

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85j94t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Applicable Device		vices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
RCON4	64-pin	80-pin	100-pin	00-0 -0-0	00-u -0-u	00-u -0-u	
UFRML	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu	
UFRMH	64-pin	80-pin	100-pin	xxx	xxx	uuu	
UIR	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu	
UEIR	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu	
USTAT	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu	
UCON	64-pin	80-pin	100-pin	-0x0 0x0-	-0x0 0x0-	-uuu uuu-	
UADDR	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu	
TRISVP	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu	
LATVP	64-pin	80-pin	100-pin	XXXX XXXX	xxxx xxxx	uuuu uuuu	
PORTVP	64-pin	80-pin	100-pin	XXXX XXXX	XXXX XXXX	uuuu uuuu	
TXADDRL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
TXADDRH	64-pin	80-pin	100-pin	0000	0000	uuuu	
RXADDRL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
RXADDRH	64-pin	80-pin	100-pin	0000	0000	uuuu	
DMABCL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
DMABCH	64-pin	80-pin	100-pin	00	00	uu	
TXBUF	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
SSP1CON3	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
SSP1MSK	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu	
BAUDCON1	64-pin	80-pin	100-pin	0100 0000	0100 0000	uuuu uuuu	
OSCCON2	64-pin	80-pin	100-pin	000- 000-	-000 -p00	uuu- uuu-	
OSCCON3	64-pin	80-pin	100-pin	001	uuu	uuu	
OSCCON4	64-pin	80-pin	100-pin	000	uuu	uuu	
OSCCON5	64-pin	80-pin	100-pin	0-00 0000	u-uu uuuu	u-uu uuuu	
WPUB	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu	
PIE6	64-pin	80-pin	100-pin	0000 -000	0000 -000	uuuu –uuu	
DMACON1	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu	
RTCCON1	64-pin	80-pin	100-pin	0-00 0000	u-uu uuuu	u-uu uuuu	
RTCCAL	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu	
RTCVALH	64-pin	80-pin	100-pin	xxxx xxxx	uuuu uuuu	uuuu uuuu	
RTCVALL	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu	
ALRMCFG	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu	

TABLE 5-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)	

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate that conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-2 for Reset value for specific condition.

- 5: Bits 7,6 are unimplemented on 64 and 80-pin devices.
- 6: If the VBAT is always powered, the DSGPx register values will remain unchanged after the first POR.

7.4 Erasing Flash Program Memory

The minimum erase block is 256 words or 512 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 512 bytes of program memory is erased. The Most Significant 12 bits of the TBLPTR<21:10> point to the block being erased; TBLPTR<9:0> are ignored.

The EECON1 register commands the erase operation. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

7.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of row being erased.
- 2. Set the WREN and FREE bits (EECON1<2,4>) to enable the erase operation.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit; this will begin the erase cycle.
- The CPU will stall for the duration of the erase for TIE (see Parameter D133B).
- 8. Re-enable interrupts.

EXAMPLE 7-2:	ERASING A FLASH PROGRAM MEMORY ROW
--------------	------------------------------------

	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
ERASE_ROW			
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	0x55	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0xAA	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

REGISTER 10-12: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR5GIE	LCDIE	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	TMR5GIE: TI	MR5 Gate Inter	rupt Enable bi	t			
	1 = Enabled						
	0 = Disabled						
bit 6	LCDIE: LCD	Ready Interrup	t Enable bit				
	1 = Enabled	I					
bit 5		' ART2 Receive l	nterrunt Enab	le hit			
bit 5	1 = Enabled						
	0 = Disabled	l					
bit 4	TX2IE: EUSA	ART2 Transmit	Interrupt Enab	le bit			
	1 = Enabled						
	0 = Disabled	l					
bit 3	CTMUIE: CT	MU Interrupt Er	hable bit				
	1 = Enabled						
h:+ 0							
DIT 2		P2 Interrupt En	able bit				
	1 = Enabled 0 = Disabled	I					
bit 1	CCP1IE: FC	CP1 Interrupt F	nable bit				
	1 = Enabled						
	0 = Disabled	l					
bit 0	RTCCIE: RT	CC Interrupt En	able bit				
	1 = Enabled						
	0 = Disabled	l					

