

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 64MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB                       |
| Peripherals                | Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT                           |
| Number of I/O              | 86                                                                         |
| Program Memory Size        | 64KB (32K x 16)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                  |
| Data Converters            | A/D 24x12b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 100-TQFP                                                                   |
| Supplier Device Package    | 100-TQFP (14x14)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f96j94-i-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **80-Pin TQFP** Comparator PPS-Lite<sup>(1)</sup> Pull-up Interrupt MSSP REFO Basic HLVD ADC CTMU EMB USB LCD PSP 0 RA0 AN0/ SEG19 RP0 30 AN1-RA1 29 AN1 SEG18 RP1 \_ \_ \_\_\_\_ \_ \_ \_\_\_\_ \_ \_ \_ \_ \_ RA2 28 AN2/ \_\_\_\_ \_ \_ \_ SEG21 \_ \_ \_\_\_\_ \_\_\_\_ RP2 \_ \_ VRFF-RA3 27 RP3 AN3/ \_ \_ \_ \_ \_ \_ \_\_\_\_ \_ \_ \_ VREF+ SEG14 RP4 RA4 34 AN6 \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ RA5 33 AN4 C1INA/ LVDIN SEG15 RP5 \_ \_ \_ \_ \_\_\_\_ \_ \_ \_ \_ C2INA C3INA RA6 50 RP6 OSC2/ CLKO **RP10** OSC1/ RA7 49 \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ CLKI RB0 58 \_ \_ \_ CTED13 \_ VLCAP1 \_ \_\_\_\_ INT0 \_ \_ RP8 \_ \_ RB1 VLCAP2 57 RP9 RB2 CTED1 SEG9 RP14 56 \_ RB3 55 \_ \_ CTED2 \_ SEG10 \_ \_ \_ \_ RP7 \_ \_ \_ \_ RB4 54 \_ \_ CTED3 \_ SEG11 \_ **RP12** \_ \_ \_ \_ \_ RB5 53 CTED4 SEG8 **RP13** \_ \_ \_ RB6 52 CTED5 PGC \_ \_ \_\_\_\_ -\_\_\_\_ \_ \_\_\_\_ RB7 47 CTED6 PGD \_ \_ \_ \_ \_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_ SOSCO/ RC0 36 \_ \_\_\_\_ \_ \_ \_\_\_\_ \_ \_\_\_\_ \_ SCKI/ PWRCLK RC1 35 SOSCI RC2 43 AN9 CTED7 SEG13 **RP11** \_ \_\_\_\_ \_ \_ \_\_\_\_ \_ \_\_\_\_ \_\_\_\_ \_ \_ RC3 44 CTED8 SEG17 SCL1 RP15 \_ \_\_\_\_ \_ \_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_\_\_\_ \_ \_ RC4 45 CTED9 SDA1 \_ **RP17** \_ SEG16 \_\_\_\_ RC5 46 CTED10 SEG12 RP16 \_ \_ \_ \_\_\_\_ \_ UOE RC6 37 CTED11 SEG27 **RP18** \_ \_ \_\_\_\_ \_ \_\_\_\_ \_ \_\_\_\_ \_ \_ \_ RC7 38 \_\_\_\_ CTED12 SEG22 **RP19** \_ \_ \_ \_ \_ \_ RD0 PSP0 AD0 Υ 72 SEG0 **RP20** RD1 SEG1 PSP1 AD1 RP21 69 Y \_ \_ \_ \_ \_ \_ \_ — \_\_\_\_ RD2 68 \_ \_ \_ \_ \_ SEG2 \_ PSP2 \_ \_ AD2 RP22 Υ \_ RD3 SEG3 PSP3 AD3 RP23 Y 67 RD4 66 SEG4 PSP4 AD4 RP24 Υ RD5 SEG5 PSP5 RP25 65 SDA2 AD5 Υ \_ \_ \_ \_ \_ \_\_\_\_ \_ \_ RD6 64 \_ \_ \_ SEG6 SCL2 PSP6 \_ AD6 RP26 Υ \_ \_ \_ Y RD7 PSP7 REFO2 63 \_ \_ \_ \_ SEG7 \_ AD7 RP27 RE0 4 LCDBIAS1 RD AD8 **RP28** Y WR RE1 3 \_\_\_\_ \_ \_ \_ \_ LCDBIAS2 \_ \_\_\_\_ \_ AD9 **RP29** Υ \_ RE2 78 \_ \_ \_ \_ LCDBIAS3 \_ CS \_\_\_\_ AD10 **RP30** Y \_ \_ RE3 77 COM0 REF01 AD11 RP33 Υ RE4 COM1 AD12 **RP32** 76 Y \_ \_ \_ \_\_\_\_ \_ \_ \_\_\_\_ \_\_\_\_ \_ \_\_\_\_ RE5 75 COM2 AD13 **RP37** Υ \_ \_\_\_\_ \_ \_ \_ \_ \_\_\_\_ \_ \_\_\_\_ \_ RE6 74 AD14 Y COM3 RP34 \_ \_ \_ RE7 73 LCDBIAS0 AD15 RP31 Υ

