

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67j94t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Oscillator Configuration

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are in the Configuration registers located in the program memory (refer to **Section 28.1 "Configuration Bits"** for more information). The Primary Oscillator Configuration bits, POSCMD<1:0> (CONFIG3L<1:0>), and Oscillator Configuration bits, FOSC<2:0> (CONFIG2L<2:0>), select the oscillator source that is used at a POR. The FRC Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between 11 different clock modes, as shown in Table 3-1.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
Fast RC Oscillator divided by 16 (FRC500kHz)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (MS) with PLL Module (MSPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (MS)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

Note 1: OSC2 pin function is determined by the CLKOEN Configuration bit.

2: Default oscillator mode for an unprogrammed (erased) device.

Register	Арг	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
ALRMRPT	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu	
ALRMVALH	64-pin	80-pin	100-pin	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ALRMVALL	64-pin	80-pin	100-pin	xxxx xxxx	uuuu uuuu	uuuu uuuu	
RTCCON2	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu	
IOCP	64-pin	80-pin	100-pin	0000 0000	0000 0000	սսսս սսսս	
IOCN	64-pin	80-pin	100-pin	0000 0000	0000 0000	սսսս սսսս	
PADCFG1	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
CM1CON	64-pin	80-pin	100-pin	0001 1111	0001 1111	uuuu uuuu	
ECCP2AS	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
ECCP2DEL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
CCPR2H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu	
CCPR2L	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu	
ECCP2CON	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
ECCP3AS	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
ECCP3DEL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
CCPR3H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu	
CCPR3L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu	
ECCP3CON	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
CCPR8H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu	
CCPR8L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu	
CCP8CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu	
CCPR9H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu	
CCPR9L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu	
CCP9CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu	
CCPR10H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu	
CCPR10L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu	
CCP10CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu	
TMR6	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
PR6	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu	
T6CON	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu	
TMR8	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
PR8	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu	
T8CON	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu	

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

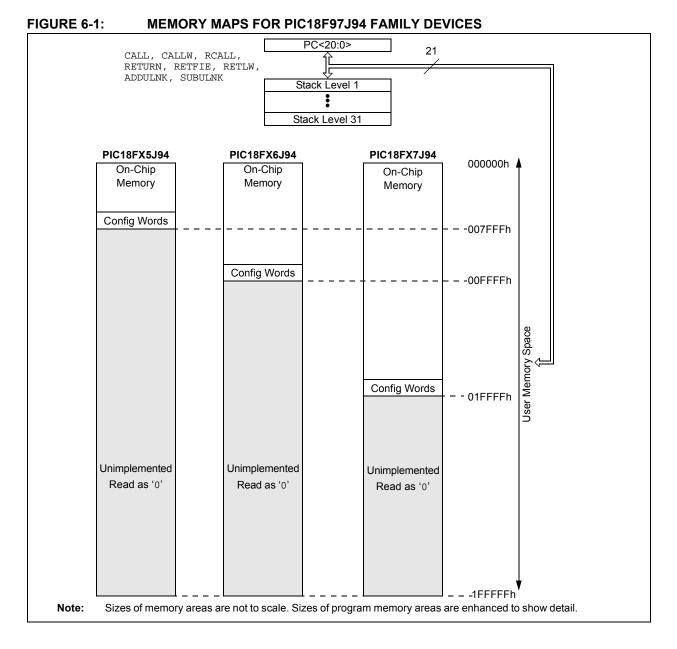
Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate that conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-2 for Reset value for specific condition.
- 5: Bits 7,6 are unimplemented on 64 and 80-pin devices.
- 6: If the VBAT is always powered, the DSGPx register values will remain unchanged after the first POR.


6.0 MEMORY ORGANIZATION

PIC18FXXJ94 devices have these types of memory:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate buses. This enables concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**.

