

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j94-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

3.2 Oscillator Configuration

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are in the Configuration registers located in the program memory (refer to **Section 28.1 "Configuration Bits"** for more information). The Primary Oscillator Configuration bits, POSCMD<1:0> (CONFIG3L<1:0>), and Oscillator Configuration bits, FOSC<2:0> (CONFIG2L<2:0>), select the oscillator source that is used at a POR. The FRC Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between 11 different clock modes, as shown in Table 3-1.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
Fast RC Oscillator divided by 16 (FRC500kHz)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (MS) with PLL Module (MSPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (MS)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

Note 1: OSC2 pin function is determined by the CLKOEN Configuration bit.

2: Default oscillator mode for an unprogrammed (erased) device.

4.4.10 CONTROL BIT SUMMARY FOR SLEEP MODES

Table 4-5 shows the settings for the bits relevant to Deep Sleep modes.

Instruction-Based Mode	DGEN	Re	tention Regulator		
	(DSCONH<7>)	RETEN (CONFIG7L<0>)	SRETEN (RCON4<4>)	State	CONFIG8H<0>)
Retention Deep Sleep	1	0	1	Enabled	0
Deep Sleep	1	1	x	Disabled	x

TABLE 4-5: BIT SETTINGS FOR ALL DEEP SLEEP MODES

4.4.11 WAKE-UP DELAYS

The Reset delays associated with wake-up from Deep Sleep and Retention Deep Sleep modes, in different oscillator modes, are provided in Table 4-6 and Table 4-7, respectively. Note: The PMSLP bit (RCON4<0>) allows the voltage regulator to be maintained during Sleep modes.

TABLE 4-6: DELAY TIMES FOR EXITING FROM DEEP SLEEP MODE

Clock Source		Exit Delay	Oscillator Delay	Notes
EC		TDSWU	_	
ECPLL		TDSWU	TLOCK	1, 3
MS, HS		TDSWU	Tost	1, 2
MSPLL, HSPLL		TDSWU	TOST + TLOCK	1, 2, 3
SOSC	(Off during Sleep)	TDSWU	Tost	1, 2
	(On during Sleep)	TDSWU	—	1
FRC, FRCDI	/	TDSWU	TFRC	1, 4
LPRC	(Off during Sleep)	TDSWU	TLPRC	1, 4
(On during Sleep)		TDSWU	—	1
FRCPLL		TDSWU	TFRC + TLOCK	1, 3, 4

Note 1: TDSWU = Deep Sleep wake-up delay.

2: TOST = Oscillator Start-up Timer; a delay of 1024 oscillator periods before the oscillator clock is released to the system.

- **3:** TLOCK = PLL lock time.
- 4: TFRC and TLPRC are RC Oscillator start-up times.