TABLE 11-9:	PORTJ FUNCTIONS	(CONTINUED)
-------------	-----------------	-------------

Pin Name	Function	TRIS Setting	I/O	I/O Туре	Description		
RJ6/SEG37/LB	RJ6	0	0	DIG	LATJ<6> data output.		
		1	Ι	ST	ST PORTJ<6> data input.		
	SEG37	0	0	ANA	A LCD Segment 37 output; disables all other pin functions.		
	LB	x	0	DIG	External Memory Bus Lower Byte (LB) signal.		
RJ7/SEG36/UB	RJ7	0	0	DIG	LATJ<7> data output.		
		1	Ι	ST	PORTJ<7> data input.		
	SEG36	0	0	ANA	LCD Segment 36 output; disables all other pin functions.		
	UB	x	0	DIG	External Memory Bus Upper Byte (UB) signal.		

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

11.13 Parallel Slave Port

PORTD can function as an 8-bit-wide Parallel Slave Port (PSP), or microprocessor port, when control bit, PSPMODE (PSPCON<4>), is set. The port is asynchronously readable and writable by the external world through the RD control input pin (RE0/AD8/LCD-BIAS1/RP28/RD) and WR control input pin (RE1/AD9/ LCDBIAS2/RP29/WR).

Note:	The Parallel Slave Port is available only in
	Microcontroller mode.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch.

Setting bit, PSPMODE, enables port pin, RE0/AD8/ LCDBIAS1/RP28/RD, to be the RD input, RE1/AD9/ LCDBIAS2/RP29/WR to be the WR input and RE2/ AD10/LCDBIAS3/RP30/CS to be the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs ('111').

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits (PIR1<7> and PSPCON<7>, respectively) are set when the write ends.

A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low. The data in PORTD is read out and the OBF bit (PSPCON<6>) is set. If the user writes new data to PORTD to set OBF, the data is immediately read out, but the OBF bit is not set.

When either the \overline{CS} or \overline{RD} line is detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP. When this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 11-4 and Figure 11-5, respectively.

FIGURE 11-3: PORTD AND PORTE **BLOCK DIAGRAM** (PARALLEL SLAVE PORT) Data Bus I D Q I RDx WR LATD Pin CK PORTD I Data Latch TTL D റ I I RD PORTD ΕN TRIS Latch I I RD LATD I L One Bit of PORTD Set Interrupt Flag PSPIF (PIR1<7>) Read RD Chip Sele Write WR Note: The I/O pin has protection diodes to VDD and Vss.

13.3 LCD Clock Source Selection

The LCD driver module has three possible clock sources:

- FRC/8192
- SOSC Clock/32
- LPRC/32

The first clock source is the 8 MHz Fast Internal RC (FRC) Oscillator divided by 8,192. This divider ratio is chosen to provide about 1 kHz output. The divider is not programmable. Instead, the LCD prescaler bits, LCDPS<3:0>, are used to set the LCD frame clock rate.

The second clock source is the SOSC Oscillator/32. This also outputs about 1 kHz when a 32.768 kHz crystal is used with the SOSC Oscillator. To use the SOSC Oscillator as a clock source, set the SOSCEN (T1CON<3>) bit.

The third clock source is a 31.25 kHz internal LPRC Oscillator/32 that provides approximately 1 kHz output.

The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

These clock sources are selected through the bits, CS<1:0> (LCDCON<4:3>).

13.3.1 LCD PRESCALER

A 16-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable. Its value is set by the LP<3:0> bits (LCDPS<3:0>) that determine the prescaler assignment and prescale ratio.

Selectable prescale values are from 1:1 through 1:16, in increments of one.