	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
F36h	CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0	
F35h	CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0		C5TSEL0	C4TSEL1	C4TSEL0	
F34h	CCPTMRS2		_	_	C10TSEL0	_	C9TSEL0	C8TSEL1	C8TSEL0	
F33h	RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
F32h	TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
F31h	BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	IREN	WUE	ABDEN	
F30h	SPBRGH1	-	d Rate Generato		intona	Biterio		HOL	ABBEN	
F2Fh	RCSTA3	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
F2Eh	TXSTA3	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
F2Dh	BAUDCON3	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	IREN	WUE	ABDEN	
F2Ch	SPBRGH3		d Rate Generato							
F2Bh	SPBRG3	+	d Rate Generato							
F2Ah	RCREG3	EUSART3 Rece								
F29H	TXREG3	EUSART3 Tran								
F28h	DSCONL				_	_	ULPWDIS	DSBOR	RELEASE	
F27h	DSCONH	DSEN		_					RTCWDIS	
F26h	DSWAKEL	DSFLT	BOR	DSULP	DSWDT	DSRTC	DSMCLR	DSICD	DSPOR	
		DSFLI	BOR	DSULF	DSVDT	DORIC	DSIVICLR	DSICD	DSFOR DSINT0	
F25h	DSWAKEH	— Deep Sleep Co	naral Durnaga D		—	—	_	_	DSINTU	
F24h	DSGPR0		neral Purpose R							
F23h	DSGPR1		neral Purpose R							
F22h	DSGPR2		Deep Sleep General Purpose Register 2							
F21h	DSGPR3		Deep Sleep General Purpose Register 3							
F20h	SPBRGH2	+	d Rate Generato							
F1Fh	SPBRG2	+	d Rate Generato	r						
F1Eh	RCREG2	Receive Data F	IFO							
F1Dh	TXREG2	Transmit Data F	IFO			1		1		
F1Ch	PSTR2CON	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	
F1Bh	PSTR3CON	CMPL1	CMPL0		STRSYNC	STRD	STRC	STRB	STRA	
F1Ah	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	
F19h	SSP2CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	
F18h	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
F17h	SSP2MSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	
F16h	TMR5H	Timer5 Register	r High Byte							
F15h	TMR5L	Timer5 Register	Low Byte							
F14h	T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	SOSCEN	T5SYNC	RD16	TMR5ON	
F13h	T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/T5DONE	T5GVAL	T5GSS1	T5GSS0	
F12h	CCPR4H	Capture/Compa	are/PWM Registe	er 4 High Byte		· ·				
F11h	CCPR4L	Capture/Compa	are/PWM Registe	er 4 Low Byte						
F10h	CCP4CON		_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	
F0Fh	CCPR5H	Capture/Compa	are/PWM Registe	er 5 High Byte		ıI				
F0Eh	CCPR5L	Capture/Compa	are/PWM Registe	er 5 Low Byte						
F0Dh	CCP5CON	_	_	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0	
F0Ch	CCPR6H	Capture/Compa	are/PWM Registe	er 6 High Byte	1	1 1		1	I	
F0Bh	CCPR6L	· · ·	are/PWM Registe	0,						
F0Ah	CCP6CON			DC6B1	DC6B0	CCP6M3	CCP6M2	CCP6M1	CCP6M0	
F09h	CCPR7H	Capture/Compa	are/PWM Registe			1		1		
F08h	CCPR7L		are/PWM Registe	• •						
F07h	CCP7CON			DC7B1	DC7B0	CCP7M3	CCP7M2	CCP7M1	CCP7M0	
F06h	TMR4	Timer4 Register		00/01	20100					
	PR4	-								
F05h		Timer4 Period F					TMD4ON	TACKDOA	TACKDOO	
F04h	T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	

TABLE 6-2: REGISTER FILE SUMMARY (CONTINUED)

Legend: — = unimplemented, read as '0'.

7.2.2 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the Special Function Register (SFR) space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

7.2.3 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the Configuration bits.

The Table Pointer register, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 7-1 and only affect the low-order 21 bits.

7.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the seven Least Significant bits (LSbs) of the Table Pointer register (TBLPTR<6:0>) determine which of the 64 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 12 Most Significant bits (MSbs) of the TBLPTR (TBLPTR<21:10>) determine which program memory block of 1024 bytes is written to. For more detail, see **Section 7.5 "Writing to Flash Program Memory"**.

When an erase of program memory is executed, the 12 MSbs of the Table Pointer register point to the 1024-byte block that will be erased. The LSbs are ignored.

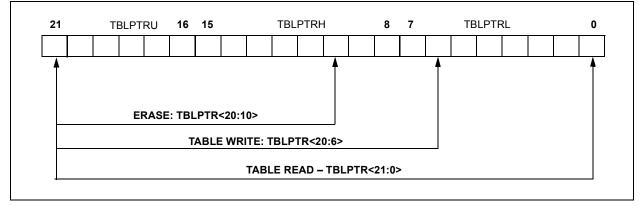
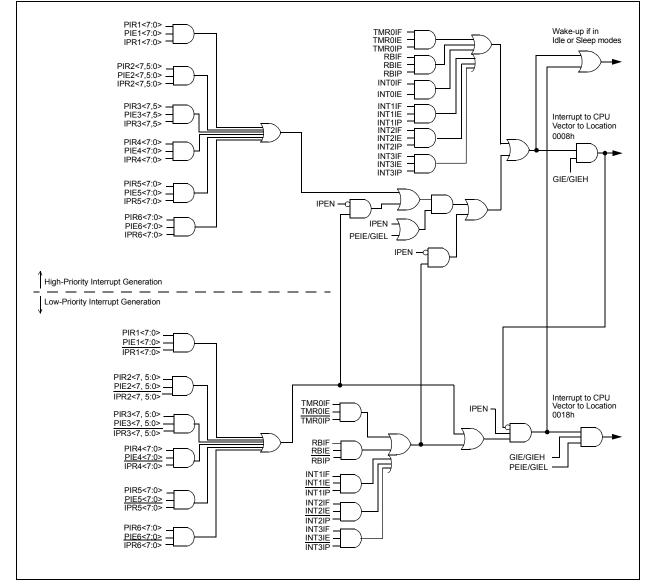

