

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j94t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2		64-PI	N ALLO	JUATI		DLE (PI	C18F6XJ	94) (CC		IED)	_	_	_	
0/1	64-Pin TQFP/QFN	ADC	Comparator	нгир	стми	USB	LCD	MSSP	РSР	Interrupt	REFO	PPS-Lite ⁽¹⁾	Pull-up	Basic
RE6	60		_	_	_	_	COM3	_		_		RP34	Y	
RE7	59	_	_		_		LCDBIAS0	_	_		_	RP31	Y	
RF2	16	AN7	C2INB	-	CTMUI	-	SEG20	-	_	_	_	RP36	Y	
RF3	15	_	—		_	D-	_		_	_	_	_	Y	_
RF4	14	_	—	-	_	D+	_	-	_	_	_	—	Y	_
RF5	13	AN10	C1INB/ CVREF	_	—	_	SEG23	_	—	_	—	RP35	Y	-
RF6	12	AN11	C1INA	_	_	_	SEG24	_	_	_	_	RP40	Y	_
RF7	11	AN5	—		_	_	SEG25	_	_	_	_	RP38	Y	_
RG0	3	AN8	—	_	—	_	COM4/ SEG28	_	—	_	—	RP46	Y	_
RG1	4	AN19	-		—	-	COM5/ SEG29	_	—		—	RP39	Y	_
RG2	5	AN18	C3INA	_	—	_	COM6/ SEG30	_	—	_	—	RP42	Y	_
RG3	6	AN17	C3INB		—	-	COM7/ SEG31	_	—		—	RP43	Y	_
RG4	8	AN16	C3INC	_	_	_	SEG26	_	_	_	_	RP44	Y	_
RG5/ MCLR	7	—	—	_	—	_	—	_	—	_	—	_	Y	MCLR
AVDD	19	AVDD	_	_	_	_	_	_	_	_	_	_	_	_
AVss	20	AVSS	_	_	_	_	_	_	_	_	_	_	_	_
VBAT	18	_	_	_	_	_	_	_	_	_	_	_	_	VBAT
Vcap/ Vddcore	10	—	—		—	-	-	_	—		—	—	-	Vcap/ Vddcore
VDD	26, 38, 57	_	_		_		_	_	_		—	_	_	Vdd
Vss	9, 25, 41, 56	_	—	—	_	—	—	—	—	—	—	—	_	Vss
VUSB3V3	17	_	—	—	_	—	_	_	_	—	_	—	—	VUSB3V3
Note 1:					4		ve no default n	• • •						

TABLE 2: 64-PIN ALLOCATION TABLE (PIC18F6XJ94) (CONTINUED)

Note 1: The peripheral inputs and outputs that support PPS have no default pins.

TABLE 1-4: PIC18FXXJ94 PINOUT I/O DESCRIPTIONS (CONTINUED)

Dia Nama	Pin	Num	ber	Pin	Buffer	Description
Pin Name	100	80	64	Туре	Туре	Description
SEG19/AN0/AN1-/RP0/RA0	37	30	24			
SEG19				0	Analog	SEG19 output for LCD.
ANO				I	Analog	Analog Input 0.
AN1-				I	Analog	A/D negative input channel.
RP0				I/O	ST/DIG	Remappable Peripheral Pin 0 input/output.
RA0				I/O	ST/DIG	General purpose I/O pin.
SEG18/AN1/RP1/RA1	36	29	23			
SEG18				0	Analog	SEG18 output for LCD.
AN1				I	Analog	Analog Input 1.
RP1				I/O	ST/DIG	Remappable Peripheral Pin 1 input/output.
RA1				I/O	ST/DIG	General purpose I/O pin.
SEG21/VREF-/AN2/RP2/RA2	34	28	22			
SEG21				0	Analog	SEG21 output for LCD.
VREF-				I	Analog	A/D reference voltage (low) input.
AN2					Analog	Analog Input 2.
RP2				1/O 1/O	ST/DIG ST/DIG	Remappable Peripheral Pin 2 input/output.
RA2				1/0	51/DIG	General purpose I/O pin.
VREF+/AN3/RP3/RA3	33	27	21			
VREF+					Analog	A/D reference voltage (high) input.
AN3				 /O	Analog ST/DIG	Analog Input 3.
RP3				1/O	ST/DIG	Remappable Peripheral Pin 3 input/output. General purpose I/O pin.
RA3				1/0	31/DIO	
SEG14/AN6/RP4/RA4	43	34	28	~		
SEG14				0	Analog	SEG14 output for LCD.
AN6				 /O	Analog ST/DIG	Analog Input 6. Remappable Peripheral Pin 4 input/output.
RP4				1/O	ST/DIG	General purpose I/O pin.
RA4				1/0	51/010	
SEG15/AN4/LVDIN/C1INA/ C2INA/C3INA/RP5/RA5	42	33	27			
SEG15				0	Analog	SEG15 output for LCD.
AN4				I	Analog	Analog Input 4.
LVDIN					Analog	High/Low-Voltage Detect (HLVD) input.
C1INA					Analog	Comparator 1 Input A.
C2INA					Analog	Comparator 2 Input A.
C3INA				1/0	Analog ST/DIG	Comparator 3 Input A. Remappable Peripheral Pin 5 input/output.
RP5				1/O	ST/DIG ST/DIG	General purpose I/O pin.
RA5	nnut			"0	51/013	

Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels CMOS = CMOS compatible input or output

Analog = Analog input

I = Input

P = Power

 $I^2C = I^2C/SMBus$

O = Output

OD = Open-Drain (no P diode to VDD)

	Pin	Num	ber	Pin Buffer		
Pin Name	100	80	64	Туре	Туре	Description
VLCAP1/RP8/CTED13/INT0/RB0 VLCAP1 RP8 CTED13 INT0 RB0	73	58	48	 /O /O	Analog ST/DIG ST ST ST/DIG	LCD Drive Charge Pump Capacitor Input 1. Remappable Peripheral Pin 8 input/output. CTMU Edge 13 input. External Interrupt 0. General purpose I/O pin.
VLCAP2/RP9/RB1 VLCAP2 RP9 RB1	72	57	47	 /O /O	Analog ST/DIG ST/DIG	LCD Drive Charge Pump Capacitor Input 2. Remappable Peripheral Pin 9 input/output. General purpose I/O pin.
SEG9/RP14/CTED1/RB2 SEG9 RP14 CTED1 RB2	70	56	46	0 I/O I I/O	Analog ST/DIG ST ST/DIG	SEG9 output for LCD. Remappable Peripheral Pin 14 input/output. CTMU Edge 1 input. General purpose I/O pin.
SEG10/RP7/CTED2/RB3 SEG10 RP7 CTED2 RB3	69	55	45	0 I/O I I/O	Analog ST/DIG ST ST/DIG	SEG10 output for LCD. Remappable Peripheral Pin 7 input/output. CTMU Edge 2 input. General purpose I/O pin.
SEG11/RP12/CTED3/RB4 SEG11 RP12 CTED3 RB4	68	54	44	0 I/O I I/O	Analog ST/DIG ST ST/DIG	SEG11 output for LCD. Remappable Peripheral Pin 12 input/output. CTMU Edge 3 input. General purpose I/O pin.
SEG8/RP13/CTED4/RB5 SEG8 RP13 CTED4 RB5	67	53	43	0 I/O I I/O	Analog ST/DIG ST ST/DIG	SEG8 output for LCD. Remappable Peripheral Pin 13 input/output. CTMU Edge 4 input. General purpose I/O pin.
PGC/CTED5/RB6 PGC CTED5 RB6	65	52	42	I/O I I/O	ST/DIG ST ST/DIG	In-Circuit Debugger and ICSP™ programming clock pin. CTMU Edge Input. General purpose I/O pin.
PGD/CTED6/RB7 PGD CTED6 RB7	58	47	37	I/O I I/O	ST/DIG ST ST/DIG	In-Circuit Debugger and ICSP™ programming data pin. CTMU Edge 6 input. General purpose I/O pin.

TABLE 1-4: PIC18FXXJ94 PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

 $I^2C = I^2C/SMBus$

CMOS = CMOS compatible input or output

- Analog = Analog input
- O = Output

OD = Open-Drain (no P diode to VDD)

4.0 POWER-MANAGED MODES

All PIC18F97J94 Family devices offer a number of built-in strategies for reducing power consumption. These strategies can be particularly useful in applications, which are both power-constrained (such as battery operation), yet require periods of full-power operation for timing-sensitive routines (such as serial communications).