l	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
FFFh	TOSU	—	—	—	Top-of-Stack Upp	er Byte (TOS<20:16	6>)						
FFEh	TOSH	Top-of-Stack High	Top-of-Stack High Byte (TOS<15:8>)										
FFDh	TOSL	Top-of-Stack Lo	Fop-of-Stack Low Byte (TOS<7:0>)										
FFCh	STKPTR	STKFUL	STKUNF	_	STKPTR								
FFBh	PCLATU	—	— — Holding Register for PC<20:16>										
FFAh	PCLATH	Holding Registe	-lolding Register for PC<15:8>										
FF9h	PCL	PC Low Byte (F	PC<7:0>)						-				
FF8h	TBLPTRU	—	_	ACSS	Program Memory	Table Pointer Uppe	er Byte (TBLPTR·	<20:16>)	-				
FF7h	TBLPTRH	Program Memo	ry Table Pointer	High Byte (TBL	PTR<15:8>)				-				
FF6h	TBLPTRL	Program Memo	ry Table Pointer	Low Byte (TBL	PTR<7:0>)				-				
FF5h	TABLAT	Program Memo	ry Table Latch										
FF4h	PRODH	Product Registe	er High Byte										
FF3h	PRODL	Product Registe	er Low Byte										
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	IOCIE	TMR0IF	INTOIF	IOCIF				
FF1h	INTCON2	RBPU	INTEDGO	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	IOCIP				
FF0h		INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IE	INT2IE	INT1IE				
FEFh		Lises contents of	of ESR0 to addre	ss data memor	v – value of ESR0	not changed (not a	nhysical register)	1111211					
FEFh	POSTINCO	Lises contents o	of FSR0 to addre	ss data memor	y – value of ESR0	nost-incremented (r	priysical register)	ister)					
FEDh	POSTDECO	Uses contents o	of FSR0 to addre		y value of FSR0	post-decremented (not a physical reg	nistor)					
FECh			of ESP0 to addre	es data memor	y – value of FSP0	post-decremented (not a physical reg	stor)					
FEOR	PREINCO		of FSR0 to addre			pre-incremented (no	ot a physical regis	ster) volue of					
FEDII	FLUSWU	FSR0 offset by	W		y – value ol FSRU	pre-incremented (no	ot a priysical regis	ster) – value or					
FEAh	FSR0H	_				Indirect Data Mem	orv Address Poin	ter 0 High					
FE9h	FSR0L	Indirect Data M	emory Address F	Pointer 0 Low B	vte								
FF8h	WREG	Working Registe	er		,								
FE7h	INDF1	Uses contents of	of FSR1 to addre	ss data memor	v – value of FSR1	not changed (not a	physical register)						
FE6h	POSTINC1	Uses contents of	of FSR1 to addre	ss data memor	v – value of FSR1	post-incremented (r	not a physical req	ister)					
FE5h	POSTDEC1	Uses contents o	of FSR1 to addre	ss data memor	v – value of FSR1	post-decremented (not a physical red	nister)					
FE4h	PRFINC1	Uses contents o	of FSR1 to addre	ss data memor	v - value of FSR1	pre-incremented (no	ot a physical regis	ster)					
FE3h	PLUSW1	Uses contents o	of FSR1 to addre	ss data memor	v - value of FSR1	pre-incremented (no	ot a physical regis	ster) – value of					
0		FSR1 offset by	W		<i>y</i> 10.00 011 0111		or a prijoloal rogi						
FE2h	FSR1H			—		Indirect Data Mem	ory Address Poin	ter 1 High					
FE1h	FSR1L	Indirect Data M	emory Address F	Pointer 1 Low B	yte	•							
FE0h	BSR	—	—	_	—	Bank Select Regis	ter						
FDFh	INDF2	Uses contents of	of FSR2 to addre	ss data memor	y – value of FSR2	not changed (not a	physical register)						
FDEh	POSTINC2	Uses contents of	of FSR2 to addre	ss data memor	y – value of FSR2	post-incremented (r	not a physical reg	ister)					
FDDh	POSTDEC2	Uses contents of	of FSR2 to addre	ss data memor	y – value of FSR2	post-decremented (not a physical reg	gister)					
FDCh	PREINC2	Uses contents of	of FSR2 to addre	ss data memor	y – value of FSR2	pre-incremented (no	ot a physical regis	ster)					
FDBh	PLUSW2	Uses contents of	of FSR2 to addre	ss data memor	y – value of FSR2	pre-incremented (no	ot a physical regis	ster) – value of					
		FSR2 offset by	W					,					
FDAh	FSR2H	—	_	_	_	Indirect Data Mem	ory Address Poin	ter 2 High					
FD9h	FSR2L	Indirect Data M	emory Address F	Pointer 2 Low B	yte	•							
FD8h	STATUS	—	_	_	N	OV	Z	DC	С				
FD7h	TMR0H	Timer0 Register	r High Byte		•	•	•	•					
FD6h	TMR0L	Timer0 Register	Low Byte										
FD5h	T0CON	TMROON T08BIT T0CS1 T0CS0 PSA T0PS2 T0PS1 T0PS0											
FD4h	Unimplemented												
FD3h	OSCCON	IDLEN	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0				
FD2h	IPR5	_	ACTORSIP	ACTLOCKIP	TMR8IP	_	TMR6IP	TMR5IP	TMR4IP				
FD1h	IOCF	IOCF7	IOCF6	IOCE5	IOCF4	IOCE3	IOCF2	IOCF1	IOCF0				
FDOh	RCON	IDEN											
	NOON		_	Civi	r.i	10		FUR	DUR				

TABLE 6-2: REGISTER FILE SUMMARY

Legend: — = unimplemented, read as '0'.