FIGURE 13-2: LCD CLOCK GENERATION

FIGURE 13-17: TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽⁴⁾	SSPM2 ⁽⁴⁾	SSPM1 ⁽⁴⁾	SSPM0 ⁽⁴⁾
bit 7				1			bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
 bit 7 WCOL: Write Collision Detect bit 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared software) 0 = No collision 							
bit 6	SSPOV: Rec	eive Overflow I	ndicator bit ⁽¹⁾				
	SPI Slave mo	ode:					
	1 = A new b overflow, the SSP software 0 = No overf	yte is received , the data in SS YxBUF, even if). low	while the SSF PxSR is lost. (only transmit	PxBUF register Overflow can on ting data, to a	is still holding t ly occur in Slav void setting ov	the previous da /e mode. The u verflow (must	ata. In case of iser must read be cleared in
bit 5	SSPEN: Mas	ter Synchronou	is Serial Port E	Enable bit ⁽²⁾			
	1 = Enables s 0 = Disables	serial port and o serial port and	configures SCI configures the	<pre>Kx, SDOx, SDIx se pins as I/O p</pre>	and SSx as se ort pins	erial port pins	
bit 4	CKP: Clock F	Polarity Select b	bit				
	1 = Idle state 0 = Idle state	for the clock is for the clock is	a high level a low level				
bit 3-0	SSPM<3:0>:	Master Synchr	onous Serial F	Port Mode Selec	t bits ⁽⁴⁾		
	1010 = SPI M 0101 = SPI S 0100 = SPI S 0011 = SPI M 0010 = SPI M 0001 = SPI M	Aaster mode: C Slave mode: Clo Slave mode: Clo Aaster mode: C Aaster mode: C Aaster mode: C Aaster mode: C	lock = Fosc/(4 ock = SCKx pir ock = SCKx pir lock = TMR2 c lock = Fosc/6 lock = Fosc/10 lock = Fosc/10	+ * <u>(SS</u> PxADD + r; <u>SSx</u> pin contr n; SSx pin contr putput/2 4 6	. ₁₎ (3) ol is disabled; 3 ol is enabled	SSx can be use	ed as I/O pin
Note 1:	In Master mode, writing to the SSF	the overflow bit PxBUF register.	is not set sinc	e each new rec	eption (and tra	nsmission) is ir	nitiated by
2:	When enabled, th	nese pins must	be properly co	onfigured as inp	uts or outputs.		

REGISTER 20-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

- **3:** SSPxADD = 0 is not supported.
- 4: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

20.5 I²C Mode

The MSSPx module in I^2C mode fully implements all master and slave functions (including general call support), and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSPx module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial Clock (SCLx) RC3/SCL1 or RD6/SCL2
- Serial Data (SDAx) RC4/SDA1 or RD5/SDA2

The user must configure these pins as inputs by setting the associated TRIS bits.

FIGURE 20-7: MSSPx BLOCK DIAGRAM (I²C MODE)

20.5.1 REGISTERS

The MSSPx module has seven registers for ${\rm I}^2{\rm C}$ operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Control Register 2 (SSPxCON2)
- MSSPx Control Register 3 (SSPxCON3)
- MSSPx STATUS Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible
- MSSPx Address Register (SSPxADD)
- I²C Slave Address Mask Register (SSPxMSK)

SSPxCON1, SSPxCON2, SSPxCON3 and SSPxSTAT are the control and STATUS registers in I²C mode operation. The SSPxCON1, SSPxCON2, and SSPx-CON3 registers are readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

SSPxADD contains the slave device address when the MSSPx is configured in I²C Slave mode. When the MSSPx is configured in Master mode, the lower seven bits of SSPxADD act as the Baud Rate Generator reload value.

SSPxMSK holds the slave address mask value when the module is configured for 7-Bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPxADD; it is only accessible when the SSPM<3:0> bits are specifically set to permit access. Additional details are provided in Section 20.5.4.3 "7-Bit Address Masking Mode".

In receive operations, SSPxSR and SSPxBUF together, create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not doublebuffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

20.5.12 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPx-CON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - •SDAx is sampled low when SCLx goes from low-to-high.

•SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

20.5.12.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 20-22: REPEATED START CONDITION WAVEFORM

FIGURE 21-7: ASYNCHRONOUS RECEPTION

21.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSARTx are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSARTx is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSARTx remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 21-8) and asynchronously if the device is in Sleep mode (Figure 21-9). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSARTx module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

21.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false End-of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for the LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSARTx.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE
bit 7			•			·	bit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, rea	d as '0'	
R = Readable	bit	W = Writable	bit	HSC = Hardw	are Settable/C	Clearable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-4 SSRC<3:0>: Sample Clock Source Select bits 1111-1110 = Reserved, do not use 1101 = CMP1 1100 = Reserved, do not use 1011 = CCP4 1010 = ECCP3 1001 = ECCP2 1000 = ECCP1 0111 = The SAMP bit is cleared after SAMC<4:0> number of TAD clocks following the SAMP bit bei set (Auto-Convert mode); no extended sample time is present 0110 = Unimplemented 0101 = TMR1 0100 = CTMU 0011 = TMR5							AMP bit being
	0010 = IMR3	3					
	0000 = The S	SAMP bit must	be cleared by	software to star	t conversion		
bit 3	Unimplemen	ted: Read as ')'				
bit 2	ASAM: A/D S	ample Auto-St	art bit				
	1 = Sampling 0 = Sampling) begins immed) begins when \$	iately after last SAMP bit is ma	t conversion; S/ anually set	AMP bit is auto	o-set	
bit 1	SAMP: A/D S	ample Enable	bit				
	1 = A/D Sam 0 = A/D Sam	ple-and-Hold a ple-and-Hold a	mplifiers are sa mplifiers are he	ampling olding			
bit 0	DONE: A/D C	onversion Stat	us bit				
	1 = A/D conv 0 = A/D conv	ersion cycle ha ersion has not	is completed started or is in	progress			