Aside from their low-power architecture, these devices include an expanded range of dedicated hardware features that allow the microcontroller to reduce power consumption to even lower levels when long-term hibernation is required, and still be able to resume operation on short notice.

The device has four power-saving features:

- · Instruction-Based Power-Saving Modes
- Hardware-Based Power Reduction Features
- Microcontroller Clock Manipulation
- Selective Peripheral Control

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical or timing-sensitive application features. However, it is more convenient to discuss the strategies separately.

4.1 Overview of Power-Saving Modes

In addition to full-power operation, otherwise known as Run mode, PIC18F97J94 Family devices offer three instruction-based, power-saving modes and one hardware-based mode. In descending order of power consumption, they are:

- Idle
- Sleep (including retention Sleep)
- · Deep Sleep (with and without retention)
- VBAT (with and without RTCC)

By powering down all four modes, different functional areas of the microcontroller allow progressive reductions of operating and Idle power consumption. In addition, three of the modes can be tailored for more power reduction at a trade-off of some operating features. Table 4-1 lists all of the operating modes (including Run mode, for comparison) in order of increasing power savings and summarizes how the microcontroller exits the different modes.

4.4.10 CONTROL BIT SUMMARY FOR SLEEP MODES

Table 4-5 shows the settings for the bits relevant to Deep Sleep modes.

Instruction-Based	DSEN	Retention Regulator					
Mode	(DSCONH<7>)	>) RETEN SRETEN (CONFIG7L<0>) (RCON4<4>)		State	DSWDTEN (CONFIG8H<0>)		
Retention Deep Sleep	1	0	1	Enabled	0		
Deep Sleep	1	1	х	Disabled	х		

TABLE 4-5: BIT SETTINGS FOR ALL DEEP SLEEP MODES

4.4.11 WAKE-UP DELAYS

The Reset delays associated with wake-up from Deep Sleep and Retention Deep Sleep modes, in different oscillator modes, are provided in Table 4-6 and Table 4-7, respectively. Note: The PMSLP bit (RCON4<0>) allows the voltage regulator to be maintained during Sleep modes.

TABLE 4-6: DELAY TIMES FOR EXITING FROM DEEP SLEEP MODE

	Clock Source	Exit Delay	Oscillator Delay	Notes
EC		TDSWU	_	
ECPLL		TDSWU	ТLОСК	1, 3
MS, HS		TDSWU	Tost	1, 2
MSPLL, H	SPLL	TDSWU	TOST + TLOCK	1, 2, 3
SOSC	(Off during Sleep)	TDSWU	Tost	1, 2
	(On during Sleep)	TDSWU	—	1
FRC, FRC	DIV	TDSWU	TFRC	1, 4
LPRC	(Off during Sleep)	TDSWU	TLPRC	1, 4
	(On during Sleep)	TDSWU	—	1
FRCPLL		TDSWU	TFRC + TLOCK	1, 3, 4

Note 1: TDSWU = Deep Sleep wake-up delay.

2: TOST = Oscillator Start-up Timer; a delay of 1024 oscillator periods before the oscillator clock is released to the system.

- **3:** TLOCK = PLL lock time.
- 4: TFRC and TLPRC are RC Oscillator start-up times.

Register	Арг	blicable Dev	vices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt
ALRMRPT	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu
ALRMVALH	64-pin	80-pin	100-pin	xxxx xxxx	uuuu uuuu	uuuu uuuu
ALRMVALL	64-pin	80-pin	100-pin	xxxx xxxx	uuuu uuuu	uuuu uuuu
RTCCON2	64-pin	80-pin	100-pin	0000 0000	uuuu uuuu	uuuu uuuu
IOCP	64-pin	80-pin	100-pin	0000 0000	0000 0000	սսսս սսսս
IOCN	64-pin	80-pin	100-pin	0000 0000	0000 0000	սսսս սսսս
PADCFG1	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CM1CON	64-pin	80-pin	100-pin	0001 1111	0001 1111	uuuu uuuu
ECCP2AS	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
ECCP2DEL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CCPR2H	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCPR2L	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu
ECCP2CON	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
ECCP3AS	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
ECCP3DEL	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CCPR3H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR3L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
ECCP3CON	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
CCPR8H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR8L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP8CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu
CCPR9H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR9L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP9CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu
CCPR10H	64-pin	80-pin	100-pin	xxxx xxxx	XXXX XXXX	uuuu uuuu
CCPR10L	64-pin	80-pin	100-pin	xxxx xxxx	xxxx xxxx	uuuu uuuu
CCP10CON	64-pin	80-pin	100-pin	00 0000	00 0000	uu uuuu
TMR6	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
PR6	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu
T6CON	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu
TMR8	64-pin	80-pin	100-pin	0000 0000	0000 0000	uuuu uuuu
PR8	64-pin	80-pin	100-pin	1111 1111	1111 1111	uuuu uuuu
T8CON	64-pin	80-pin	100-pin	-000 0000	-000 0000	-uuu uuuu