	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 B			Bit 0	
E36h	RPINR24_25		IOC7	R<3:0>			IOC6R	<3:0>		
E35h	RPINR22_23		IOC5	R<3:0>		IOC4R<3:0>				
E34h	RPINR20_21		IOC3	R<3:0>		IOC2R<3:0>				
E33h	RPINR18 19		IOC1	R<3:0>		IOC0R<3:0>				
E32h	 RPINR16_17		ECCP	3R<3:0>		ECCP2R<3:0>				
E31h	RPINR14_15		ECCP ²	1R<3:0>		FLT0R<3:0>				
E30h	RPINR12_13		SS2F	२<3:0>			SDI2R•	<3:0>		
E2Fh	RPINR10_11		SCK2	R<3:0>			SS1R<	<3:0>		
E2Eh	RPINR8_9		SDI1I	R<3:0>			SCK1R	<3:0>		
E2Dh	RPINR6_7		U4TX	R<3:0>			U4RXR	<3:0>		
E2Ch	RPINR4_5		U3TX	R<3:0>			U3RXR	<3:0>		
E2Bh	RPINR2_3		U2TX	R<3:0>			U2RXR	<3:0>		
E2Ah	RPINR0_1		U1TX	R<3:0>			U1RXR	<3:0>		
E29h	RPOR46	_	_	_	—		RPO46F	२<3:0>		
E28h	RPOR44_45		RPO4	5R<3:0>	•		RPO44F	R<3:0>		
E27h	RPOR42_43		RPO43	3R<3:0>			RPO42F	R<3:0>		
E26h	RPOR40_41		RPO4 ²	1R<3:0>			RPO40F	R<3:0>		
E25h	RPOR38_39		RPO39	9R<3:0>			RPO38F	R<3:0>		
E24h	RPOR36_37		RPO3	7R<3:0>			RPO36F	R<3:0>		
E23h	RPOR34_35		RPO3	5R<3:0>			RPO34F	R<3:0>		
E22h	RPOR32_33		RPO3	3R<3:0>		RPO32R<3:0>				
E21h	RPOR30_31		RPO3 ²	1R<3:0>		RPO30R<3:0>				
E20h	RPOR28_29		RPO29	9R<3:0>		RPO28R<3:0>				
E1Fh	RPOR26_27		RPO2	7R<3:0>		RPO26R<3:0>				
E1Eh	RPOR24_25		RPO2	5R<3:0>		RPO24R<3:0>				
E1Dh	RPOR22_23		RPP23	3R<3:0>		RPO22R<3:0>				
E1Ch	RPOR20_21		RPO2 ⁻	1R<3:0>		RPO20R<3:0>				
E1Bh	RPOR18_19		RPO19	9R<3:0>		RPO18R<3:0>				
E1Ah	RPOR16_17		RPO1	7R<3:0>		RPO16R<3:0>				
E19h	RPOR14_15		RPO1	5R<3:0>		RPO14R<3:0>				
E18h	RPOR12_13		RPO1:	3R<3:0>		RPO12R<3:0>				
E17h	RPOR10_11		RPO1 ²	1R<3:0>		RPO10R<3:0>				
E16h	RPOR8_9		RPO9	R<3:0>		RPO8R<3:0>				
E15h	RPOR6_7		RP07	R<3:0>		RP06R<3:0>				
E14h	RPOR4_5		RPO5	R<3:0>			RPO4R	<3:0>		
E13h	RPOR2_3		RPO3	R<3:0>			RPO2R	<3:0>		
E12h	RPOR0_1		RPO1	R<3:0>			RPO0R	<3:0>		
E11h	UCFG	UTEYE	UOEMON	—	UPUEN	UTRDIS	FSEN	PPB1	PPB0	
E10h	UIE	—	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE	
E0Fh	UEIE	BTSEE	—	—	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	
E0Eh	UEP15	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E0Dh	UEP14	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E0Ch	UEP13	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E0Bh	UEP12	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E0Ah	UEP11	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E09h	UEP10	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E08h	UEP9	—	_	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E07h	UEP8	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E06h	UEP7	—	_	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E05h	UEP6	—	_	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	
E04h	UEP5	—	_	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	

TABLE 6-2: REGISTER FILE SUMMARY (CONTINUED)

Legend: — = unimplemented, read as '0'.

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

The TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, the TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word.

Figure 7-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU	; ;	; Load TBLPTR with the base ; address of the word
	MOVWE	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+	-	;	; read into TABLAT and increment
	MOVF	TABLAT, W	;	; get data
	MOVWF	WORD_EVEN		
	TBLRD*+	-	;	; read into TABLAT and increment
	MOVF	TABLAT, W	;	; get data
	MOVWF	WORD_ODD		