REGISTER 22-5: ADCON1L: A/D CONTROL REGISTER 1 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹⁾	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	BUFS: Buffer	Fill Status bit ⁽¹)				
	1 = A/D is filli	ng the upper h	alf of the buffe	r; user should a	access data in	the lower half	
		ng the lower h		r; user snould a	iccess data in t	the upper hair	
bit 6-2	SMPI<4:0>:	nterrupt Sampl	e Increment R	ate Select bits			
	Selects the nu	imber of samp	e/conversions	per each interr	upt.		
	11111 = Inte	rrupt/address i	ncrement at th	e completion of	f conversion fo	r each 32nd sar	mple
	11110 = Inte	rrupt/address i	ncrement at th	e completion of	f conversion fo	r each 31st san	nple
	••••	rrunt/addraga i	noromont at th	o completion of	f appyoration fo	r over ather of	mala
	00001 = Inte	rrupt/address i	ncrement at th	e completion of	f conversion fo	r each sample	imple
bit 1	BUFM: Buffer	Fill Mode Sele	ect bit ⁽¹⁾	· · · ·			
	1 = A/D buffe	er is two, 13-v	vord buffers,	starting at ADC	C1BUF0 and	ADC1BUF12, a	nd sequential
	conversio	ons fill the buffe	ers alternately	(Split mode)			•
	0 = A/D buffe	r is a single, 20	6-word buffer a	and fills sequent	tially from ADC	1BUF0 (FIFO r	node)
bit 0	ALTS: Alterna	ate Input Samp	le Mode Selec	t bit			
	1 = Uses cha	nnel input sele	cts for Sample	A on first sam	ple and Sample	e B on next sam	nple
	0 = Always u	ses channel in	out selects for	Sample A			

REGISTER 22-7: ADCON2L: A/D CONTROL REGISTER 2 LOW

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

BTG	Bit Toggle f	BOV	Branch if Overflow	
Syntax:	BTG f, b {,a}	Syntax:	BOV n	
Operands:	$0 \le f \le 255$	Operands: $-128 \le n \le 127$		
	0 ≤ b < 7 a ∈ [0,1]	Operation:	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC	
Operation:	$(\overline{f}) \to f$	Status Affected:	None	
Status Affected:	None	Encoding:	1110 0100	nnnn nnnn
Encoding:	0111 bbba ffff ffff	Description:	If the Overflow bit is '1	.'. then the
Description:	scription: Bit 'b' in data memory location, 'f', is inverted.		program will branch.	unch en (On) in
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		added to the PC. Since incremented to fetch the instruction, the new act	the PC will have he next ddress will be
	If 'a' is '0' and the extended instruction		PC + 2 + 2n. This insti 2-cycle instruction	ruction is then a
	set is enabled, this instruction operates in Indexed Literal Offset Addressing	Words:	1	
	mode whenever $f \le 95$ (5Fh). See	Cycles:	1(2)	
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Q Cycle Activity: If Jump:		
Words:	1	Q1	Q2 Q3	Q4
Cycles:	1	Decode	Read literal Process	Write to PC
Q Cvcle Activity:		No	No No	No
Q1	Q2 Q3 Q4	operation	operation operation	n operation
Decode	Read Process Write	If No Jump:	· · · ·	
	register 'f' Data register 'f'	Q1	Q2 Q3	Q4
Example:	<u>דיר ד- דיר 4 מ</u>	Decode	Read literal Process	No operation
Defere Instruc				- provinci
PORTC	= 0111 0101 [75h]	Example:	HERE BOV Ju	ump
PORTC	e 0110 0101 [65b]	Before Instruc	ction	
1 OICIO		PC After Instruction	= address (HE	RE)
		IT Overfic PC	w = 1; = address (Ju	mp)
		If Overflo PC	ow = 0; = address (HE	RE + 2)