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged; x = unknown; - = unimplemented bit, read as '0'; q = value depends on condition. Shaded cells indicate that conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-2 for Reset value for specific condition.
- 5: Bits 7,6 are unimplemented on 64 and 80-pin devices.
- 6: If the VBAT is always powered, the DSGPx register values will remain unchanged after the first POR.

The BSR specifies the bank

used by the instruction.

Access Bank

Access RAM Low

Access RAM High

(SFRs)

00h

5Fh

60h

FFh

FIGURE 6-6: DATA MEMORY MAP FOR PIC18F97J94 FAMILY DEVICES BSR<3:0> **Data Memory Map** 00h 000h Access RAM = 0000 05Fh When a = 0: Bank 0 060h GPR The BSR is ignored and the 0FFh FFh Access Bank is used. 00h 100h = 0001 The first 96 bytes are general Bank 1 GPR purpose RAM (from Bank 0). FFh 1FFh The second 160 bytes are 00h 200h = 0010 Special Function Registers Bank 2 GPR (from Bank 15). FFh 2FFh 300h 00h = 0011 When a = 1: Bank 3 GPR

SFR

SFR

SFR

FFh

00h

FFh 00h

FAh

FFh

00h

FFh 00h

FFh

= 0100

= 0101

= 0110

= 0111

= 1000

= 1001

= 1010

= 1011

= 1100

= 1101

= 1110

= 1111

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

Bank 15

3FFh

400h

4FFh

500h

5FFh

600h

6FFh

700h

7FFh

800h

8FFh

900h

9FFh

A00h

AFFh

B00h

BFFh

C00h

CFFh

D00h

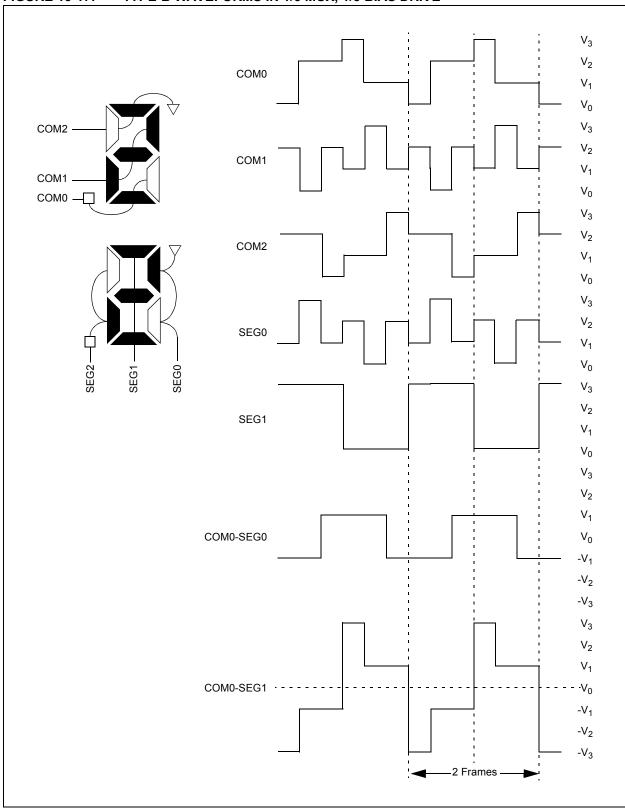
DFAh

DFFh

E00h

EFFh

F00h


F5Fh

F60h/ FFFh

Note 1: Addresses, DFAh through F5Fh, are also SFRs, but are not part of the Access RAM. Users must always use the complete address, or load the proper BSR value, to access these registers.