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	IOCIP
bit 7							bit 0
Legend:							
R = Readable	le bit	W = Writable	bit	U = Unimplen	nented bit, rear	d as '0'	
-n = Value at	ι POR	'1' = Bit is set	ι	'0' = Bit is cle	ared	x = Bit is unkr	nown
_				_	_		
bit 7	RBPU: PORT	fB Pull-up Ena	ble bit				
		B pull-ups are	disabled				
L:4 C	0 = PURID P	Jull-ups are end		JUAI рогі іаісні v - 4 ⊾:4	alues		
DILO		(ternal interrup) Con rigina edae	(U Eage Select	I DII			
	1 = Interrupt 0 = Interrupt	on falling edge	3				
bit 5	INTEDG1: EX	xternal Interrup	ot 1 Edge Selec	et bit			
	1 = Interrupt	on rising edge	;	• - ·			
	0 = Interrupt	on falling edge	ę				
bit 4	INTEDG2: Ex	kternal Interrup	t 2 Edge Selec	t bit			
	1 = Interrupt	on rising edge					
L:1 0		On failing euge	; 	-4 6:4			
DIT 3		(ternal interrup)	(3 Euge Select	I DII			
	0 = Interrupt	on falling edge	5				
bit 2	TMR0IP: TMF	R0 Overflow In	Iterrupt Priority	bit			
	1 = High prio	ority					
	0 = Low prior	rity					
bit 1	INT3IP: INT3	External Interr	oupt Priority bit				
	1 = High prior	ority					
hit A		illy art Change Inte	orrunt Priority h	~:+			
DILU	1 = High pric	ority	flupt Flionty 6	IL			
	0 = Low prior	rity					
		-					
N-4a. Jr	for the hits				less of	the of ite	
Note: In	iterrupt flag bits	are set when	an interrupt co	Undition occurs	regardless or i	the state of its	corresponding
		JObai Interrup	LI L	Jel Sullwale Sho		, appropriate in	terrupt hay bits

are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

PIC18F97J94 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
RC4IF	TX4IF	RC3IF	TX3IF		CMP3IF	CMP2IF	CMP1IF
bit 7	•	·					bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unki	nown
bit 7	RC4IF: EUS 1 = The EU	SART4 Receive SART4 receive	Interrupt Flag buffer is full (o	bit cleared by rea	ding RCREG4)		
bit 6	TX4IF: EUS	ART4 Transmit	Interrupt Flag	bit			
	1 = The EU 0 = The EU	SART4 transmit SART4 transmit	t buffer is emp t buffer is full	ty (cleared by	writing to TXRE	G4)	
bit 5	RC3IF: EUS	ART3 Receive	Interrupt Flag	bit			
	1 = The EU 0 = The EU	SART3 receive SART3 receive	buffer is full (o buffer is empt	cleared by rea	ding RCREG3)		
bit 4	TX3IF: EUS	ART3 Transmit	Interrupt Flag	bit			
	1 = The EU 0 = The EU	SART3 transmit SART3 transmit	t buffer is emp t buffer is full	ty (cleared by	writing to TXRE	G3)	
bit 3	Unimpleme	nted: Read as '	0'				
bit 2	CMP3IF: CN	/IP3 Interrupt Fla	ag bit				
	1 = CMP3 i 0 = No CMF	nterrupt occurre P3 interrupt occi	d (must be cle urred	eared in softwa	are)		
bit 1	CMP2IF: CM	/IP2 Interrupt Fla	ag bit				
	1 = CMP2 i 0 = No CMF	nterrupt occurre P2 interrupt occu	d (must be cle urred	eared in softwa	are)		
bit 0	CMP1IF: CM	/11 Interrupt Flag	g bit				
	1 = CMP1 i 0 = No CMF	nterrupt occurre	d (must be cle urred	eared in softwa	are)		

REGISTER 10-9: PIR6: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 6

R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IBF	OBF	IBOV	PSPMODE	—		_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	IBF: Input But	ffer Full Status	bit				
	1 = A word ha	as been receive	ed and is waiti	ng to be read	by the CPU		
	0 = No word h	nas been recei	ved				
bit 6	OBF: Output	Buffer Full Stat	tus bit				
	1 = The outpu	ut buffer still ho	lds a previous	ly written word	1		
	0 = The outpu	it buffer has be	en read				
bit 5	IBOV: Input B	Suffer Overflow	Detect bit				
	1 = A write oc	curred when a	previously inp	out word had n	ot been read (m	nust be cleared	in software)
	0 = No overflo	ow occurred					
bit 4	PSPMODE: F	Parallel Slave F	Port Mode Sele	ect bit			
	1 = Parallel S	lave Port mode	e				
	0 = General F	Purpose I/O mo	ode				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 11-4: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER

FIGURE 11-4: PARALLEL SLAVE PORT WRITE WAVEFORMS

PIC18F97J94 FAMILY

REGISTER 13-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER										
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
LCDIRE	—	LCDCST2	LCDCST1	LCDCST0	VLCD3PE	VLCD2PE	VLCD1PE			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	LCDIRE: LCD 1 = Internal L) Internal Refer .CD reference i	ence Enable b is enabled and	it connected to tl	he internal con	trast control cir	cuit			
	0 = Internal L	CD reference i	s disabled							
bit 6	Unimplemen	ted: Read as 'o)'							
bit 5-3	LCDCST<2:0	>: LCD Contra	st Control bits							
	Selects the R 111 =Resisto 110 =Resisto 101 =Resisto 011 =Resisto 010 =Resisto 001 =Resisto 000 =Minimu	r ladder is at m r ladder is at 6/ r ladder is at 5/ r ladder is at 4/ r ladder is at 3/ r ladder is at 2/ r ladder is at 1/ m resistance (n	2 LCD Contras aximum resista 7th of maximum 7th of maximum 7th of maximum 7th of maximum 7th of maximum	m resistance m resistance m resistance m resistance m resistance m resistance m resistance ast); resistor la	dder is shorted					
bit 2	VLCD3PE: Bi 1 = BIAS3 lev 0 = BIAS3 lev	as3 Pin Enable vel is connecte vel is internal (i	e bit d to the externa nternal resistor	al pin, LCDBIA: r ladder)	S3					
bit 1	VLCD2PE: Bi	as2 Pin Enable	e bit	,						
	1 = BIAS2 lev 0 = BIAS2 lev	vel is connecte vel is internal (i	d to the externanternal resistor	al pin, LCDBIA: r ladder)	S2					
bit 0	VLCD1PE: Bi	as1 Pin Enable	e bit							
	1 = BIAS1 lev 0 = BIAS1 lev	vel is connecte vel is internal (i	d to the externation of the	al pin, LCDBIA r ladder)	S1					

13.13 LCD Interrupts

The LCD timing generation provides an interrupt that defines the LCD frame timing. This interrupt can be used to coordinate the writing of the pixel data with the start of a new frame, which produces a visually crisp transition of the image.

This interrupt can also be used to synchronize external events to the LCD. For example, the interface to an external segment driver can be synchronized for segment data updates to the LCD frame.

A new frame is defined as beginning at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 13-22.

The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins accessing data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame.

When the LCD driver is running with Type-B waveforms, and the LMUX<2:0> bits are not equal to '000', there are some additional issues.

Since the DC voltage on the pixel takes two frames to maintain 0V, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel.

Because of this, using Type-B waveforms requires synchronizing the LCD pixel updates to occur within a subframe after the frame interrupt.

To correctly sequence writing in Type-B, the interrupt only occurs on complete phase intervals. If the user attempts to write when the write is disabled, the WERR bit (LCDCON<5>) is set.

Note: The interrupt is not generated when the Type-A waveform is selected and when the Type-B with no multiplex (static) is selected.

FIGURE 13-22: EXAMPLE WAVEFORMS AND INTERRUPT TIMING IN QUARTER DUTY CYCLE DRIVE

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	TxOUTPS3	TxOUTPS2	TxOUTPS1	TxOUTPS0	TMRxON	TxCKPS1	TxCKPS0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	Iown			
bit 7	Unimplemen	ted: Read as 'd)'							
bit 6-3	TxOUTPS<3:	0>: Timerx Out	tput Postscale	Select bits						
	0000 = 1:1 Pe	ostscale								
	0001 = 1:2 Pe	ostscale								
	•									
	•									
	•	Destagelo								
bit 2	TMRxON: In	nerx On bit								
	1 = Timerx is on									
	0 = 1 imerx is	off								
bit 1-0	TxCKPS<1:0	>: Timerx Cloc	k Prescale Sel	ect bits						
	00 = Prescaler is 1									
	01 = Prescale	er is 4								
	1x = Prescale	er is 16								

REGISTER 16-1: TxCON: TIMERx CONTROL REGISTER (TIMER2/4/6/8)

16.2 Timer2/4/6/8 Interrupt

The Timer2/4/6/8 modules have 8-bit Period registers, PRx, that are both readable and writable. Timer2/4/6/8 increment from 00h until they match PR2/4/6/8 and then reset to 00h on the next increment cycle. The PRx registers are initialized to FFh upon Reset.

16.3 Output of TMRx

The outputs of TMRx (before the postscaler) are used only as a PWM time base for the ECCP modules. They are not used as baud rate clocks for the MSSPx modules as is the Timer2 output.

The SPI DMA module can write received data to all general purpose memory on the device, including memory used for USB endpoint buffers. The SPI DMA module cannot be used to modify the Special Function Registers contained in Banks 14 and 15.

20.4.5 INTERRUPTS

The SPI DMA module alters the behavior of the SSP1IF interrupt flag. In normal non-DMA modes, the SSP1IF is set once after every single byte is transmitted/received through the MSSP1 module. When MSSP1 is used with the SPI DMA module, the SSP1IF interrupt flag will be set according to the user-selected INTLVL<3:0> value specified in the DMACON2 register. The SSP1IF interrupt condition will also be generated once the SPI DMA transaction has fully completed and the DMAEN bit has been cleared by hardware.