Figure 7-3 describes the relevant boundaries of the TBLPTR based on Flash program memory operations.

TABLE 7-1: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 7-3:


TABLE POINTER BOUNDARIES BASED ON OPERATION

For external interrupt events, such as the INT pins or the PORTB interrupt-on-change, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one-cycle or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bits or the Global Interrupt Enable bit.

Note:	Do not use the MOVFF instruction to modify
	any of the Interrupt Control registers while
	any interrupt is enabled. Doing so may
	cause erratic microcontroller behavior.

FIGURE 10-1: PIC18F97J94 FAMILY INTERRUPT LOGIC

REGISTER 10-23: IOCP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCP7 | IOCP6 | IOCP5 | IOCP4 | IOCP3 | IOCP2 | IOCP1 | IOCP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

IOCP<7:0>: Interrupt-on-Change Positive Edge Enable bits

- 1 = Interrupt-on-change is enabled on the pin for a rising edge; associated Status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-change is disabled for the associated pin

REGISTER 10-24: IOCN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCN7 | IOCN6 | IOCN5 | IOCN4 | IOCN3 | IOCN2 | IOCN1 | IOCN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

IOCN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-change is enabled on the pin for a falling edge; associated Status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-change is disabled for the associated pin

REGISTER 10-25: IOCF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCF7 | IOCF6 | IOCF5 | IOCF4 | IOCF3 | IOCF2 | IOCF1 | IOCF0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

IOCF<7:0>: Interrupt-on-Change Flag bits

- 1 = An enabled change was detected on the associated pin; this is set when IOCP<x> = 1 and a positive edge was detected on the input pin or when IOCN<x> = 1 and a negative edge was detected on the input pin (clear in software to clear the IOCIF bit)
- 0 = No change was detected or the user cleared the detected change

Pin Name	Function	TRIS I/O Descrip Setting I/O Type Descrip		Description	
RG3/RP43/	RG3	0	0	DIG	LATG<3> data output; not affected by analog input.
C3INB/AN17/ SEG31/COM7		1	Ι	ST	PORTG<3> data input; disabled when analog input is enabled.
52031/00M1	RP43	x	х	DIG	Reconfigurable Pin 43 for PPS-Lite; TRIS must be set to match input/ output of module.
	C3INB	1	Ι	ANA	Comparator 3 Input B.
	AN17	1	Ι	ANA	A/D Input Channel 17. Default input configuration on POR; does not affect digital output.
	SEG31	0	0	ANA	LCD Segment 31 output; disables all other pin functions.
	COM7	x	0	ANA	LCD Common 7 output; disables all other outputs.
RG4/RTCC/	RG4	0	0	DIG	LATG<4> data output; not affected by analog input.
RP44/C3INC/ AN16/SEG26		1	Ι	ST	PORTG<4> data input; disabled when analog input is enabled.
AN10/3EG20	RTCC	x	0	DIG	RTCC output.
	RP44	x	х	DIG	Reconfigurable Pin 44 for PPS-Lite; TRIS must be set to match input/ output of module.
	C3INC	1	Ι	ANA	Comparator 3 Input C.
	AN16	1	I	ANA	A/D Input Channel 16. Default input configuration on POR; does not affect digital output.
	SEG26	0	0	ANA	LCD Segment 26 output; disables all other pin functions.
RG6	RG6	0	0	DIG	LATG<6> data output.
		1	Ι	ST	PORTG<6> data input.
RG7	RG7	0	0	DIG	LATG<7> data output.
		1	Ι	ST	PORTG<7> data input.

