

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j94t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 IDLE MODE

When the device enters Idle mode, the following events occur:

- The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source will remain active and the peripheral modules, by default, will continue to operate normally from the system clock source. Peripherals can optionally be shut down in Idle mode using their 'Stop in Idle' control bit. (See peripheral descriptions for further details.)
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The processor will wake-up from Idle mode on the following events:

- On any interrupt that is individually enabled.
- On any source of device Reset.
- On a WDT time-out.

Upon wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the SLEEP instruction, or the first instruction in the Interrupt Service Routine (ISR).

4.2.3.1 Time Delays on Wake-up from Idle Mode

Unlike a wake-up from Sleep mode, there are no additional time delays associated with wake-up from Idle mode. The system clock is running during Idle mode, therefore, no start-up times are required at wake-up.

4.2.3.2 Wake-up from Idle on Interrupt

Any source of interrupt that is individually enabled using the corresponding control bit in the PIEx register, will be able to wake-up the processor from Idle mode. When the device wakes from Idle mode, one of two options may occur:

- If the GIE bit is set, the processor will wake and the Program Counter will begin execution at the interrupt vector.
- If the GIE bit is not set, the processor will wake and the Program Counter will continue execution following the SLEEP instruction.

The PD Status bit (RCON<2>) is set upon wake-up.

4.2.3.3 Wake-up from Idle on Reset

Any Reset, other than a Power-on Reset (POR), will wake-up the CPU from Idle mode on any device Reset, except a POR.

4.2.3.4 Wake-up from Idle on WDT Time-out

If the WDT is enabled, then the processor will wake-up from Idle mode on a WDT time-out and continue code execution with the instruction following the SLEEP instruction that initiated Idle mode. Note that the WDT time-out does not reset the device in this case. The TO bit (RCON<3>) will be set.

4.2.4 SLEEP MODES

Most 08KA101 family devices that incorporate powersaving features and VBAT, offer two distinct Sleep modes: Sleep mode and Retention Sleep mode. The characteristics of both Sleep modes are:

- The system clock source is shut down. If an onchip oscillator is used, it is turned off.
- The device current consumption will be optimum, provided no I/O pin is sourcing the current.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- If Brown-out Reset (BOR) is enabled, the Brownout Reset (BOR) circuit remains operational during Sleep mode.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some peripherals may continue to operate in Sleep mode. These peripherals include I/O pins that detect a change in the input signal or peripherals that use an external clock input. Any peripheral that operates from the system clock source will be disabled in Sleep mode.

The processor will exit, or 'wake-up' from Sleep on one of the following events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

17 (8)						-,						
	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
F69h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN			
F68h	SSP1MSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0			
F67h	BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	IREN	WUE	ABDEN			
F66h	OSCCON2	CLKLOCK	IOLOCK	LOCK	—	CF	POSCEN	SOSCGO	_			
F65h	OSCCON3	_	_	_	_	—	IRCF2	IRCF1	IRCF0			
F64h	OSCCON4	CPDIV1	CPDIV0	PLLEN	_	_	l –	—	_			
F63h	ACTCON	ACTEN	_	ACTSIDL	ACTSRC	ACTLOCK	ACTLOCKPOL	ACTORS	ACTORSPOL			
F62h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0			
F61h	PIE6	RC4IE	TX4IE	RC3IE	TX3IE	_	CMP3IE	CMP2IE	CMP1IE			
F60h	DMACON1	SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN			
F5Fh	RTCCON1	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0			
F5Eh	RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0			
F5Dh	RTCVALH	RTCC Value Hi	gh Register Wind	low Based on F	RTCPTR<1:0>				1			
F5Ch	RTCVALL	RTCC Value Lo	w Register Wind	ow Based on R	TCPTR<1:0>							
F5Bh	ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0			
F5Ah	ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0			
F59h	ALRMVALH	Alarm Value Hid	h Register Wind	ow Based on A	PTR<1:0>							
F58h	ALRMVALL	Alarm Value Lo	w Register Windo	ow Based on Al	PTR<1:0>				-			
F57h	RTCCON2	PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLKSEL1	RTCCLKSEL0	RTCSECSEL1	RTCSECSEL0			
F56h	IOCP	IOCP7	IOCP6	IOCP5	IOCP4	IOCP3	IOCP2	IOCP1	IOCP0			
F55h	IOCN	IOCN7	IOCN6	IOCN5	IOCN4	IOCN3	IOCN2	IOCN1	IOCN0			
F54h	PADCFG1	RDPU	REPU	RFPU	RGPU	RHPU	RJPU	RKPU	RLPU			
F53h	CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0			
F52h	ECCP2AS	ECCP2ASE	ECCP2AS2	ECCP2AS1	ECCP2AS0	PSS2AC1	PSS2AC0	PSS2BD1	PSS2BD0			
F51h	ECCP2DEI	P2RSEN	P2DC6	P2DC5	P2DC4	P2DC3	P2DC2	P2DC1	P2DC0			
F50h	CCPR2H	Capture/Compa	are/PWM Registe	er 1 High Byte					1			
F4Fh	CCPR2L	Capture/Compa	are/PWM Registe	er 1 Low Byte								
F4Eh	CCP2CON	P2M1	P2M0	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0			
F4Dh	ECCP3AS	ECCP3ASE	ECCP3AS2	ECCP3AS1	ECCP3AS0	PSS3AC1	PSS3AC0	PSS3BD1	PSS3BD0			
F4Ch	ECCP3DEL	P3RSEN	P3DC6	P3DC5	P3DC4	P3DC3	P3DC2	P3DC1	P3DC0			
F4Bh	CCPR3H	Capture/Compa	are/PWM Registe	er 1 High Byte								
F4Ah	CCPR3L	Capture/Compa	are/PWM Registe	er 1 Low Byte								
F49H	CCP3CON	P3M1	P3M0	CCP3X	CCP3Y	CCP3M3	CCP3M2	CCP3M1	CCP3M0			
F48h	CCPR8H	Capture/Compa	are/PWM Registe	r 8 High Byte	00.01		00101112					
F47h	CCPR8I	Capture/Compa	are/PWM Registe	er 8 I ow Byte								
F46h	CCP8CON			CCP8X	CCP8Y	CCP8M3	CCP8M2	CCP8M1	CCP8M0			
F45h	CCPR9H	Capture/Compa	I are/PWM Registe	r 9 High Byte	00.01		00101112					
F44h	CCPR9I	Capture/Compa	are/PWM Registe	er 9 Low Byte								
F43h	CCP9CON			CCP9X	CCP9Y	CCP9M3	CCP9M2	CCP9M1	CCP9M0			
F42h	CCPR10H	Capture/Compa	I are/PWM Registe	r 10 High Byte	00101							
F41h	CCPR10I	Capture/Compa	are/PWM Registe	r 10 Low Byte								
F40h	CCP10CON			CCP10X	CCP10Y	CCP10M3	CCP10M2	CCP10M1	CCP10M0			
F3Eh		Timer6 Register	l									
F3Eh	PR6	Timer6 Period F	' Register									
F3Dh	TECON			TEOLITPS2	TEOLITPS1		TMR6ON	TECKPS1	TECKPSO			
F3Ch		Timer8 Register	r	100011 02	100011 01	100011-00		10010 01				
F3Rh	PR8											
ESVP												
ESOLI	SSD2CON2			10001P32	POEN							
E206	CM2CON											
F300		CON	COE			EVPOLU		COHI	CCHU			
F3/N	CIVISCON	CON	COE	CPUL	EVPUL1	EVPOLU	UKEF	CCH1	CCHU			