REGISTER 10-18: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
TMR5GIP	LCDIP	RC2IP	TX2IP	CTMUIP	CCP2IP	CCP1IP	RTCCIP					
bit 7				÷			bit 0					
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'												
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown					
bit 7		TMR5GIP: TMR5 Gate Interrupt Priority bit										
	1 = High priority 0 = Low priority											
bit 6	•	•	t Duiouitu (hit									
DILO	1 = High pri	Ready Interrup	ot Priority bit									
	0 = Low price											
bit 5		SART2 Receive	Priority Flag bi	t								
	1 = High priority											
	0 = Low price	ority										
bit 4		ART2 Transmit	Interrupt Priori	ty bit								
	1 = High priority											
	0 = Low pric	•	,,									
bit 3		FMU Interrupt P	riority bit									
	1 = High pri 0 = Low pric	•										
bit 2	•	P2 Interrupt Pri	oritv bit									
	1 = High pri	•	,									
	0 = Low price											
bit 1	CCP1IP: EC	CP1 Interrupt F	riority bit									
	1 = High pri											
	0 = Low price	•										
bit 0	RTCCIP: RTCC Interrupt Priority bit											
	1 = High pri 0 = Low pric	•										
		JIIIY										

FIGURE 13-17: TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

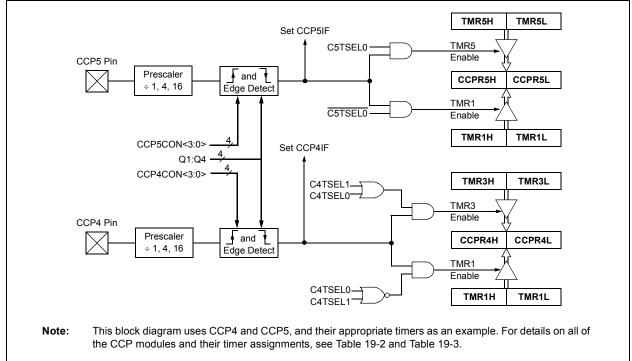
17.6 Register Maps

Table 17-5, Table 17-6 and Table 17-7 summarize the registers associated with the RTCC module.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RTCCON1	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0
RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
RTCCON2	PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLKSEL1	RTCCLKSEL0	RTCSECSEL1	RTCSECSEL
ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
PMD3	DSMMD	CTMUMD	ADCMD	RTCCMD	LCDMD	PSPMD	REFO1MD	REFO2MD

TABLE 17-5: RTCC CONTROL REGISTERS

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 80-pin devices.


TABLE 17-6: RTCC VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RTCVALH		RTCC Value High Register Window based on RTCPTR<1:0>							
RTCVALL		RTCC Value Low Register Window based on RTCPTR<1:0>							

TABLE 17-7: ALARM VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ALRMVALH		Alarm Value High Register Window based on ALRMPTR<1:0>							
ALRMVALL		Alarm Value Low Register Window based on ALRMPTR<1:0>							

19.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP4IE bit (PIE4<1>) clear to avoid false interrupts and should clear the flag bit, CCP4IF, following any such change in operating mode.

19.2.4 CCP PRESCALER

There are four prescaler settings in Capture mode. They are specified as part of the operating mode selected by the mode select bits (CCP4M<3:0>). Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter. Switching from one capture prescaler to another may generate an interrupt. Doing that will also not clear the prescaler counter – meaning the first capture may be from a non-zero prescaler.

Example 19-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 19-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP4CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP4CON	;	Load CCP4CON with
		;	this value