TABLE 11-7: PORTG FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

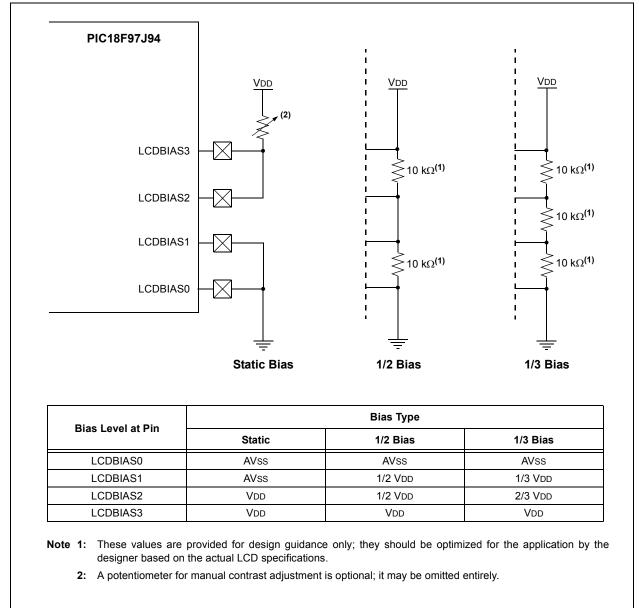
x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-9:	PORTJ FUNCTIONS	(CONTINUED)
-------------	-----------------	-------------

Pin Name	Function	TRIS Setting	I/O	І/О Туре	Description
RJ6/SEG37/LB	RJ6	0	0	DIG	LATJ<6> data output.
		1	Ι	ST	PORTJ<6> data input.
	SEG37	0	0	ANA	LCD Segment 37 output; disables all other pin functions.
	LB	x	0	DIG	External Memory Bus Lower Byte (LB) signal.
RJ7/SEG36/UB	RJ7	0	0	DIG	LATJ<7> data output.
		1	Ι	ST	PORTJ<7> data input.
	SEG36	0	0	ANA	LCD Segment 36 output; disables all other pin functions.
	UB	x	0	DIG	External Memory Bus Upper Byte (UB) signal.

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

13.6.4 M3 (HARDWARE CONTRAST)


In M3, the LCD regulator is completely disabled. Like M2, LCD bias levels are tied to VDD and are generated using an external divider. The difference is that the internal voltage reference is also disabled and the bottom of the ladder is tied to ground (VSS); see Figure 13-8. The value of the resistors, and the difference between VSS and VDD, determine the contrast range; no software adjustment is possible. This configuration

is also used where the LCD's current requirements exceed the capacity of the charge pump and software contrast control is not needed.

Depending on the bias type required, resistors are connected between some or all of the pins. A potentiometer can also be connected between LCDBIAS3 and VDD to allow for hardware controlled contrast adjustment.

M3 is selected by clearing the CLKSEL<1:0> and CPEN bits.

FIGURE 13-8: RESISTOR LADDER CONNECTIONS FOR M3 CONFIGURATION

REGISTER 15-1:	TxCON: TIMERX CONTROL REGISTER	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TMRxCS1	TMRxCS0	TxCKPS1	TxCKPS0	SOSCEN	TxSYNC	RD16	TMRxON			
bit 7							bit (
Legend: R = Readable	, bit	W = Writable	bit	U = Unimpler	ontod hit roa	d ac 'O'				
-n = Value at		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unk	nown			
	FOR	I - DILIS SEL			areu					
bit 7-6	TMRxCS<1:0	>: Timerx Cloc	k Source Selec	ct bits						
	11 = Timerx C	Clock source is	INTOSC							
	10 = Timerx c	lock source de	pends on the S	SOSCEN bit:						
	SOSCEN = 0	-								
			<i (on="" pin="" ri<="" td="" the=""><td>sing edge).</td><td></td><td></td><td></td></i>	sing edge).						
	SOSCEN = 1	-	fuses either a	crystal oscillate	or on the SOS		e or an externa			
	clock from the			ciystal oscillat		0#00000 pm				
			the system clo	ck (Fosc) ⁽¹⁾						
	00 = Timerx c	lock source is	the instruction	clock (Fosc/4)						
bit 5-4	TxCKPS<1:0	>: Timerx Input	t Clock Prescal	e Select bits						
	11 = 1:8 Prescale value									
		0 = 1:4 Prescale value 1 = 1:2 Prescale value								
	00 = 1:1 Pres									
bit 3	SOSCEN: SC	SC Oscillator	Enable bit							
	1 = SOSC/SC	LKI are enable	ed for Timerx (b	ased on the SC	OSCSEL fuses	6)				
	0 = SOSC/SC	LKI are disable	ed for Timerx a	nd TxCKI is en	abled					
bit 2				hronization Co	ntrol bit					
	•		ck comes from	Timer1/3/5.)						
	When TMRxC									
		ize external clo	rnal clock input							
	When TMRxC		on input							
			5 uses the inte	rnal clock.						
bit 1	RD16: 16-Bit Read/Write Mode Enable bit									
		0		one 16-bit ope two 8-bit opera						
bit 0	TMRxON: Tin	-								
	1 = Enables T									
	0 = Stops Tim									
Note 1: Th	ie Fosc clock s		ot be selected	if the timer will	be used with t	he ECCP capt	ure/compare			

features.