RLN	CF	Rotate Let	ft f (No C	arry)				
Synta	ax:	RLNCF	f {,d {,a}}	•				
Oper	ands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$						
Oper	ation:	$(f \le n >) \rightarrow d$ $(f \le 7 >) \rightarrow d$	$(f) \rightarrow dest,$ $(f<7>) \rightarrow dest<0>$					
Statu	s Affected:	N, Z						
Enco	ding:	0100	01da	fff	f	ffff		
Desc	ription:	The conter one bit to t is placed ir stored bac	nts of regi he left. If h W. If 'd' k in regis	ister 'f 'd' is ' is '1', ter 'f'.	" are 0', th the	e rotated he result result is		
		If 'a' is '0', ' If 'a' is '1', ' GPR bank	the Acces the BSR i	s Ban s useo	ik is d to s	selected. select the		
		If 'a' is '0' a set is enab in Indexed mode whe Section 29 Bit-Orient Literal Off	and the e led, this i Literal O never f ≤ 9.2.3 "By ed Instru set Mode	xtendenstruc ffset A 95 (5) te-Or iction	ed in tion (ddro =h). iento s in deta	struction operates essing See ed and Indexed ills.		
		-	regi	ster f]∙		
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode	Read register 'f'	Proces Data	SS I	W des	rite to tination		
<u>Exan</u>	nple:	RLNCF	RLNCF REG, 1, 0					
	Before Instruc REG After Instructic	tion = 1010 1 on	L011					
	REG	= 0101 0)111					

RRCF	Rotate Rig	jht f thro	ugh Carı	ry
Syntax:	RRCF f{	,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	$(f \le n >) \rightarrow d$ $(f \le 0 >) \rightarrow C$ $(C) \rightarrow dest$	est <n 1<br="" –="">; :<7></n>	_>,	
Status Affected:	C, N, Z			
Encoding:	0011	00da	ffff	ffff
Description:	The conter one bit to t flag. If 'd' is If 'd' is '1', register 'f'.	nts of reg he right ti 5 '0', the r the result	ister 'f' an hrough th esult is pl t is placed	e rotated e Carry aced in V d back in
	If 'a' is '0', ' If 'a' is '1', ' GPR bank.	the Acces the BSR	ss Bank is is used to	s selecte select th
	If 'a' is '0' a set is enab	and the e	xtended instruction	nstructio 1 operate
	If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Orienta Literal Off	and the e. led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode	xtended in instruction ffset Addi 95 (5Fh). te-Orient inctions in e" for det	nstructio n operate ressing See ted and n Indexe ails.
	If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente Literal Off	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode	xtended i Instruction (ffset Add 95 (5Fh). te-Orient Inctions ir e" for det egister f	nstruction ressing See ted and Indexe ails.
Words:	If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente Literal Off	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions ir e" for det egister f	nstruction operate ressing See ted and Indexe ails.
Words: Cycles:	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off 1	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions in e ² for det egister f	nstruction operate ressing See ted and Indexe ails.
Words: Cycles: Q Cycle Activity:	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Orient Literal Off 1	and the e led, this i Literal O never f ≤ 9.2.3 "By ed Instru set Mode	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions ir e ² for det egister f	nstruction noperate ressing See ted and n Indexe ails.
Words: Cycles: Q Cycle Activity: Q1	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriento Literal Off 1 1 2 2	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions ir e" for det egister f	nstruction ressing See ted and Indexee ails.
Words: Cycles: Q Cycle Activity: Q1 Decode	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off C 1 1 1 Q2 Read register 'f'	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode → re Q3 Proce Dat	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions ir egister f	Action operate ressing See ted and o Indexe ails.
Words: Cycles: Q Cycle Activity: Q1 Decode	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off C 1 1 1 Q2 Read register 'f'	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode re Q3 Proce Dat	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions ir egister f	A construction operate ressing See ted and Indexer ails. Q4 Write to estination
Words: Cycles: Q Cycle Activity: Q1 Decode Example:	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off C 1 1 1 Q2 Read register 'f' RRCF	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode → re Q3 Proce Dat REG,	xtended i instruction ffset Addi 95 (5Fh). te-Orient actions ir agister f egister f ss a de	A perate A pera
Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off C 1 1 1 Q2 Read register 'f' RRCF	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode → re Q3 Proce Data REG,	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions in e ² for det egister f	A construction operate ressing See ted and a Indexe ails.
Words: Cycles: Q Cycle Activity: Decode Example: Before Instruc REG C	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off C 1 1 1 Q2 Read register 'f' RRCF tion = 1110 (0	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode re Proce Dat REG, 0110	xtended i nstruction ffset Addi 95 (5Fh). te-Orient ictions ir a" for det egister f	A provide the second se
Words: Cycles: Q Cycle Activity: Decode Example: Before Instruct REG C After Instructio	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Orient Literal Off C 1 1 1 2 Read register 'f' RRCF tion = 1110 = 0	and the e led, this i Literal O never f ≤ 0.2.3 "By ed Instru set Mode → re Q3 Proce Data REG, 0110	xtended i nstruction ffset Addi 95 (5Fh). te-Orient c tions ir e ² for det egister f	Q4 Q4 Write to estination
Words: Cycles: Q Cycle Activity: Decode Example: Before Instruct REG C After Instruction REG	If 'a' is '0' a set is enab in Indexed mode when Section 25 Bit-Oriente Literal Off C 1 1 1 2 Read register 'f' RRCF etion = 1110 = 0	and the e led, this i Literal O never f ≤ 9.2.3 "By ed Instru- set Mode C C C C C C C C C C	xtended i instruction ffset Addi 95 (5Fh). te-Orient actions ir agister f egister f 0, 0	Q4 Write to