TABLE 6-2:	REGISTER FILE SUMMARY	(CONTINUED)
		1

Legend: — = unimplemented, read as '0'.

8.0 EXTERNAL MEMORY BUS

Note:	The	External	Memory	Bus	is	not
	imple	mented on	64-pin dev	/ices.		

The External Memory Bus (EMB) allows the device to access external memory devices (such as Flash, EPROM or SRAM) as program or data memory. It supports both 8 and 16-Bit Data Width modes, and three address widths of up to 20 bits.

The bus is implemented with 28 pins, multiplexed across four I/O ports. Three ports (PORTD, PORTE and PORTH) are multiplexed with the address/data bus for a total of 20 available lines, while PORTJ is multiplexed with the bus control signals.

A list of the pins and their functions is provided in Table 8-1.

TABLE 8-1: PIC18F97J94 FAMILY EXTERNAL BUS – I/O PORT FUNCTIONS

Name	Port	Bit	External Memory Bus Function		
RD0/AD0	PORTD	0	Address Bit 0 or Data Bit 0		
RD1/AD1	PORTD	1	Address Bit 1 or Data Bit 1		
RD2/AD2	PORTD	2	Address Bit 2 or Data Bit 2		
RD3/AD3	PORTD	3	Address Bit 3 or Data Bit 3		
RD4/AD4	PORTD	4	Address Bit 4 or Data Bit 4		
RD5/AD5	PORTD	5	Address Bit 5 or Data Bit 5		
RD6/AD6	PORTD	6	Address Bit 6 or Data Bit 6		
RD7/AD7	PORTD	7	Address Bit 7 or Data Bit 7		
RE0/AD8	PORTE	0	Address Bit 8 or Data Bit 8		
RE1/AD9	PORTE	1	Address Bit 9 or Data Bit 9		
RE2/AD10	PORTE	2	Address Bit 10 or Data Bit 10		
RE3/AD11	PORTE	3	Address Bit 11 or Data Bit 11		
RE4/AD12	PORTE	4	Address Bit 12 or Data Bit 12		
RE5/AD13	PORTE	5	Address Bit 13 or Data Bit 13		
RE6/AD14	PORTE	6	Address Bit 14 or Data Bit 14		
RE7/AD15	PORTE	7	Address Bit 15 or Data Bit 15		
RH0/A16	PORTH	0	Address Bit 16		
RH1/A17	PORTH	1	Address Bit 17		
RH2/A18	PORTH	2	Address Bit 18		
RH3/A19	PORTH	3	Address Bit 19		
RJ0/ALE	PORTJ	0	Address Latch Enable (ALE) Control Pin		
RJ1/OE	PORTJ	1	Output Enable (OE) Control Pin		
RJ2/WRL	PORTJ	2	Write Low (WRL) Control Pin		
RJ3/WRH	PORTJ	3	Write High (WRH) Control Pin		
RJ4/BA0	PORTJ	4	Byte Address Bit 0 (BA0)		
RJ5/CE	PORTJ	5	Chip Enable (CE) Control Pin		
RJ6/LB	PORTJ	6	Lower Byte Enable (LB) Control Pin		
RJ7/UB	PORTJ	7	Upper Byte Enable (UB) Control Pin		