REGISTER 19-2: CCPTMRS1: CCP TIMER SELECT REGISTER 1

DAMA			DAVA		D 444 0	D 444 0	DAM 0
R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C7TSEL1	C7TSEL0		C6TSEL0	—	C5TSEL0	C4TSEL1	C4TSEL0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	C7TSEL<1:0	>: CCP7 Time	Selection bits	6			
	00 =CCP7 is	based off of TI	MR1/TMR2				
		based off of TI					
		based off of TI					
		based off of TI					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	C6TSEL0: CO	CP6 Timer Sel	ection bit				
		based off of TI					
	1 = CCP6 is	based off of TI	MR5/TMR2				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	C5TSEL0: CO	CP5 Timer Sel	ection bit				
	0 = CCP5 is	based off of TI	MR1/TMR2				
	1 = CCP5 is	based off of TI	MR5/TMR4				
bit 1-0	C4TSEL<1:0	>: CCP4 Time	Selection bits	6			
	00 =CCP4 is	based off of TI	MR1/TMR2				
		based off of TI					
		based off of TI	MR3/TMR6				
	11 =Reserved	d; do not use					

20.4.4.1 DMACON1

The DMACON1 register is used to select the main operating mode of the SPI DMA module. The SSCON1 and SSCON0 bits are used to control the slave select pin.

When MSSP1 is used in SPI Master mode with the SPI DMA module, SSDMA can be controlled by the DMA module as an output pin. If MSSP1 will be used to communicate with an SPI slave device that needs the SSX pin to be toggled periodically, the SPI DMA hardware can automatically be used to de-assert SSx between each byte, every two bytes or every four bytes.

Alternatively, user firmware can manually generate slave select signals with normal general purpose I/O pins, if required by the slave device(s).

When the TXINC bit is set, the TXADDR register will automatically increment after each transmitted byte. Automatic transmit address increment can be disabled by clearing the TXINC bit. If the automatic transmit address increment is disabled, each byte which is output on SDO will be the same (the contents of the SRAM pointed to by the TXADDR register) for the entire DMA transaction.

When the RXINC bit is set, the RXADDR register will automatically increment after each received byte. Automatic receive address increment can be disabled by clearing the RXINC bit. If RXINC is disabled in Full-Duplex or Half-Duplex Receive modes, all incoming data bytes on SDI will overwrite the same memory location pointed to by the RXADDR register. After the SPI DMA transaction has completed, the last received byte will reside in the memory location pointed to by the RXADDR register.

The SPI DMA module can be used for either half-duplex receive only communication, half-duplex transmit only communication or full-duplex simultaneous transmit and receive operations. All modes are available for both SPI master and SPI slave configurations. The DUPLEX0 and DUPLEX1 bits can be used to select the desired operating mode.

The behavior of the DLYINTEN bit varies greatly depending on the SPI operating mode. For example behavior for each of the modes, see Figure 20-3 through Figure 20-6.

SPI Slave mode, DLYINTEN = 1: In this mode, an SSP1IF interrupt will be generated during a transfer if the time between successful byte transmission events is longer than the value set by the DLYCYC<3:0> bits in the DMACON2 register. This interrupt allows slave firmware to know that the master device is taking an unusually large amount of time between byte transmissions. For example, this information may be useful for implementing application defined communication protocols, involving time-outs if the bus remains Idle for

too long. When DLYINTEN = 1, the DLYLVL<3:0> interrupts occur normally according to the selected setting.

SPI Slave mode, DLYINTEN = 0: In this mode, the time-out based interrupt is disabled. No additional SSP1IF interrupt events will be generated by the SPI DMA module, other than those indicated by the INTLVL<3:0> bits in the DMACON2 register. In this mode, always set DLYCYC<3:0> = 0000.

SPI Master mode, DLYINTEN = 0: The DLYCYC<3:0> bits in the DMACON2 register determine the amount of additional inter-byte delay, which is added by the <u>SPI</u> DMA module during a transfer; the Master mode SS1 output feature may be used.

SPI Master mode, DLYINTEN = 1: The amount of hardware overhead is slightly reduced in this mode, and the minimum inter-byte delay is 8 Tcy for FOSC/4, 9 Tcy for FOSC/16 and 15 Tcy for FOSC/64. This mode can potentially be used to obtain slightly higher effective SPI bandwidth. In this mode, the SS1 control feature cannot be used and should always be disabled (DMACON1<7:6> = 00). Additionally, the interrupt generating hardware (used in Slave mode) remains active. To avoid extraneous SSP1IF interrupt events, set the DMACON2 Delay bits, DLYCYC<3:0> = 1111, and ensure that the SPI serial clock rate is no slower than FOSC/64.