TABLE 30-12: COMPARATOR SPECIFICATIONS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
D300	VIOFF	Input Offset Voltage	_	±5.0	40	mV	
D301	VICM	Input Common-Mode Voltage	0		AVdd	V	
D302	CMRR	Common-Mode Rejection Ratio	55	—		dB	
D303	TRESP	Response Time ⁽¹⁾	—	150	400	ns	
D304	TMC2OV	Comparator Mode Change to Output Valid*	—	—	10	μS	

Note 1: Response time is measured with one comparator input at (AVDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 30-13: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

$Cherating Conditions. 2.00 \le 0.00, -40.0 \le 14 \le +65.0$							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
D310	VRES	Resolution	VDD/32	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	—	—	3/4	LSb	
D312	VRur	Unit Resistor Value (R)	—	2k	—	Ω	
D313	TSET	Settling Time ⁽¹⁾	—	_	10	μS	

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'.

TABLE 30-14: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatir	Operating Conditions: $-40^{\circ}C \le TA \le +85^{\circ}C$							
Param No. Sym. Characteristics Min. Typ. Max. Units Common								
	VRGOUT	Regulator Output Voltage		1.8		V		
	Cefc	External Filter Capacitor Value	4.7	10	—	μF	Capacitor must be low-ESR, a low series resistance (< 5Ω)	

TABLE 30-15: RC OSCILLATOR START-UP TIME

АС СНА	ARACTERISTICS	Standard Operating	Operating temperatu	J Conditio Ire -40°C ≤	n s: 2V to 3 TA ≤ +85°(6.6V (unless otherwise stated) C for Industrial
Param No.	Characteristics	Min.	Тур.	Max.	Units	Comments
	TFRC		15	_	μs	
	TLPRC	—	10	—	μs	

Param. No.	Symbol	Charac	teristic	Min.	Max.	Units	Conditions		
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	—			
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		—			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	—			
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns			
		from Clock	400 kHz mode	—	1000	ns			
			1 MHz mode ⁽¹⁾	—	_	ns			
110	TBUF	Bus Free Time	100 kHz mode	4.7	-	μS	Time the bus must be free		
					400 kHz mode	1.3	_	μS	before a new transmission
			1 MHz mode ⁽¹⁾	—	_	μS	can start		
D102	Св	Bus Capacitive	Loading	—	400	pF			

TABLE 30-37: MSSPx I²C BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all II^2C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter #102 + Parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

FIGURE 30-20: EUSARTx SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 30-38: EUSARTx/AUSARTx SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE) Clock High to Data Out Valid		40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	_	20	ns	
122	TDTRF	Data Out Rise Time and Fall Time		20	ns	

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

	Ν	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2	7.35			
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1	0.85			
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N		64		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09 - 0.20			
Lead Width	b	0.17 0.22 0.27			
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B