Note: For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional multiplexed features may be available on some pins.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
CCP10IP	CCP9IP	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	ECCP3IP
bit 7							bit 0
Legend:	. L :4	$\lambda = \lambda $	L:1		nonted bit rea	d aa (0)	
R = Readable			DI		nented bit, rea		
-n = value at	PUR	I = BILIS SEL		0 = Bit is cle	ared	x = Bit is unk	nown
bit 7	CCP10IP: C0	CP10 Interrupt	Priority bit				
	1 = High pric 0 = Low prio	rity rity	5				
bit 6	CCP9IP: CC	P9 Interrupt Pri	ority bit				
	1 = High pric 0 = Low prio	ority rity					
bit 5	CCP8IP: CC	P8 Interrupt Pri	ority bit				
	1 = High pric 0 = Low prio	ority rity					
bit 4	CCP7IP: CC	P7 Interrupt Pri	ority bit				
	1 = High pric 0 = Low prio	ority rity					
bit 3	CCP6IP: CC	P6 Interrupt Pri	ority bit				
	1 = High price	prity					
hit 2		111y P5 Interrunt Pri	ority bit				
	1 = High price	pritv					
	0 = Low prio	rity					
bit 1	CCP4IP: CC	P4 Interrupt Pri	ority bit				
	1 = High price	prity					
	0 = Low prio	rity					
bit 0	ECCP3IP: EC	CCP3 Interrupt	Priority bits				
	1 = High pric	rity					
		ing .					

REGISTER 10-19: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4

11.4 PORTC, LATC and TRISC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISC and LATC. Only PORTC pins, RC2 through RC7, are digital only pins. The pins have Schmitt Trigger input buffers.

When enabling peripheral functions, use care in defining TRIS bits for each PORTC pin. Some peripherals can override the TRIS bit to make a pin an output or input. Consult the corresponding peripheral section for the correct TRIS bit settings.

Note: These pins are configured as digital inputs on any device Reset.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 11-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by ; clearing output
CLRF	LATC	; data latches ; Alternate method ; to clear output ; data latches
MOVLW	OCFh	; Value used to ; initialize data ; direction
MOVWF	TRISC	; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RC0/	RC0	1	-	ST	PORTC<0> data input.		
PWRLCLK/	PWRLCLK	1	Ι	ST	Optional RTCC input from power line clock (50 or 60 Hz).		
30LN#30300	SCLKI	x	Ι	ST	Digital SOSC input.		
	SOSCO	x	0	ANA	Secondary Oscillator (SOSC) feedback output connection.		
RC1/SOSCI	RC1	1	Ι	ST	PORTC<1> data input.		
	SOSCI	x	Ι	ANA	Secondary Oscillator (SOSC) input connection.		
RC2/CTED7/	RC2	0	0	DIG	LATC<2> data output; not affected by analog input.		
RP11/AN9/		1	Ι	ST	PORTC<2> data input; disabled when analog input is enabled.		
32013	CTED7	1	Ι	ST	CTMU Edge 7 input.		
	RP11	х	х	DIG	Reconfigurable Pin 11 for PPS-Lite; TRIS must be set to match input/output of module.		
	AN9	1	-	ANA	A/D Input Channel 9. Default input configuration on POR; does not affect digital output.		
	SEG13	0	0	ANA	LCD Segment 13 output; disables all other pin functions.		
RC3/CTED8/	RC3	0	0	DIG	LATC<3> data output.		
RP15/SCL1/		1	Ι	ST	PORTC<3> data input.		
36017	CTED8	1	Ι	ST	CTMU Edge 8 input.		
	RP15	х	х	DIG	Reconfigurable Pin 15 for PPS-Lite; TRIS must be set to match input/output of module.		
	SCL1	x	I/O	I ² C	Synchronous serial clock input/output for I ² C mode.		
	SEG17	0	0	ANA	LCD Segment 17 output; disables all other pin functions		
RC4/CTED9/	RC4	0	0	DIG	LATC<4> data output.		
RP17/SDA1/		1	-	ST	PORTC<4> data input.		
36010	CTED9	1	_	ST	CTMU Edge 9 input.		
	RP17	х	х	DIG	Reconfigurable Pin 17 for PPS-Lite; TRIS must be set to match input/output of module.		
	SDA1	х	I/O	I ² C	I ² C mode data I/O		
	SEG16	0	0	ANA	LCD Segment 16 output; disables all other pin functions.		

TABLE 11-3: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, $l^2C = l^2C/SMBus$, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description	
RF6/RP40/C1INA/	RF6	0	0	DIG	LATF<6> data output.	
AN11/SEG24		1	I	ST	PORTF<6> data input.	
	RP40	x	х	DIG	Reconfigurable Pin 40 for PPS-Lite; TRIS must be set to match input/ output of module.	
	C1INA	1	I	ANA	Comparator 1 Input A.	
	AN11	1	I	ANA	A/D Input Channel 11. Default input configuration on POR; does not affect digital output.	
	SEG24	0	0	ANA	LCD Segment 24 output; disables all other pin functions.	
RF7/RP38/AN5/	RF7	0	0	DIG	LATF<7> data output.	
SEG25		1	I	ST	PORTF<7> data input.	
	RP38	х	x	DIG	Reconfigurable Pin 38 for PPS-Lite; TRIS must be set to match input/ output of module.	
	AN5	1	I	ANA	A/D Input Channel 5. Default input configuration on POR; does not affect digital output.	
	SEG25	0	0	ANA	LCD Segment 25 output; disables all other pin functions.	