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF		
bit 7							bit (
Legend:									
R = Read		W = Writable		-	nented bit, read				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7		Rate Control bit							
		<u>Slave mode:</u> te control is disa	abled for Stand	lard Speed mor	le (100 kHz and	1 MHz)			
		te control is ena							
bit 6	CKE: SMBu	s Select bit							
		Slave mode:							
		SMBus-specific SMBus-specific							
bit 5	Disables	-	5 inputs						
bit 5	In Master mo								
	Reserved.	<u>.</u>							
	In Slave mod	<u>de:</u>							
		 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 							
bit 4	0 = Indicates P: Stop bit ⁽¹⁾		te received of	transmitted wa	saudiess				
DIL 4	1 = Indicates	s that a Stop bit		ected last					
		was not detecte	d last						
bit 3	S: Start bit ⁽¹⁾								
		s that a Start bit was not detecte		ected last					
bit 2	R/W : Read/	Write Information	n bit ^(2,3)						
	In Slave mod	de:							
	1 = Read 0 = Write								
	In Master mo	ode:							
		is in progress							
		is not in progre							
bit 1	•	Address bit (10-		• /					
		s that the user n does not need		e the address ir	the SSPxADD	register			
bit 0	BF: Buffer F	ull Status bit							
	<u>In Transmit r</u>								
	1 = SSPxBU								
	0 = SSPxBU <u>In Receive n</u>								
	1 = SSPxBU	IF is full (does n							
Note 1:		IF is empty (doe			oh nira)				
Note 1: 2:	This bit is cleare This bit holds the				e match This h	nit is only valid	from the		
۷.	address match to				55 maton. 1115 D	nt is uniy vallu			

REGISTER 20-6: SSPxSTAT: MSSPx STATUS REGISTER (I²C MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

21.2 EUSARTx Asynchronous Mode

The Asynchronous mode of operation is selected by clearing the SYNC bit (TXSTAx<4>). In this mode, the EUSARTx uses standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated 8-bit/16-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator.

The EUSARTx transmits and receives the LSb first. The EUSARTx's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on the BRGH and BRG16 bits (TXSTAx<2> and BAUDCONx<3>). Parity is not supported by the hardware but can be implemented in software and stored as the 9th data bit.

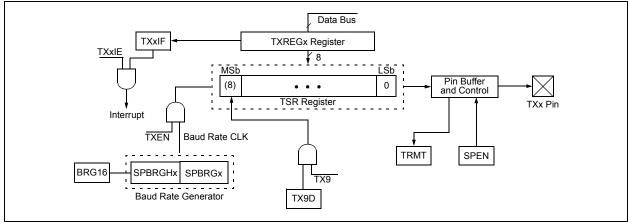
When operating in Asynchronous mode, the EUSARTx module consists of the following important elements:

- · Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver
- Auto-Wake-up on Sync Break Character
- 12-Bit Break Character Transmit
- Auto-Baud Rate Detection

21.2.1 EUSARTx ASYNCHRONOUS TRANSMITTER

The EUSARTx transmitter block diagram is shown in Figure 21-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREGx register (if available).

Once the TXREGx register transfers the data to the TSR register (occurs in one TCY), the TXREGx register is empty and the TXxIF flag bit is set. This interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF will be set regardless of the state of TXxIE; it cannot be cleared in software. TXxIF is also not cleared immediately upon loading TXREGx, but becomes valid in the second instruction cycle following the load instruction. Polling TXxIF immediately following a load of TXREGx will return invalid results.


While TXxIF indicates the status of the TXREGx register, another bit, TRMT (TXSTAx<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory, so it is not available to the user.
2:	Flag bit, TXxIF, is set when enable bit, TXEN, is set.

To set up an Asynchronous Transmission:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set transmit bit, TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit, TXEN, which will also set bit, TXxIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Load data to the TXREGx register (starts transmission).
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 21-3: EUSARTx TRANSMIT BLOCK DIAGRAM

REGISTER 22-11: ADCON5L: A/D CONTROL REGISTER 5 LOW

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	—	WM1	WM0	CM1	CM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

bit 3-2 **WM<1:0>:** Write Mode bits

- 11 = Reserved
- 10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid match occurs, as defined by the CM<1:0> and ASINTMD<1:0> bits)
- 01 = Convert and save (conversion results are saved to locations as determined by the register bits when a match occurs, as defined by the CMx bits)
- 00 = Legacy operation (conversion data is saved to a location determined by the buffer register bits)

bit 1-0 CM<1:0>: Compare Mode bits

- 11 = Outside Window mode (valid match occurs if the conversion result is outside of the window, defined by the corresponding buffer pair)
- 10 = Inside Window mode (valid match occurs if the conversion result is inside the window, defined by the corresponding buffer pair)
- 01 = Greater Than mode (valid match occurs if the result is greater than the value in the corresponding buffer register)
- 00 = Less Than mode (valid match occurs if the result is less than the value in the corresponding buffer register)

26.1 CTMU Registers

The control registers for the CTMU are:

- CTMUCON1
- CTMUCON2
- CTMUCON3
- CTMUCON4

The CTMUCON1 and CTMUCON3 registers (Register 26-1 and Register 26-3) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUCON2 register (Register 26-2) has bits for selecting the current source range and current source trim.