In SPI Master modes, the DMAEN bit is used to enable the SPI DMA module and to initiate an SPI DMA transaction. After user firmware sets the DMAEN bit, the DMA hardware will begin transmitting and/or receiving data bytes according to the configuration used. In SPI Slave modes, setting the DMAEN bit will finish the initialization steps needed to prepare the SPI DMA module for communication (which must still be initiated by the master device).

To avoid possible data corruption, once the DMAEN bit is set, user firmware should not attempt to modify any of the MSSP2 or SPI DMA related registers, with the exception of the INTLVLx bits in the DMACON2 register.

If user firmware wants to halt an ongoing DMA transaction, the DMAEN bit can be manually cleared by the firmware. Clearing the DMAEN bit while a byte is currently being transmitted will not immediately halt the byte in progress. Instead, any byte currently in progress will be completed before the MSSP1 and SPI DMA modules go back to their Idle conditions. If user firmware clears the DMAEN bit, the TXADDR, RXADDR and DMABC registers will no longer update, and the DMA module will no longer make any additional read or writes to SRAM; therefore, state information can be lost.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOWD
							lown
bit 7	WCOL: Write	e Collision Detec	t bit				
	In Master Tra						
		to the SSPxBUI				nditions were	not valid for a
	transmis 0 = No collis	sion to be starte	d (must be cl	eared in softwai	re)		
	In Slave Tran						
		PxBUF register is	s written while	e it is still transm	nittina the previ	ous word (mus	t be cleared in
	software	-			U - 1 - 1		
	0 = No collis	ion					
		ode (Master or S	Slave modes)	<u>:</u>			
	This is a "dor						
bit 6		eive Overflow In	dicator bit				
	$\frac{\text{In Receive m}}{1 = A \text{ byte is}}$	ode: received while t	ha SSPvRI IF	register is still h	olding the prev	vious byte (mus	t he cleared in
	software					nous byte (mus	st be cleared in
	0 = No overf	,					
	<u>In Transmit m</u>	node:					
		n't care" bit in Tra					
bit 5		ter Synchronous					
		the serial port ar serial port and c				ne serial port pi	ns
bit 4	CKP: SCKx F	Release Control	bit		-		
	In Slave mod	<u>e:</u>					
	1 = Releases						
		ck low (clock str	etch), used to	o ensure data se	etup time		
	<u>In Master mo</u> Unused in thi						
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial I	Port Mode Selec	ct bits ⁽²⁾		
		lave mode: 10-k				enabled	
	$1110 = I^2 C S$	lave mode: 7-bi	t address with	n Start and Stop	bit interrupts e		
	$1011 = I^2 C F$	irmware Control	led Master m	ode (slave Idle)	(3.4)		
		SSPxMSK regis laster mode: Clo					
	1000 = 1 C N $0111 = 1^2 C S$	lave mode: 10-b	oit address ^{(3,4}	+ (33FXADD + +)	1))		
	$0110 = I^2 C S$	lave mode: 7-bi	taddress				
Note 1:	When enabled, th	ne SDAx and SC	Lx pins must	t be configured a	as inputs.		
2:	Bit combinations	not specifically	isted here are	e either reserve	d or implement	ed in SPI mode	e only.
3:	When SSPM<3:0				-		-
	SSPxMSK registe						
4:	This mode is only is '1').	y available when	7-Bit Addres	s Masking mod	e is selected (N	ISSPMSK Cor	figuration bit
	ıs ⊥ <i>)</i> .						

REGISTER 22-16: ADCHIT0H: A/D SCAN COMPARE HIT REGISTER 0 HIGH (HIGH WORD)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CHH15 | CHH14 | CHH13 | CHH12 | CHH11 | CHH10 | CHH9 | CHH8 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CHH<15:8>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

1 = A/D Result Buffer n has been written with data or a match has occurred

0 = A/D Result Buffer n has not been written with data

For all other values of CM<1:0>:

1 = A match has occurred on A/D Result Channel n

0 = No match has occurred on A/D Result Channel n

REGISTER 22-17: ADCHIT0L: A/D SCAN COMPARE HIT REGISTER 0 LOW (LOW WORD)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CHH7 | CHH6 | CHH5 | CHH4 | CHH3 | CHH2 | CHH1 | CHH0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CHH<7:0>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

1 = A/D Result Buffer n has been written with data or a match has occurred

0 = A/D Result Buffer n has not been written with data

For all other values of CM<1:0>:

1 = A match has occurred on A/D Result Channel n

0 = No match has occurred on A/D Result Channel n

27.5.1.1 Bus Activity Detect Interrupt Bit (ACTVIF)

The ACTVIF bit cannot be cleared immediately after the USB module wakes up from Suspend mode or while the USB module is suspended. A few clock cycles are required to synchronize the internal hardware state machine before the ACTVIF bit can be cleared by firmware. Clearing the ACTVIF bit before the internal hardware is synchronized may not have an effect on the value of ACTVIF. Additionally, if the USB module uses the clock from the 96 MHz PLL source, then after clearing the SUSPND bit, the USB module

clear the ACTVIF flag as provided in Example 27-1. Note: Only one ACTVIF interrupt is generated when resuming from the USB bus Idle con

when resuming from the USB bus Idle condition. If user firmware clears the ACTVIF bit, the bit will not immediately become set again, even when there is continuous bus traffic. Bus traffic must cease long enough to generate another IDLEIF condition before another ACTVIF interrupt can be generated.

may not be immediately operational while waiting for

the 96 MHz PLL to lock. The application code should

EXAMPLE 27-1: CLEARING ACTVIF BIT (UIR<2>)

```
Assembly:

BCF UCON, SUSPND

LOOP:

BTFSS UIR, ACTVIF

BRA DONE

BCF UIR, ACTVIF

BRA LOOP

DONE:
```

C:

```
UCONbits.SUSPND = 0;
while (UIRbits.ACTVIF) { UIRbits.ACTVIF = 0; }
```

REGISTER 28-13: CONFIG8L: CONFIGURATION REGISTER 8 LOW (BYTE ADDRESS 30000Eh)

DSWDTPS4 DSWDTPS3 DSWDTPS2 DSWDTPS1 DSWDTPS0 — —	
	—
bit 7	bit 0

Legend:	gend: P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscale Select bits

The DS WDT prescaler is 32; this creates an approximate base time unit of 1 ms.

The DS WDT prescaler is 32; t
11111 = 1:2 ^{^36} (25.7 days)
11110 = 1:2^ ³⁵ (12.8 davs)
11101 = 1:2^ ³⁴ (6.4 days)
11100 = 1:2 ^{^33} (77.0 hours)
11011 = 1:2 ³² (38.5 hours)
$11010 = 1:2^{31}$ (19.2 hours)
11001 = 1:2 ³⁰ (9.6 hours)
11000 = 1:2 ^{^29} (4.8 hours)
10111 = 1:2 ²⁸ (2.4 hours)
10110 = 1:2 ^{^27} (72.2 minutes)
$10101 = 1:2^{26}$ (36.1 minutes)
$10100 = 1:2^{25}$ (18.0 minutes)
10011 = 1:2 ²⁴ (9.0 minutes)
$10010 = 1:2^{23}$ (4.5 minutes)
10001 = 1:2 ²² (135.3s)
10000 = 1:2 ^{^21} (67.7s)
01111 = 1:2 ^{^20} (33.825s)
01110 = 1:2 ¹⁹ (16.912s)
01101 = 1:2^{^18} (8.456s)
01100 = 1:2 ^{^17} (4.228s)
01011 = 1:65536 (2.114s)
01010 = 1:32768 (1.057s)
01001 = 1:16384 (528.5 ms)
01000 = 1:8192 (264.3 ms)
00111 = 1:4096 (132.1 ms)
00110 = 1:2048 (66.1 ms)
00101 = 1:1024 (33 ms)
00100 = 1:512 (16.5 ms)
00011 = 1:256 (8.3 ms)
00010 = 1:128 (4.1 ms)
00001 = 1:64 (2.1 ms)
00000 = 1:32 (1 ms)

bit 2-0 Unimplemented: Read as '1'