TABLE 11-6: PORTF FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,

XCVR = USB Transceiver, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RH5/C2IND/	RH5	0	0	DIG	LATH<5> data output; not affected by analog input.
AN13/SEG41		1	Ι	ST	PORTH<5> data input; disabled when analog input is enabled.
	C2IND	1	Ι	ANA	Comparator 2 Input D.
	AN13	1	Ι	ANA	A/D Input Channel 13. Default input configuration on POR; does not affect digital output.
	SEG41	0	0	ANA	LCD Segment 41 output; disables all other pin functions.
RH6/C1INC/ RH6 0 O DIG LATH		DIG	LATH<6> data output; not affected by analog input.		
AN14/SEG42		1	Ι	ST	PORTH<6> data input; disabled when analog input is enabled.
	C1INC	1	I	ANA	Comparator 1 Input C.
	AN14	1	Ι	ANA	A/D Input Channel 14. Default input configuration on POR; does not affect digital output.
	SEG42	0	0	ANA	LCD Segment 42 output; disables all other pin functions.
RH7/AN15/	RH7	0	0	DIG	LATH<7> data output; not affected by analog input.
SEG43		1	Ι	ST	PORTH<7> data input; disabled when analog input is enabled.
	AN15	1	I	ANA	A/D Input Channel 15. Default input configuration on POR; does not affect digital output.
	SEG43	0	0	ANA	LCD Segment 43 output; disables all other pin functions.

TABLE 11-8: PORTH FUNCTIONS (CONTINUED)

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

12.0 DATA SIGNAL MODULATOR

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module, either internally from the output of a peripheral, or externally through an input pin.

The carrier signal is comprised of two distinct and separate signals: a Carrier High (CARH) signal and a Carrier Low (CARL) signal. During the time in which the Modulator (MOD) signal is in a logic high state, the DSM mixes the Carrier High signal with the Modulator signal. When the Modulator signal is in a logic low state, the DSM mixes the Carrier Low signal with the Modulator signal. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- Modulator Source Pin Disable
- Modulator Output Polarity Select
- Slew Rate Control

Figure 12-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

REGISTER 19-2: CCPTMRS1: CCP TIMER SELECT REGISTER 1

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C7TSEL1	C7TSEL0	—	C6TSEL0	—	C5TSEL0	C4TSEL1	C4TSEL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	C7TSEL<1:0>	CCP7 Timer	Selection bits	6			
	00 =CCP7 is l	based off of TN	/IR1/TMR2				
	01 =CCP7 is I	based off of TN	/R5/TMR4				
	10 =CCP7 is I	based off of IN					
DIT 5	Unimplement	ted: Read as 1	0.				
bit 4	C6TSEL0: CC	CP6 Timer Sele	ection bit				
	0 = CCP6 is l	based off of TN	/R1/TMR2				
	1 = CCP6 is l	based off of TN	/IR5/TMR2				
bit 3	Unimplement	ted: Read as '	0'				
bit 2	C5TSEL0: CC	CP5 Timer Sele	ection bit				
	0 = CCP5 is t	based off of TN	/IR1/TMR2				
	1 = CCP5 is l	based off of TN	/IR5/TMR4				
bit 1-0	C4TSEL<1:0>	CCP4 Timer	Selection bits	3			
	00 =CCP4 is l	based off of TN	/IR1/TMR2				
	01 =CCP4 is I	based off of TN	/R3/TMR4				
	10 =CCP4 is I	based off of TN	/IR3/TMR6				
	⊥⊥ =Reserved	i, do not use					

20.3.9 OPERATION IN POWER-MANAGED MODES

In SPI Master mode, module clocks may be operating at a different speed than when in full-power mode. In the case of Sleep mode, all clocks are halted.

In Idle modes, a clock is provided to the peripherals. That clock can be from the primary clock source, the secondary clock (SOSC Oscillator) or the INTOSC source.

In most cases, the speed that the master clocks SPI data is not important; however, this should be evaluated for each system.

If MSSPx interrupts are enabled, they can wake the controller from Sleep mode, or one of the Idle modes, when the master completes sending data. If an exit from Sleep or Idle mode is not desired, MSSPx interrupts should be disabled.

If the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in any power-managed mode and data to be shifted into the SPI Transmit/ Receive Shift register. When all 8 bits have been received, the MSSPx interrupt flag bit will be set, and if enabled, will wake the device.

20.3.10 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

20.3.11 BUS MODE COMPATIBILITY

Table 20-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 20-1: SPI BUS MODES

Standard SPI Mode	Control Bits State			
Terminology	СКР	CKE		
0,0	0	1		
0,1	0	0		
1,0	1	1		
1,1	1	0		

There is also an SMP bit which controls when the data is sampled.

20.3.12 SPI CLOCK SPEED AND MODULE INTERACTIONS

Because MSSP1 and MSSP2 are independent modules, they can operate simultaneously at different data rates. Setting the SSPM<3:0> bits of the SSPx-CON1 register determines the rate for the corresponding module.

An exception is when both modules use Timer2 as a time base in Master mode. In this instance, any changes to the Timer2 module's operation will affect both MSSPx modules equally. If different bit rates are required for each module, the user should select one of the other three time base options for one of the modules.