REGISTER 26-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode0 = Continues module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation
	0 = Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 2	ESGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 event must occur before Edge 2 event can occur
	0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded
	0 = Analog current source output is not grounded
bit 0	CTTRIG: CTMU Special Event Trigger bit
	1 = CTMU Special Event Trigger is enabled
	0 = CTMU Special Event Trigger is disabled

EXAMPLE 26-3: CTMU CAPACITANCE CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 25
                                          //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                          //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                         //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                          //Vdd connected to A/D Vr+
#define RCAL .027
                                          //R value is 4200000 (4.2M)
                                          //scaled so that result is in
                                          //1/100th of uA
int main(void)
{
    int i;
   int j = 0;
                                          //index for loop
    unsigned int Vread = 0;
    float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
//assume CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONbits.CTMUEN = 1;
                                         //Enable the CTMU
    for(j=0;j<10;j++)</pre>
    {
        CTMUCONbits.IDISSEN = 1;
                                          //drain charge on the circuit
        DELAY;
                                          //wait 125us
        CTMUCONbits.IDISSEN = 0;
                                          //end drain of circuit
        CTMUCON3bits.EDG1STAT = 1;
                                          //Begin charging the circuit
                                          //using CTMU current source
        DELAY;
                                          //wait for 125us
        CTMUCON3bits.EDG1STAT = 0;
                                          //Stop charging circuit
        PIR1bits.ADIF = 0;
                                         //make sure A/D Int not set
        ADCON1Lbits.SAMP=1;
                                         //and begin A/D conv.
        while(!PIR1bits.ADIF);
                                          //Wait for A/D convert complete
        Vread = ADRES;
                                          //Get the value from the A/D
        PIR1bits.ADIF = 0;
                                          //Clear A/D Interrupt Flag
        VTot += Vread;
                                          /\,/\text{Add} the reading to the total
    }
    Vavg = (float)(VTot/10.000);
                                          //Average of 10 readings
    Vcal = (float)(Vavg/ADSCALE*ADREF);
                                          //CTMUISrc is in 1/100ths of uA
    CTMUISrc = Vcal/RCAL;
    CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
}
```

REGISTER 28-8: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	U-1	R/WO-1	R/WO-1
WAIT ⁽¹⁾	BW	ABW1	ABW0	EASHFT	—	CINASEL	T5GSEL
bit 7							bit 0

Legend:	P = Programmable bit	WO = Write-Once bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	WAIT: External Bus Wait Enable bit ⁽¹⁾
	 1 = Wait selections from WAIT<1:0> (MEMCON<5:4>) are unavailable and the device will not wait 0 = Wait is programmed by WAIT<1:0> (MEMCON<5:4>)
bit 6	BW: Data Bus Width Select bit
	1 = 16-Bit External Bus mode
	0 = 8-Bit External Bus mode
bit 5-4	ABW<1:0>: External Memory Bus Configuration bits
	00 =Extended Microcontroller Mode – 20-Bit Address mode
	01 =Extended Microcontroller Mode – 16-Bit Address mode
	10 =Extended Microcontroller Mode – 12-Bit Address mode
	11 =Microcontroller Mode – External bus is disabled
bit 3	EASHFT: External Address Bus Shift Enable bit
	 1 = Address shifting is enabled – External address bus is shifted to start at 000000h 0 = Address shifting is disabled – External address bus reflects the PC value
bit 2	Unimplemented: Read as '0'