The SSP1IF flag becomes set once the DMA byte count value indicates that the specified INTLVLx has been reached. For example, if DMACON2<3:0> = 0101 (16 bytes remaining), the SSP1IF interrupt flag will become set once DMABC reaches 00Fh. If user firmware then clears the SSP1IF interrupt flag, the flag will not be set again by the hardware until after all bytes have been fully transmitted and the DMA transaction is complete.

Note: User firmware may modify the INTLVLx bits while a DMA transaction is in progress (DMAEN = 1). If an INTLVLx value is selected which is higher than the actual remaining number of bytes (indicated by DMABC + 1), the SSP1IF interrupt flag will immediately become set.

For example, if DMABC = 00Fh (implying 16 bytes are remaining) and user firmware writes '1111' to INTLVL<3:0> (interrupt when 576 bytes are remaining), the SSP1IF interrupt flag will immediately become set. If user firmware clears this interrupt flag, a new interrupt condition will not be generated until either: user firmware again writes INTLVLx with an interrupt level higher than the actual remaining level, or the DMA transaction completes and the DMAEN bit is cleared.

Note: If the INTLVLx bits are modified while a DMA transaction is in progress, care should be taken to avoid inadvertently changing the DLYCYC<3:0> value.

PIC18F97J94 FAMILY

22.0 12-BIT A/D CONVERTER WITH THRESHOLD SCAN

The 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 200 ksps at 12 bits and 500 ksps at 10 bits
- Up to 32 Analog Input Channels (internal and external)
- · Selectable 10-Bit or 12-Bit (default) Conversion
- Resolution
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H) Amplifier
- Automated Threshold Scan and Compare Operation to Pre-Evaluate up to 26 Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- · Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC18 devices. Both modules are Successive Approximation Register (SAR) Converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options, tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

As before, an internal Sample-and-Hold (S/H) amplifier acquires a sample of an input signal, then holds that value constant during the conversion process. A combination of input multiplexers selects the signal to be converted from up to 32 analog inputs, both external (analog input pins) and internal (e.g., on-chip voltage references and other analog modules). The whole multiplexer path includes provisions for differential analog input, although, with a limited number of negative input pins. The sampled voltage is held and converted to a digital value, which strictly speaking, represents the ratio of that input voltage to a reference voltage. Configuration choices allow connection of an external reference or use of the device power and ground (AVDD and AVSS). Reference and input signal pins are assigned differently depending on the particular device.

An array of timing and control selections allow the user to create flexible scanning sequences. Conversions can be started individually by program control, continuously free-running or triggered by selected hardware events. A single channel may be repeatedly converted. Alternate conversions may be performed on two channels, or any or all of the channels may be sequentially scanned and converted according to a user-defined bit map. The resulting conversion output is a 12-bit digital number, which can be signed or unsigned, left or right justified. (In some devices, a user-selectable resolution of ten bits is available; in other devices, 10-bit resolution is the only option available.)

Conversions are automatically stored in a dedicated buffer, allowing for multiple successive readings to be taken before software service is needed. The buffer can be configured to function as a FIFO buffer or as a channel indexed buffer. In FIFO mode, the buffer can be split into two equal sections for simultaneous conversion and read operations. In Indexed mode, the buffer can use the Threshold Scan feature to determine if a conversion meets specific, user-defined criteria, storing or discarding the converted value as appropriate, and then set semaphore flags to indicate the event. This allows conversions to occur in low-power modes when the CPU is inactive, waking the device only when specific conditions have occurred.

The module sets its interrupt flag after a selectable number of conversions, when the buffer can be read, or after a successful Threshold Detect comparison. After the interrupt, the sequence restarts at the beginning of the buffer. When the interrupt flag is set, according to the earlier selection, scan selections and the Output Buffer Pointer return to their starting positions.

During Sleep or Idle mode, the A/D can wake-up at preconfigured intervals while the device maintains a Low-Power mode. If threshold conditions have not been met on any of the conversions, the module will return to a Low-Power mode.

The A/D module provides configuration to directly interact with the CTMU on specific input channels. This allows the CTMU to automatically turn on only when requested directly by the A/D, even though the rest of the device stays in Sleep mode.

A simplified block diagram for the module is shown in Figure 22-1.

22.1 Registers

The 12-bit A/D converter module uses up to 75 registers for its operation. All registers are mapped in the data memory space.