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF			
bit 7	·						bit 0			
Legend:										
R = Read	able bit	W = Writable b	oit	U = Unimple	mented bit, read	1 as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 7	SMP: Slew I	Rate Control bit								
	In Master or	Slave mode:								
	1 = Slew ra	te control is disat	led for Stan	dard Speed mo	de (100 kHz and	1 MHz)				
hit 6		le control is enab	ieu ior riigii-	Speed mode (-	+00 KI IZ)					
	In Master or	Slave mode:								
	1 = Enables	SMBus-specific i	nputs							
	0 = Disables	SMBus-specific	inputs							
bit 5	D/A: Data/A	ddress bit								
	In Master me	ode:								
	Reserved.									
	In Slave mo	<u>de:</u> s that the last byte	a received o	transmitted w	as data					
	0 = Indicates	s that the last byte	e received of	transmitted wa	as address					
bit 4	P: Stop bit ⁽¹⁾)								
	1 = Indicates	1 = Indicates that a Stop bit has been detected last								
	0 = Stop bit) = Stop bit was not detected last								
bit 3	S: Start bit ⁽¹)								
	1 = Indicates	s that a Start bit h	as been det	ected last						
h it 0	0 = Start bit		last L:+(2.3)							
DIT 2	R/W: Read/		DIT							
	1 = Read	<u>ue.</u>								
	0 = Write									
	In Master me	ode:								
	1 = Transmi	t is in progress	0							
bit 1		Addross bit (10 E	s Rit Slava ma							
	1 = Indicates	Address bit (10-	eds to undat	a the address i	in the SSPvADD	register				
	0 = Address	does not need to	be updated			register				
bit 0	BF: Buffer F	ull Status bit	•							
	In Transmit I	mode:								
	1 = SSPxBU	JF is full								
	0 = SSPxBU	JF is empty								
	1 = SSPxBI	<u>noae:</u> IF is full (does no	t include the	ACK and Stop	hits)					
	0 = SSPxBL	JF is empty (does	not include	the ACK and S	top bits)					
Note 4-	This hit is also	d on Docat and w			-					
NOTE 1:	This bit holds the		tion following	i is cleared.	ee match This	hit is only valid	from the			
Ζ.	address match t	o the next Start b	it Stop bit o	not ACK hit	555 maton. misi	JIC IS UTILY VAILU				

REGISTER 20-6: SSPxSTAT: MSSPx STATUS REGISTER (I²C MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

22.3 A/D Module Configuration

All of the registers described in the previous section must be configured for module operation to be fully defined. An effective approach is first, to describe the signals and sequences for the particular application. Typically, it is an iterative process to assign signals to port pins, to establish timing methods and to organize a scanning scheme, as well as to integrate the whole process with the software design.

The various configuration and control functions of the module are distributed throughout the module's six control registers. Control functions can be broadly sorted into four groups: input, timing, conversion and output. Table 22-1 shows the register location of control or Status bits by register.

A/D Function	Register(s)	Specific Bits				
Input	ADCON2H/L	PVCFG<1:0>, NVCFG, OFFCAL, CSCNA, ALTS				
	ADCHS0H/L	CH0NB<2:0>, CH0SB<4:0>, CH0NA<2:0>, CH0SA<4:0>				
	ADCSS0H/L	CSS<15:0>				
	ADCSS1H/L	CSS<30:16>				
	ADCTMEN0H/L	CTMEN<15:0>				
	ADCTMEN1H/L CTMEN<31:16>					
Conversion	ADCON1H/L	ADON, SSRC<3:0>, ASAM, SAMP, DONE, MODE12				
	ADCON2H/L	SMPI<4:0>				
	ADCON3H/L	EXTSAM				
	ADCON5H/L	ASEN, LPENA, ASINTMD<1:0>				
Timing	ADCON3H/L	ADRC, SAMC<4:0>, ADCS<7:0>				
Output	ADCON1H/L	FORM<1:0>				
	ADCON2H/L	BUFS, BUFM, BUFREGEN				
	ADCON5H/L	WM<1:0>, CM<1:0>				

Note:	Do not write to the SSRCx, BUFS, SMPIx,						
	BUFM and ALTS bits, or the ADCON3H/L,						
	and ADCSS0H/L registers, while						
	ADON = 1; otherwise, indeterminate con-						
	version data may result.						

The following steps should be followed for performing an A/D conversion:

- 1. Configure the A/D module:
 - Select the output resolution (if configurable)
 - Select the voltage reference source to match the expected range on analog inputs
 - Select the analog conversion clock to match the desired data rate with a processor clock
 - Determine how sampling will occur
 - Set the multiplexer input assignments
 - Select the desired sample/conversion sequence
 - Select the output data format
 - Select the output value destination
 - Select the number of readings per interrupt

- 2. Configure the A/D interrupt (if required):
 - Clear the ADIF bit
 - Select the A/D interrupt priority
- 3. Turn on the A/D module.

The options for each configuration step are described in the subsequent sections.

22.3.1 SELECTING THE RESOLUTION

The MODE12 bit (ADCON1H<3>) controls output resolution. Setting this bit selects 12-bit resolution.

22.3.2 SELECTING THE VOLTAGE REFERENCE SOURCE

The voltage references for A/D conversions are selected using the PVCFG<1:0> and NVCFG0 control bits (ADCON2H<7:5>). The upper voltage reference (VR+) may be AVDD, the external VREF+ or an internal band gap reference voltage. The lower voltage reference (VR-) may be AVSS or the VREF- input pin. The available options vary between device families.