bit 1	CINASEL: CxINA Gate Select bit
	1 = C1INA and C3INA are on their default pin locations
	0 = C1INA and C3INA are all remapped to pin, RA5
bit 0	T5GSEL: TMR5 Gate Select bit
	1 = TMR5 gate is driven by the T5G input
	0 = TMR5 gate is driven by the T3G input
Note 1:	This bit was previously referred to as 'WAIT', but a set condition actually indicates the case where the EMB does not wait and the name was therefore changed to reflect this. No change in functionality or polarity occurred, only a change in the name of the register bit.

© 2012-2016 Microchip Technology Inc.

CLRF	Clear f	CLRWDT	Clear Watchdog Timer
Syntax:	CLRF f {,a}	Syntax:	CLRWDT
Operands:	$0 \le f \le 255$	Operands:	None
	a ∈ [0,1]	Operation:	000h \rightarrow WDT,
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$		000h \rightarrow WDT postscaler, 1 $\rightarrow \overline{\underline{TO}}$,
Status Affected:	Z		$1 \rightarrow \overline{PD}$
Encoding:	0110 101a ffff ffff	Status Affected:	TO, PD
Description:	Clears the contents of the specified register.	Encoding: Description:	0000 0000 0100 CLRWDT instruction resets the
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		Watchdog Timer. It also resets the post- scaler of the WDT. Status bits, $\overline{\text{TO}}$ and $\overline{\text{PD}}$, are set.
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing	Words: Cycles: Q Cycle Activity:	1 1
	mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Q1 Decode	Q2Q3Q4NoProcessNooperationDataoperation
Words:	1		
Cycles:	1	Example:	CLRWDT
Q Cycle Activity:		Before Instruc	
Q1	Q2 Q3 Q4	WDT Co After Instructio	
Decode	ReadProcessWriteregister 'f'Dataregister 'f'	WDT Co WDT Po TO	stscaler = 0
Example:	CLRF FLAG_REG, 1	TO PD	= 1 = 1
Before Instru FLAG_f After Instruct FLAG_f	REG = 5Ah ion		

NEGF	Negate f
Syntax:	NEGF f {,a}
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$
Operation:	$(\overline{f}) + 1 \rightarrow f$
Status Affected:	N, OV, C, DC, Z
Encoding:	0110 110a ffff ffff
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'.
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1
Q Cycle Activity:	

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1
----------	------	------	---

Before Instru	ction			
REG	=	0011	1010	[3Ah]
After Instructi	on			
REG	=	1100	0110	[C6h]

NOP		No Operation						
Synta	ax:	NOP	NOP					
Oper	ands:	None						
Oper	ation:	No operation						
Statu	s Affected:	None						
Encoding:		0000	0000	000	00	0000		
		1111	xxxx	XXX	x	xxxx		
Desc	ription:	No operat	No operation.					
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No	No)		No		
		operation	opera	tion	op	peration		

Example:

None.

29.2.2 EXTENDED INSTRUCTION SET

ADDFSR Add Literal to FSR							
Synta	Syntax: ADDFSR f, k						
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$				
		$f \in [0, 1,$	2]				
Oper	ation:	FSR(f) + I	$s \rightarrow FSR($	f)			
Statu	s Affected:	None	None				
Enco	ding:	1110	1000	ffkk	kk kkkk		
Description:		The 6-bit	The 6-bit literal 'k' is added to the				
		contents of	contents of the FSR specified by 'f'.				
Word	ls:	1					
Cycle	es:	1	1				
Q Cycle Activity:							
	Q1	Q2	Q3		Q4	1	
	Decode	Read	Proces	SS	Write	to	
		literal 'k'	Data		FSF	२	

Example: ADDFSR 2, 23h

Before Instruction				
FSR2	=	03FFh		
After Instruct				
FSR2	=	0422h		

ADD	ADDULNK Add Literal to FSR2 and Return					
Synta	ax:	ADDULN	ADDULNK k			
Oper	ands:	$0 \le k \le 63$				
Oper	ation:	FSR2 + k	\rightarrow FSR2,			
		$(TOS) \rightarrow F$	PC			
Statu	is Affected:	None				
Enco	oding:	1110	1000	11k]	k kkkk	
Desc	ription:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS.				
		The instruction takes two cycles to execute; a NOP is performed during the second cycle.				
		This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.				
Word	ls:	1				
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read literal 'k'	Proces Data		Write to FSR	
	No	No	No		No	
	Operation	Operation	Operati	ion	Operation	
Example: ADDULNK 23h						

ample:	ADDULNK		2
Before Instruc	tion		
FSR2	=	03FFh	
PC	=	0100h	
After Instruction	n		
FSR2	=	0422h	
PC	=	(TOS)	

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).