)

2: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

20.5.12 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPx-CON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - •SDAx is sampled low when SCLx goes from low-to-high.

•SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

20.5.12.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 20-22: REPEATED START CONDITION WAVEFORM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BUFS ⁽¹⁾	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 7	BUFS: Buffer	Fill Status bit ⁽¹)						
	1 = A/D is filli	ng the upper h	alf of the buffe	r; user should a	access data in	the lower half			
		ng the lower h		r; user should a	ccess data in t	the upper hair			
bit 6-2	SMPI<4:0>:	nterrupt Sampl	e Increment R	ate Select bits					
	Selects the nu	imber of samp	e/conversions	per each interr	upt.				
	11111 = Inte	rrupt/address i	ncrement at th	e completion of	conversion fo	r each 32nd sar	nple		
	11110 = Inte	rrupt/address i	ncrement at th	e completion of	conversion fo	r each 31st san	ple		
	••••	rrunt/addraga i	noromont at th		conversion fo	r over ather of	mala		
	00001 = Inte	rrupt/address i	ncrement at th	e completion of	conversion fo	r each sample	Inple		
bit 1	BUFM: Buffer	Fill Mode Sele	ect bit ⁽¹⁾			· · · · · · · · · · · · · · · · · · ·			
	1 = A/D buffer is two 13-word buffers starting at ADC1BUE0 and ADC1BUE12 and sequential								
	conversio	ons fill the buffe	ers alternately	(Split mode)		, -			
	0 = A/D buffe	r is a single, 20	6-word buffer a	and fills sequent	tially from ADC	1BUF0 (FIFO r	node)		
bit 0	ALTS: Alterna	ate Input Samp	le Mode Selec	t bit					
	1 = Uses cha	nnel input sele	cts for Sample	A on first sam	ole and Sampl	e B on next sam	ple		
	0 = Always u	ses channel in	out selects for	Sample A					

REGISTER 22-7: ADCON2L: A/D CONTROL REGISTER 2 LOW

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

22.2 A/D Terminology and Conversion Sequence

Sample time is the time that the A/D module's S/H amplifier is connected to the analog input pin. The sample time may be started and ended automatically by the A/D Converter's hardware or under direct program control. There is a minimum sample time to ensure that the S/H amplifier will give sufficient accuracy for the A/D conversion.

The conversion trigger ends the sampling time and begins an A/D conversion or a repeating sequence. The conversion trigger sources can be taken from a variety of hardware sources or can be controlled directly in software. One of the conversion trigger options is an auto-conversion, which uses a counter and the A/D clock to set the time between auto-conversions. The Auto-Sample mode and auto-conversion trigger can be used together to provide continuous, automatic conversions without software intervention. When automatic sampling is used, an extended sampling interval is extended between the time the sampling ends and the conversion starts.

Conversion time is the time required for the A/D Converter to convert the voltage held by the S/H amplifier. An A/D conversion requires one A/D clock cycle (TAD) to convert each bit of the result, plus two additional clock cycles, or a total of 14 TAD cycles for a 12bit conversion. When the conversion is complete, the result is loaded into one of the A/D result buffers. The S/H can be reconnected to the input pin and a CPU interrupt may be generated. The sum of the sample time(s) and the A/D conversion time provides the total A/D sequence time. Figure 22-2 shows the basic conversion sequence and the relationship between intervals.

FIGURE 22-2: A/D SAMPLE/CONVERT SEQUENCE

22.5.3.4 Sample Time Considerations For Automatic Sampling/conversion Sequences

Different sample/conversion sequences provide different available sampling times for the S/H channel to acquire the analog signal. The user must ensure the sampling time satisfies the sampling requirements, as outlined in Section 22.9 "A/D Sampling Requirements".

Assuming that the module is set for automatic sampling, and an external trigger pulse is used as the conversion trigger, the sampling interval is a portion of the trigger pulse interval. The sampling time is the trigger pulse period, less the time required to complete the conversion.

EQUATION 22-3: CALCULATING AVAILABLE SAMPLING TIME FOR SEQUENTIAL SAMPLING

TSMP = Trigger Pulse Interval (TSEQ) – Conversion Time (TCONV) = TSEQ – TCONV

FIGURE 22-8: MANUAL SAMPLE START, CONVERSION TRIGGER-BASED CONVERSION START

FIGURE 22-9: AUTO-SAMPLE START, CONVERSION TRIGGER-BASED CONVERSION START

Conversion Trigger	, , ,				/	, , ,
A/D CLK	ı					1 1 1
	⊲ 	— Tsamp — →		- TSAMP	•ı⊲—Tconv—→	1 1 1
SAMP					1	<u> </u>
DONE	- - - -			Reset by Software	- - - - -	
ADC1BUF0	I			Χ	<u> </u> 	<u>.</u> ! !
ADC1BUF1	i i		·i		ı	X
BSF A	D1CON1, ASAM	Instruction Exe	ecution		1	1 1
					1	1

MULLW	Multiply L	iteral with W		MUI	_WF	Multiply W v	vith f		
Syntax:	MULLW	k		Syn	tax:	MULWF f	[,a}		
Operands:	$0 \le k \le 255$	5		Ope	rands:	$0 \leq f \leq 255$			
Operation:	(W) x k \rightarrow	PRODH:PROI	DL			a ∈ [0,1]			
Status Affected:	None			Ope	ration:	(W) x (f) \rightarrow PRODH:PRODL			
Encoding:	0000	1101 kk	kk kkkk	Stat	us Affected:	None			
Description:	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte.			Enc	oding: cription:	0000 001a ffff ffff An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged.			
	W is uncha	W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.							
	None of the					None of the Status flags are affected.			
	Note that n possible in is possible					Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected			
Words:	1					If 'a' is '0' th	- Access Rai	nk is selected. If	
Cycles: Q Cycle Activity:	1					'a' is '1', the GPR bank.	BSR is used	to select the	
Q1	Q2	Q3	Q4			lf 'a' is '0' and	the extende	ed instruction set	
Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL			is enabled, th Indexed Liter whenever f ≤ Section 29.2 Oriented Ins Offset Mode	nis instruction al Offset Add 95 (5Fh). Se 3 "Byte-Or i tructions in " for details.	n operates in dressing mode ee iented and Bit- Indexed Literal	
Example:	MULLW	0C4h		Wor	ds:	1			
Before Instruc W	tion = F2	Ph		Cyc	les:	1			
PRODH	= ?			QQ	Cycle Activity:				
After Instructio	on – :				Q1	Q2	Q3	Q4	
W PRODH PRODL	= E2 = AI = 08	2h Dh Bh			Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL	
				Exa	mple:	MULWF	REG, 1		

=	C4h
=	B5h
=	?
=	?
=	C4h
=	B5h
=	8Ah
=	94h

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	20		ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	
74	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TSCF	SCKx Output Fall Time (Master mode)	—	25	ns	
80	TSCH2DOV, TSCL2DOV	SDOx Data Output Valid after SCKx Edge	—	50	ns	

32.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

Charts and graphs are not available at this time.