The external voltage reference pins may be shared with the AN2 and AN3 inputs on low pin count devices. The A/D Converter can still perform conversions on these pins when they are shared with the VREF+ and VREF- input pins.

22.7.4 THRESHOLD DETECT INTERRUPTS

The A/D module can generate an interrupt and set the ADIF flag based on Threshold Detect operation. This is based on completion of a Threshold Detect sequence and/or the occurrence of a valid comparison. When Threshold Detect is enabled (ASENA = 1), A/D module interrupt generation is governed by the ASINTMDx bits (ADCON5H<1:0>), superseding any configuration implemented by the SMPIx bits (ADCON2L<6:2>). For information on alternative interrupt settings, refer to Section 22.6.1 "Number of Conversions Per Interrupt".

The Threshold Detect interrupt is configured by the ASINTMD<1:0> bits (ADCON5H<1:0>). Options include interrupt after a scan sequence, interrupt after a scan sequence with a valid match, interrupt after a valid match (without waiting for the sequence to end) or no interrupt.

22.7.5 COMPARISON MODE EXAMPLES

The following examples show the effect of valid comparisons on the results buffer and the

Compare Hit registers. In each figure, changes within the registers are indicated in bold.

For the sake of simplicity, the examples assume a device with only 16 analog inputs. Devices with a greater number of channels, and thus, larger results buffers and two Compare Hit registers, will function in a similar fashion.

Note:	When using any comparison mode,
	always use channel indexed buffer
	storage (BUFREGEN = 1). Otherwise,
	the threshold values for other channels
	may be overwritten, resulting in
	unpredictable comparisons.

22.7.5.1 Simple Comparisons (Greater And Less Than Results)

When the Compare Mode bits, CM<1:0> (ADCON5L<1:0>), are programmed as '0x', the converter compares the sampled value to see if it is greater than (CM<1:0> = 01), or less than (CM<1:0> = 00), the threshold value in the buffer location. If the condition is met, both of the following occur:

- The Compare Hit bit (CHHn) for the corresponding channel is set.
- If the Write Mode bits, WM<1:0>
 (ADCON5L<3:2>), are programmed to '01', the
 converted value is written to the buffer, replacing
 the threshold value. If WM<1:0> = 10, the
 converted value is discarded.

The changes to the result buffer and the Compare Hit register are shown in Figure 22-13. Note that they are the same for both types of simple comparison.

R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
bit 7			·	·			bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	CON: Compare	arator Enable b	it				
	0 = Compara	tor is disabled					
bit 6	COE: Compa	arator Output E	nable bit				
	1 = Compara 0 = Compara	tor output is pr	esent on the C ternal only	xOUT pin			
bit 5	CPOL: Comp	parator Output	Polarity Select	bit			
	1 = Compara 0 = Compara	tor output is in tor output is no	verted ot inverted				
bit 4-3	EVPOL<1:0>	: Interrupt Pola	arity Select bits				
	11 = Interrup 10 = Interrup 01 = Interrup 00 = Interrup	t generation or t generation or t generation or t generation is	n any change o nly on high-to-lo nly on low-to-hiq disabled	f the output ⁽¹⁾ ow transition of f gh transition of f	he output he output		
bit 2	CREF: Comp	parator Referen	ice Select bit (r	non-inverting inp	out)		
	1 = Non-inve 0 = Non-inve	rting input conr rting input conr	nects to interna nects to CxINA	I CVREF voltage			
bit 1-0	CCH<1:0>: (Comparator Ch	annel Select bi	ts			
	11 = Inverting 10 = Inverting 01 = Inverting 00 = Inverting	g input of comp g input of comp g input of comp g input of comp	parator connect parator connect parator connect parator connect	s to V _{BG} s to C2INB pin s to CxINC pin s to CxINx pin ⁽²)		
Note 1:	The CMPxIF is a after the initial co	utomatically se	t any time this	mode is selecte	d and must b	e cleared by the	application
2.	Comparator 1 an	d Comparator	3 USA C2INR a	s an input to the	inverting ter	minal Comparat	or 2 uses

REGISTER 23-1: CMxCON: COMPARATOR CONTROL x REGISTER

Comparator 1 and Comparator 3 use C2INB as an input to the inverting terminal. Comparator 2 uses C2IND as an input to the inverting terminal.

The USB Specification limits the power taken from the bus. Each device is ensured 100 mA at approximately 5V (one unit load). Additional power may be requested, up to a maximum of 500 mA.

Note that power above one unit load is a request and the host or hub is not obligated to provide the extra current. Thus, a device capable of consuming more than one unit load must be able to maintain a low-power configuration of a one unit load or less, if necessary.

The USB Specification also defines a Suspend mode. In this situation, current must be limited to 500 μ A, averaged over one second. A device must enter a suspend state after 3 ms of inactivity (i.e., no SOF tokens for 3 ms). A device entering Suspend mode must drop current consumption within 10 ms after suspend. Likewise, when signaling a wake-up, the device must signal a wake-up within 10 ms of drawing current above the suspend limit.