SEG20

\_

\_\_\_\_

\_\_\_\_

\_\_\_\_

## TABLE 3:80-PIN ALLOCATION TABLE (PIC18F8XJ94)

18

AN7

C2INB

CTMUI

RF2

\_\_\_\_

Υ

\_

**RP36** 

ture and low VDD both have a limiting effect on the loop gain, such that if the circuit functions at these extremes, the designer can be more assured of proper operation at other temperatures and supply voltage combinations. The output sine wave should not be clipped in the highest gain environment (highest VDD and lowest temperature) and the sine output amplitude should be large enough in the lowest gain environment (lowest VDD and highest temperature) to cover the logic input requirements of the clock, as listed in the device data sheet. OSC1 may have specified VIL and VIH levels (refer to the specific product data sheet for more information).

A method for improving start-up is to use a value of C2 greater than C1. This causes a greater phase shift across the crystal at power-up, which speeds oscillator start-up. Besides loading the crystal for proper frequency response, these capacitors can have the effect of lower-ing loop gain if their value is increased. C2 can be selected to affect the overall gain of the circuit. A higher C2 can lower the gain if the crystal is being overdriven (also see discussion on Rs). Capacitance values that are too high can store and dump too much current through the crystal, so C1 and C2 should not become excessively large. Unfortunately, measuring the wattage through a crystal is difficult, but if you do not stray too far from the suggested values, you should not have to be concerned with this.

A series resistor, Rs, is added to the circuit if after all other external components are selected to satisfaction, and the crystal is still being overdriven. This can be determined by looking at the OSC2 pin, which is the driven pin, with an oscilloscope. Connecting the probe to the OSC1 pin will load the pin too much and negatively affect performance. Remember that a scope probe adds its own capacitance to the circuit, so this may have to be accounted for in your design (i.e., if the circuit worked best with a C2 of 22 pF and the scope probe was 10 pF, a 33 pF capacitor may actually be called for). The output signal should not be clipping or flattened. Overdriving the crystal can also lead to the circuit jumping to a higher harmonic level, or even, crystal damage.

The OSC2 signal should be a clean sine wave that easily spans the input minimum and maximum of the clock input pin. An easy way to set this is to again test the circuit at the minimum temperature and maximum VDD that the design will be expected to perform in; then, look at the output. This should be the maximum amplitude of the clock output. If there is clipping, or the sine wave is distorted near VDD and Vss, increasing load capacitors may cause too much current to flow through the crystal, or push the value too far from the manufacturer's load specification. To adjust the crystal current, add a trimmer potentiometer between the crystal inverter output pin and C2, and adjust it until the sine wave is clean. The crystal will experience the highest drive currents at the low temperature and high VDD extremes.

The trimmer potentiometer should be adjusted at these limits to prevent overdriving. A series resistor, Rs, of the closest standard value can now be inserted in place of the trimmer. If Rs is too high, perhaps more than 20 k $\Omega$ , the input will be too isolated from the output, making the clock more susceptible to noise. If you find a value this high is needed to prevent overdriving the crystal, try increasing C2 to compensate or changing the oscillator operating mode. Try to get a combination where Rs is around 10 k $\Omega$  or less, and load capacitance is not too far from the manufacturer's specification.

# 3.7 External Clock Input

In EC mode, the OSC1 pin is in a high-impedance state and can be driven by CMOS drivers. The OSC2 pin can be configured as either an I/O or the clock output (Fosc 4) by selecting the CLKOEN bit (CONFIG2L<5>). With CLKOEN set (Figure 3-5), the clock output is available for testing or synchronization purposes. With CLKOEN clear (Figure 3-6), the OSC2 pin becomes a general purpose I/O pin. The feedback device between OSC1 and OSC2 is turned off to save current.