22.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to twelve control and STATUS registers:

- ADCON1H/L: A/D Control Registers
- ADCON2H/L: A/D Control Registers
- ADCON3H/L: A/D Control Registers
- ADCON5H/L: A/D Control Registers
- ADCHS0H/L: A/D Input Channel Select Registers
- ADCHITH1H/L and ADCHITH0H/L: A/D Scan Compare Hit Registers
- ADCSS1H/L and ADCSS0H/L: A/D Input Scan Select Registers
- ADCTMUEN1H/L and ADCTMUEN0H/L: CTMU Enable Register

The ADCON1H/L, ADCON2H/L and ADCON3H/L registers control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion triggers, and manually controlling the sample/convert sequences. The ADCON5H/L registers specifically controls features of Threshold Detect operation, including its functioning in power-saving modes.

The ADCHS0H/L registers selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The ADCHITH1H/L and ADCHITH0H/L registers are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases, indicate if a match condition has occurred. Their use is described in more detail in Section 22.7 "Threshold Detect Operation". ADCHITH0H/L is always implemented, whereas ADCHITH1H/L may not be implemented in devices with 16 channels or less. The ADCSS0H/L/L registers select the channels to be included for sequential scanning. The ADCTMUEN1H/ L/L registers select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. ADCTMUEN0H/L is always implemented, whereas ADCTMUEN1H/L may not be implemented in devices with 16 channels or less.

22.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port RAM, called ADCBUF. The buffer is composed of at least the same number of word locations as there are external analog channels for a particular device, with a maximum number of 26. The number of buffer addresses is always even. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADCBUF0H/L through ADCBUFnH/L (up to 26).

The A/D result buffers are both readable and writable. When the module is active (ADCON1H<7> = 1), the buffers are read-only, and store the results of A/D conversions. When the module is inactive (ADCON1H<7> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations, as described in Section 22.7.2, Setting Comparison Thresholds.

REGISTER 22-20: ADCSS0H: A/D INPUT SCAN SELECT REGISTER 0 HIGH (HIGH WORD)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSS15 | CSS14 | CSS13 | CSS12 | CSS11 | CSS10 | CSS9 | CSS8 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0

CSS<15:8>: A/D Input Scan Selection bits

1 = Includes corresponding channel for input scan

0 = Skips channel for input scan

REGISTER 22-21: ADCSS0L: A/D INPUT SCAN SELECT REGISTER 0 LOW (LOW WORD)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSS7 | CSS6 | CSS5 | CSS4 | CSS3 | CSS2 | CSS1 | CSS0 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0 CSS<7:0>: A/D Input Scan Selection bits

1 = Includes corresponding channel for input scan

0 = Skips channel for input scan

22.5.2.1 Free-running Sample Conversion Sequence

Using the Auto-Convert Conversion Trigger mode (SSRC<3:0> = 0111), in combination with the Auto-Sample Start mode (ASAM = 1), allows the A/D module to schedule sample/conversion sequences with no intervention by the user or other device resources. This "Clocked" mode, shown in Figure 22-7, allows continuous data collection after module initialization.

Note that all timing in this mode scales with TAD, either from the A/D internal RC clock or from TCY (as prescaled by the ADCS<7:0> bits). In both cases, the SAMC<4:0> bits set the number of TAD clocks in TSAMP. TCONV is fixed at 12 TAD.

FIGURE 22-7: CONVERTING ONE CHANNEL, AUTO-SAMPLE START, TAD-BASED CONVERSION START

A/D CLK						
SAMP						I I
DONE		• • •	1 1 1	' ∫	Reset by Software	
ADC1BUF0		1		χ	r I	r
ADC1BUF1		1 1 1	1 T 1 1	1 1 1 1	1 T 1	X
Instruction Execution	BSF AD1CON1, ASAM		1 1		1 1	1 1
		1	1 '	1	1	1

22.5.2.2 Sample Time Considerations Using Clocked Conversion Trigger And Automatic Sampling

The user must ensure the sampling time satisfies the sampling requirements, as outlined in **Section 22.9 "A/ D Sampling Requirements"**. Assuming that the module is set for automatic sampling and using a clocked conversion trigger, the sampling interval is specified by the SAMCx bits.

22.5.3 EVENT TRIGGER CONVERSION START

It is often desirable to synchronize the end of sampling and the start of conversion with some other time event. Depending on the device family, the A/D module has up to 16 sources available to use as a conversion trigger event. The event trigger is selected by the SSRC<3:0> bits (ADCON1L<7:4>).

As noted, the available event triggers vary between device families. Refer to the specific device data sheet for specific information. The examples that follow represent trigger sources that are implemented in most devices. Note that the SSRCx bit assignments may vary in some devices.