27.9.5 ENUMERATION

When the device is initially attached to the bus, the host enters an enumeration process in an attempt to identify the device. Essentially, the host interrogates the device, gathering information, such as power consumption, data rates and sizes, protocol and other descriptive information; descriptors contain this information. A typical enumeration process would be as follows:

- 1. USB Reset Reset the device. Thus, the device is not configured and does not have an address (Address 0).
- 2. Get Device Descriptor The host requests a small portion of the device descriptor.
- 3. USB Reset Reset the device again.
- 4. Set Address The host assigns an address to the device.
- 5. Get Device Descriptor The host retrieves the device descriptor, gathering info, such as manufacturer, type of device, maximum control packet size.
- 6. Get configuration descriptors.
- 7. Get any other descriptors.
- 8. Set a configuration.

The exact enumeration process depends on the host.

27.9.6 DESCRIPTORS

There are eight different standard descriptor types, of which, five are most important for this device.

27.9.6.1 Device Descriptor

The device descriptor provides general information, such as manufacturer, product number, serial number, the class of the device and the number of configurations. There is only one device descriptor.

27.9.6.2 Configuration Descriptor

The configuration descriptor provides information on the power requirements of the device and how many different interfaces are supported when in this configuration. There may be more than one configuration for a device (i.e., low-power and high-power configurations).

27.9.6.3 Interface Descriptor

The interface descriptor details the number of endpoints used in this interface, as well as the class of the interface. There may be more than one interface for a configuration.

27.9.6.4 Endpoint Descriptor

The endpoint descriptor identifies the transfer type (**Section 27.9.3 "Transfers"**) and direction, and some other specifics for the endpoint. There may be many endpoints in a device and endpoints may be shared in different configurations.

27.9.6.5 String Descriptor

Many of the previous descriptors reference one or more string descriptors. String descriptors provide human readable information about the layer (Section 27.9.1 "Layered Framework") they describe. Often these strings show up in the host to help the user identify the device. String descriptors are generally optional to save memory and are encoded in a unicode format.

27.9.7 BUS SPEED

Each USB device must indicate its bus presence and speed to the host. This is accomplished through a $1.5 \text{ k}\Omega$ resistor, which is connected to the bus at the time of the attachment event.

Depending on the speed of the device, the resistor either pulls up the D+ or D- line to 3.3V. For a lowspeed device, the pull-up resistor is connected to the D- line. For a full-speed device, the pull-up resistor is connected to the D+ line.

27.9.8 CLASS SPECIFICATIONS AND DRIVERS

USB specifications include class specifications, which operating system vendors optionally support. Examples of classes include: Audio, Mass Storage, Communications and Human Interface (HID). In most cases, a driver is required at the host side to 'talk' to the USB device. In custom applications, a driver may need to be developed. Fortunately, drivers are available for most common host systems for the most common classes of devices. Thus, these drivers can be reused.

28.2.2 CONTROL REGISTER

Register 28-17 shows the RCON2 register. This is a readable and writable register which contains a control bit that allows software to override the WDT Enable Configuration bit, but only if the Configuration bit has disabled the WDT.

REGISTER 28-17: RCON2: RESET CONTROL REGISTER 2

R/W, HS-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
EXTR ⁽¹⁾	_	SWDTEN ⁽²⁾	-	_	—	—	—	
bit 7							bit 0	
Legend:								
HS = Hardwar	e Settable bit							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown	
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit ⁽¹⁾					
	1 = A Master	Clear (pin) Re	set has occur	red				
	0 = A Master	Clear (pin) Re	set has not oc	curred				
bit 6	Unimplemen	ted: Read as 'o)'					
bit 5	SWDTEN: Software Controlled Watchdog			Timer Enable	bit ⁽²⁾			
	1 = Watchdo	g Timer is on						
	0 = Watchdo	g Timer is off						
bit 4-0	Unimplemen	ted: Read as '0)'					

Note 1: This bit is set in hardware; it can be cleared in software.

2: This bit has no effect unless the Configuration bits, WDTEN<1:0> = 10.

BTG	Bit Toggle f	BOV	Branch if Overflow			
Syntax:	BTG f, b {,a}	Syntax:	BOV n			
Operands:	$0 \le f \le 255$	Operands:	$-128 \le n \le 127$			
	0 ≤ b < 7 a ∈ [0,1]	Operation:	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC			
Operation:	$(\overline{f}) \to f$	Status Affected:	None			
Status Affected:	None	Encoding:	1110 0100 nnn	n nnnn		
Encoding:	0111 bbba ffff ffff	Description:	If the Overflow bit is '1'. the	en the		
Description:	Bit 'b' in data memory location, 'f', is inverted.		program will branch.	(O. 1) -		
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		added to the PC. Since the incremented to fetch the n instruction, the new addre	er 2n'is PC will have ext ss will be		
	If 'a' is '0' and the extended instruction		PC + 2 + 2n. This instruction	on is then a		
	set is enabled, this instruction operates in Indexed Literal Offset Addressing	Words:	1			
	mode whenever $f \le 95$ (5Fh). See	Cycles:	1(2)			
	Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Q Cycle Activity: If Jump:				
Words:	1	Q1	Q2 Q3	Q4		
Cycles:	1	Decode	Read literal Process	Write to PC		
Q Cvcle Activity:		No	No No	No		
Q1	Q2 Q3 Q4	operation	operation operation	operation		
Decode	Read Process Write	If No Jump:	· · · ·	-		
	register 'f' Data register 'f'	Q1	Q2 Q3	Q4		
Example:	<u>דיר ד- דיר 4 מ</u>	Decode	Read literal Process	No operation		
Defere Instruc						
PORTC	= 0111 0101 [75h]	Example:	HERE BOV Jump			
PORTC	e 0110 0101 [65b]	Before Instruc	tion			
1 OICIC		PC After Instruction	= address (HERE)			
		IT Overfic PC	=; = address (Jump)			
		If Overflo PC	w = 0; = address (HERE	+ 2)		