### FIGURE 3-5: EXTERNAL CLOCK INPUT OPERATION (CLKOEN = 1)



#### FIGURE 3-6: EXTERNAL CLOCK INPUT OPERATION (CLKOEN = 0)



| TABL  | _E 6-2:     | REGISTER        | FILE SUN                       | MARY (C       | CONTINUED      | ))                 |                             |          |          |
|-------|-------------|-----------------|--------------------------------|---------------|----------------|--------------------|-----------------------------|----------|----------|
|       | File Name   | Bit 7           | Bit 6                          | Bit 5         | Bit 4          | Bit 3              | Bit 2                       | Bit 1    | Bit 0    |
| F03h  | SSP2BUF     | MSSP2 Receive   | e Buffer/Transmi               | t Register    |                |                    |                             |          |          |
| F02h  | SSP2ADD     | MSSP2 Address   | s Register in I <sup>2</sup> C | Slave Mode. M | SSP1 Baud Rate | Reload Register in | <sup>2</sup> C Master Mode. |          |          |
| F01h  | ANCFG       | _               | _                              | _             | _              | _                  | VBG6EN                      | VBG2EN   | VBGEN    |
| F00h  | DMACON2     | DLYCYC3         | DLYCYC2                        | DLYCYC1       | DLYCYC0        | INTLVL3            | INTLVL2                     | INTLVL1  | INTLVL0  |
| EFFh  | RCSTA4      | SPEN            | RX9                            | SREN          | CREN           | ADDEN              | FERR                        | OERR     | RX9D     |
| EFEh  | TXSTA4      | CSRC            | TX9                            | TXEN          | SYNC           | SENDB              | BRGH                        | TRMT     | TX9D     |
| EFDh  | BAUDCON4    | ABDOVF          | RCIDL                          | RXDTP         | TXCKP          | BRG16              | IREN                        | WUE      | ABDEN    |
| EFCh  | SPBRGH4     | EUSART4 Bau     | d Rate Generato                | r High Byte   |                |                    |                             |          |          |
| EFBh  | SPBRG4      | EUSART4 Bau     | d Rate Generato                | r             |                |                    |                             |          |          |
| EFAh  | RCREG4      | EUSART4 Rece    | eive Data FIFO                 |               |                |                    |                             |          |          |
| EF9h  | TXREG4      | EUSART4 Tran    | smit Data FIFO                 |               |                |                    |                             |          |          |
| EF8h  | CTMUCON1    | CTMUEN          | _                              | CTMUSIDL      | TGEN           | EDGEN              | EDGSEQEN                    | IDISSEN  | TRIGEN   |
| EF7h  | CTMUCON2    | ITRIM5          | ITRIM4                         | ITRIM3        | ITRIM2         | ITRIM1             | ITRIM0                      | IRNG1    | IRNG0    |
| EF6h  | CTMUCON3    | EDG2EN          | EDG2POL                        | EDG2SEL3      | EDG2SEL2       | EDG2SEL1           | EDG2SEL0                    | _        | _        |
| EF5h  | CTMUCON4    | EDG1EN          | EDG1POL                        | EDG1SEL3      | EDG1SEL2       | EDG1SEL1           | EDG1SEL0                    | EDG2STAT | EDG1STAT |
| EF4h  | PMD0        | CCP10MD         | CCP9MD                         | CCP8MD        | CCP7MD         | CCP6MD             | CCP5MD                      | CCP4MD   | ECCP3MD  |
| EF3h  | PMD1        | ECCP2MD         | ECCP1MD                        | UART4MD       | UART3MD        | UART2MD            | UART1MD                     | SSP2MD   | SSP1MD   |
| EF2h  | PMD2        | TMR8MD          | TMR6MD                         | TMR5MD        | TMR4MD         | TMR3MD             | TMR2MD                      | TMR1MD   | TMR0MD   |
| EF1h  | PMD3        | DSMMD           | CTMUMD                         | ADCMD         | RTCCMD         | LCDMD              | PSPMD                       | REFO1MD  | REFO2MD  |
| EF0h  | PMD4        | CMP1MD          | CMP2MD                         | CMP3MD        | USBMD          | IOCMD              | LVDMD                       | _        | EMBMD    |
| EEFh  | MDCON       | MDEN            | MDOE                           | MDSLR         | MDOPOL         | MDO                | —                           | _        | MDBIT    |
| EEEh  | MDSRC       | MDSODIS         | _                              | _             | _              | MDSRC3             | MDSRC2                      | MDSRC1   | MDSRC0   |
| EEDh  | MDCARH      | MDCHODIS        | MDCHPOL                        | MDCHSYNC      | _              | MDCH3              | MDCH2                       | MDCH1    | MDCH0    |