22.5.3.1 External Int0 Pin Trigger

When SSRC<3:0> = 0001, the A/D conversion is triggered by an active transition on the INTO pin. The pin may be programmed for either a rising edge input or a falling edge input.

22.5.3.2 Special Event Trigger

When SSRC<3:0> = 0010, the A/D is triggered by a Special Event Trigger. Refer to CCP and ECCP section for more information about Special Event Triggers.

22.5.3.3 Synchronizing A/D Operations To Internal Or External Events

The modes where an external event trigger pulse ends sampling and starts conversion may be used in combination with auto-sampling (ASAM = 1) to cause the A/ D to synchronize the sample conversion events to the trigger pulse source. For example, in Figure 22-9, where SSRC<3:0> = 0010 and ASAM = 1, the A/D will always end sampling and start conversions synchronously with the timer compare trigger event. The A/D will have a sample conversion rate that corresponds to the timer comparison event rate.

26.5 Measuring Capacitance with the CTMU

There are two ways to measure capacitance with the CTMU. The absolute method measures the actual capacitance value. The relative method only measures for any change in the capacitance.

26.5.1 ABSOLUTE CAPACITANCE MEASUREMENT

For absolute capacitance measurements, both the current and capacitance calibration steps found in **Section 26.4 "Calibrating the CTMU Module"** should be followed.

To perform these measurements:

- 1. Initialize the A/D Converter.
- 2. Initialize the CTMU.
- 3. Set EDG1STAT.
- 4. Wait for a fixed delay, T.
- 5. Clear EDG1STAT.
- 6. Perform an A/D conversion.
- 7. Calculate the total capacitance, CTOTAL = (I * T)/V, where:
 - I is known from the current source measurement step (Section 26.4.1 "Current Source Calibration")
 - · T is a fixed delay
 - V is measured by performing an A/D conversion
- 8. Subtract the stray and A/D capacitance (COFFSET from Section 26.4.2 "Capacitance Calibration") from CTOTAL to determine the measured capacitance.

26.5.2 CAPACITIVE TOUCH SENSE USING RELATIVE CHARGE MEASUREMENT

Not all applications require precise capacitance measurements. When detecting a valid press of a capacitance-based switch, only a relative change of capacitance needs to be detected.

In such an application when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the A/D Converter and other elements. A larger voltage will be measured by the A/D Converter. When the switch is closed (or touched), the total capacitance is larger due to the addition of the capacitance of the human body to the above listed capacitances and a smaller voltage will be measured by the A/D Converter.

To detect capacitance changes simply:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Wait for a fixed delay.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.

The voltage measured by performing the A/D conversion is an indication of the relative capacitance. In this case, no calibration of the current source or circuit capacitance measurement is needed. (For a sample software routine for a capacitive touch switch, see Example 26-4.)

PIC18F97J94 FAMILY

BRA		Unconditio	Unconditional Branch						
Synta	ax:	BRA n							
Oper	ands:	-1024 ≤ n ≤	1023						
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$						
Statu	s Affected:	None							
Enco	ding:	1101	0nnn nnr	nn nnnn					
Desc	ription:	Add the 2's the PC. Sin incrementer instruction, PC + 2 + 2r 2-cycle inst	Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.						
Word	ls:	1	1						
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No operation	No operation	No operation	No operation					
Example: HERE BRA Jump									
Before Instruction PC = address (HERE) After Instruction PC = address (Jump)									

BSF	Bit Set f							
Syntax:	BSF f, b {	BSF f, b {,a}						
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$						
Operation:	$1 \rightarrow \text{f}$							
Status Affected:	None							
Encoding:	1000	bbba	ffff	ffff				
Description:	Bit 'b' in reo	gister 'f' i	s set.					
	lf 'a' is '0', t lf 'a' is '1', t GPR bank.	he Acces he BSR i	ss Bank is is used to	selected. select the				
	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details							
Words:	1	1						
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	5	Q4				
Decode	Read register 'f'	Proce Data	ess a reț	Write gister 'f'				
Example:BSFFLAG_REG, 7, 1Before InstructionFLAG_REG = 0AhAfter InstructionFLAG_REG = 8Ah								

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	—	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		—	
		1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		—		
109	109 TAA Output Val from Clock	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission
			1 MHz mode ⁽¹⁾	—	_	μS	can start
D102	Св	Bus Capacitive	Loading	—	400	pF	

TABLE 30-37: MSSPx I²C BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all II^2C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter #102 + Parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

FIGURE 30-20: EUSARTx SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 30-38: EUSARTx/AUSARTx SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE) Clock High to Data Out Valid		40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	_	20	ns	
122	TDTRF	Data Out Rise Time and Fall Time		20	ns	