BTFSC	Bit Test File	, Skip if Clear		BTFSS		Bit Test File	, Skip if Set	
Syntax:	BTFSC f, b	{,a}		Syntax:		BTFSS f, b {	,a}	
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$		Operands:	Operands:		0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Operation:	skip if (f)	= 0		Operation:		skip if (f)	= 1	
Status Affected:	None			Status Affec	ted:	None		
Encoding:	1011	bbba ff	ff ffff	Encoding:		1010	bbba ff	ff ffff
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction.					If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction.		
		e Access Banl BSR is used to	k is selected. If a select the				e Access Banl BSR is used to	k is selected. If o select the
	is enabled, t Indexed Lite whenever f ≤ Section 29.2 Oriented Ins	his instruction ral Offset Addr ≤ 95 (5Fh). See	essing mode ented and Bit- ndexed Lit-			set is enable Indexed Lite whenever f ≤ Section 29.2 Oriented Ins	ral Offset Addi ≨ 95 (5Fh). See	ion operates in ressing mode e ented and Bit- Indexed Lit-
Words:	1			Words:		1		
Cycles:	•	cles if skip and 2-word instruc		Cycles:			ycles if skip an a 2-word instru	
Q Cycle Activity:				Q Cycle Ac	tivity:			
Q1	Q2	Q3	Q4	-	י ג	Q2	Q3	Q4
Decode	Read	Process	No	Dec	code	Read	Process	No
	register 'f'	Data	operation			register 'f'	Data	operation
If skip:	00	00	04	lf skip:	24	00	00	04
Q1 No	Q2 No	Q3 No	Q4 No		21 Io	Q2 No	Q3 No	Q4 No
operation	operation	operation	operation		ation	operation	operation	operation
If skip and followed	d by 2-word ins	truction:	· · · ·	If skip and	followed	by 2-word ins		
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
No	No	No	No		lo	No	No	No
operation	operation	operation	operation		ation	operation	operation	operation
No operation	No operation	No operation	No operation		lo ation	No operation	No operation	No operation
Example: HERE BTFSC FLAG, 1, 0 FALSE : TRUE :		Example: HERE BTFSS FLAG, 1, 0 FALSE : TRUE :			8, 1, 0			
Before Instruc PC After Instructic	tion = add	ress (HERE)		P	Instruction	on = add	ress (HERE)	
If FLAG PC If FLAG PC PC	1> = 0; = add 1> = 1;	ress (TRUE) ress (FALSE)	lf	FLAG<1 PC FLAG<1 FLAG<1 PC	> = 0; = add > = 1;	ress (FALSE ress (TRUE))

RETI	RETFIE Return from Interrupt								
Synta	ax:	RETFIE {s	RETFIE {s}						
Oper	ands:	$s \in [0,1]$	s ∈ [0,1]						
Oper	ation:	$1 \rightarrow GIE/GI$ if s = 1, (WS) \rightarrow W, (STATUSS) (BSRS) \rightarrow I							
Statu	s Affected:	GIE/GIEH,	PEIE/GIEL.						
Enco	ding:	0000	0000 0000 0001 000s						
Desc	ription:	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low-priority Global Interrupt Enable bit. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, STATUS and BSR. If 's' = 0, no update of these registers occurs.							
Word	Words: 1								
Cycle	Cycles: 2								
-	Q Cycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL					
	No	No	No	No					
	operation	operation	operation	operation					
Exan	After Interrupt PC W BSR STATUS	RETFIE 1	= TOS = WS = BSRS = STATL = 1	JSS					

RETI	RETLW Return Literal to W								
Syntax: RETLW k									
Oper	ands:	$0 \leq k \leq 255$	$0 \le k \le 255$						
Oper	ation:		k → W, (TOS) → PC, PCLATU, PCLATU, PCLATH are unchanged						
Statu	s Affected:	None	None						
Enco	ding:	0000	0000 1100 kkk						
Desc	ription:	Program Co of the stack	W is loaded with the 8-bit literal 'k'. The Program Counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.						
Word	ls:	1							
Cycle	es:	2							
QC	vcle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data	fro	OP PC m stack, ite to W				
	No	No No No							
operation operation operation operation									
Example:									
:	CALL TABLE ; W contains table ; offset value ; W now has ; table value								
TABI									
	ADDWF PCL ; W = offset								
	RETLW k0		5						
:	RETLW kl	;							
:									
	RETLW kn ; End of table								
	Before Instruc	Before Instruction							

```
W = 07h
After Instruction
W = value of kn
```

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>[X]</u> ⁽¹⁾	¥	<u>/XX</u>	<u>xx</u>	<u>(X</u>	Exa	mples:
Device	Tape and Reel Option	Temperature Range	Package	Patt	ern	a) b)	PIC18F97J94-I/PT = Industrial temp., TQFP package, QTP pattern #301. PIC18F87J94-I/PT = Industrial temp., TQFP package.
Device:	PIC18F97J94, PIC PIC18F86J94, PIC PIC18F65J94 VDD range 2.0 to 3.	18F85J94, PIC18F					
Tape and Reel Option:	Blank = Standard T = Tape and	l packaging (tube d d Reel ⁽¹⁾	or tray)				
Temperature Range:	I = -40° C to	+85°C (Indus	trial)				
Package:	PT = TQFP PF = TQFP	(Thin Quad Flatpa (100-Pin Thin Qua	ck) id, 14x14x1 Bi	ody)		Note	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check
Pattern:	QTP, SQTP, Code o (blank otherwise)	or Special Require	ments				with your Microchip Sales Office for package availability with the Tape and Reel option.