CPF	SGT	Compare f	with W, Skip	iff>W	CPF	SLT	Compare f	with W, Skip	if f < W		
Synt	ax:	CPFSGT	f {,a}		Synt	ax:	CPFSLT	f {,a}			
Ope	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \llbracket 0,1 \rrbracket \end{array}$			Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Operation:		(f) – (W), skip if (f) > (W) (unsigned comparison)			Oper	ation:	(f) – (W), skip if (f) < (unsigned o	(W) comparison)			
Statu	is Affected:	None			Statu	is Affected:	None	. ,			
Encoding:		0110 010a ffff ffff			Enco	Encoding:		000a ff:	ff ffff		
Description:		Compares location 'f' to performing	the contents o to the contents an unsigned s	f data memory s of the W by subtraction.	Desc	cription:	Compares location 'f' t	the contents of the contents an unsigned s	f data memory of W by subtraction		
		If the conte contents of instruction executed ir instruction.	ents of 'f' are g ' WREG, then is discarded a instead, making	reater than the the fetched nd a NOP is g this a 2-cycle				If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction			
		If 'a' is '0', t If 'a' is '1', t GPR bank.	the Access Ba the BSR is use	nk is selected. ed to select the			If 'a' is '0', t If 'a' is '1', t GPR bank.	he Access Bai he BSR is use	nk is selected. d to select the		
		If 'a' is '0' a	and the extend	ed instruction	Word	ls:	1				
		in Indexed	Literal Offset	Addressing	Cvcl	25.	1(2)				
		mode whenever f \leq 95 (5Fh). See			e ye.			Note: 3 cycles if skip and followed			
		Section 29.2.3 "Byte-Oriented and Bit Oriented Instructions in Indexed						by a 2-word instruction.			
		Literal Off	ed instruction set Mode" for	details	QC	ycle Activity:					
Word	ls.	1				Q1	Q2	Q3	Q4		
Cycl	29. 20.	1(2)				Decode	Read	Process	No		
0,01		Note: 3 (cycles if skip a	nd followed	lf al		register T	Data	operation		
		by	a 2-word inst	ruction.	11 Sr	.ip. 01	02	03	04		
QC	ycle Activity:					No	No	No	No.		
	Q1	Q2	Q3	Q4		operation	operation	operation	operation		
	Decode	Read	Process	No	lf sk	ip and followe	d by 2-word in	struction:			
lfsk		register i	Dala	operation		Q1	Q2	Q3	Q4		
	Q1	Q2	Q3	Q4		No	No	No	No		
	No	No	No	No		operation	operation	operation	operation		
	operation	operation	operation	operation		No	No	No	No		
lf sł	ip and followe	d by 2-word in	struction:	<u>.</u>		operation	operation	operation	operation		
	Q1	Q2	Q3	Q4	F				-		
	operation	operation	operation	operation	Exar	<u>npie:</u>	HERE	CPFSLT REG,	1		
	No	No	No	No			LESS	:			
	operation	operation	operation	operation		Before Instruc	ction				
_						PC	= Ac	dress (HERE)		
Exar	<u>nple:</u>	HERE	CPFSGT R	EG, 0		W After Instructi	= ?				
		GREATER	:			If REG	< W				
	Before Instruc	tion				PC	= Ac	dress (LESS)		
	PC	= Ac	dress (HERE	:)		PC	≥ VV = Ac	dress (NLES	S)		
	W After Instruction	= ?									
	If REG	> W	;								
	PC	= Ac	dress (GREA	TER)							
	PC	≤ W = Ac	, ddress (NGRE	ATER)							

FIGURE 30-4: CLKO AND I/O TIMING

TABLE 30-23:	CLKO AND	DI/O TIMING	REQUIREMENTS
--------------	----------	-------------	--------------

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
10	TosH2ckL	OSC1 \uparrow to CLKO \downarrow	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)
12	TCKR	CLKO Rise Time	—	15	30	ns	(Note 1)
13	ТскF	CLKO Fall Time	—	15	30	ns	(Note 1)
14	TCKL2IOV	CLKO \downarrow to Port Out Valid	—	—	0.5 TCY + 20	ns	
15	TIOV2CKH	Port In Valid before CLKO ↑	0.25 TCY + 25	—	—	ns	
16	TCKH2IOI	Port In Hold after CLKO ↑	0	—	—	ns	
17	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out Valid	—	50	150	ns	
18	TosH2ıol	OSC1 ↑ (Q2 cycle) to Port Input Invalid (I/O in hold time)	100	—	—	ns	
19	TioV2osH	Port Input Valid to OSC1 ↑ (I/O in setup time)	0	—	—	ns	
20	TIOR	Port Output Rise Time	—	10	25	ns	
21	TIOF	Port Output Fall Time	—	10	25	ns	
22†	TINP	INTx Pin High or Low Time	20	—	—	ns	
23†	Trbp	RB<7:4> Change INTx High or Low Time	Тсү		_	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in EC mode, where CLKO output is 4 x Tosc.