| EECh  | MDCARL      | MDCLODIS        | MDCLPOL                        | MDCLSYNC      | _              | MDCL3              | MDCL2                       | MDCL1    | MDCL0    |
| EEBh  | ODCON1      | ECCP2OD         | ECCP10D                        | USART4OD      | USART3OD       | USART2OD           | USART10D                    | SSP2OD   | SSP10D   |
| EEAh  | ODCON2      | CCP10OD         | CCP90D                         | CCP8OD        | CCP7OD         | CCP6OD             | CCP5OD                      | CCP4OD   | ECCP3OD  |
| EE9h  | TRISK       | TRISK7          | TRISK6                         | TRISK5        | TRISK4         | TRISK3             | TRISK2                      | TRISK1   | TRISK0   |
| EE8h  | LATK        | LATK7           | LATK6                          | LATK5         | LATK4          | LATK3              | LATK2                       | LATK1    | LATK0    |
| EE7h  | PORTK       | RK7             | RK6                            | RK5           | RK4            | RK3                | RK2                         | RK1      | RK0      |
| EE6h  | TRISL       | TRISL7          | TRISL6                         | TRISL5        | TRISL4         | TRISL3             | TRISL2                      | TRISL1   | TRISL0   |
| EE5h  | LATL        | LATL7           | LATL6                          | LATL5         | LATL4          | LATL3              | LATL2                       | LATL1    | LATL0    |
| EE4h  | PORTL       | RL7             | RL6                            | RL5           | RL4            | RL3                | RL2                         | RL1      | RL0      |
| EE3h  | MEMCON      | EBDIS           | _                              | WAIT1         | WAIT0          | —                  | —                           | WM1      | WM0      |
| EE2h  | REFO1CON    | ON              | _                              | SIDL          | OE             | RSLP               | —                           | DIVSWEN  | ACTIVE   |
| EE1h  | REFO1CON1   | _               | _                              | _             | _              | ROSEL3             | ROSEL2                      | ROSEL1   | ROSEL0   |
| EE0h  | REFO1CON2   | RODIV7          | RODIV6                         | RODIV5        | RODIV4         | RODIV3             | RODIV2                      | RODIV1   | RODIV0   |
| EDFh  | REFO1CON3   | _               | RODIV14                        | RODIV13       | RODIV12        | RODIV11            | RODIV10                     | RODIV9   | RODIV8   |
| EDEh  | REF02CON    | ON              | _                              | SIDL          | OE             | RSLP               | —                           | DIVSWEN  | ACTIVE   |
| EDDh  | REFO2CON1   | _               | _                              | _             | _              | ROSEL3             | ROSEL2                      | ROSEL1   | ROSEL0   |
| EDCh  | REFO2CON2   | RODIV7          | RODIV6                         | RODIV5        | RODIV4         | RODIV3             | RODIV2                      | RODIV1   | RODIV0   |
| EDBh  | REFO2CON3   | _               | RODIV14                        | RODIV13       | RODIV12        | RODIV11            | RODIV10                     | RODIV9   | RODIV8   |
| EDAh  | LCDPS       | WFT             | BIASMD                         | LCDA          | WA             | LP3                | LP2                         | LP1      | LP0      |
| ED9h  | LCDCON      | LCDEN           | SLPEN                          | WERR          | CS1            | CS0                | LMUX2                       | LMUX1    | LMUX0    |
| ED8h  | LCDREG      | CPEN            | _                              | BIAS2         | BIAS1          | BIAS0              | MODE13                      | CLKSEL1  | CLKSEL0  |
| ED7h  | LCDREF      | LCDIRE          | _                              | LCDCST2       | LCDCST1        | LCDCST0            | VLCD3PE                     | VLCD2PE  | VLCD1PE  |
| ED6h  | LCDRL       | LRLAP1          | LRLAP0                         | LRLBP1        | LRLBP0         |                    | LRLAT2                      | LRLAT1   | LRLAT0   |
| ED5h  | LCDSE7      | SE63            | SE62                           | SE61          | SE60           | SE59               | SE58                        | SE57     | SE56     |
| ED4h  | LCDSE6      | SE55            | SE54                           | SE53          | SE52           | SE51               | SE50                        | SE49     | SE48     |
| ED3h  | LCDSE5      | SE47            | SE46                           | SE45          | SE44           | SE43               | SE42                        | SE41     | SE40     |
| ED2h  | LCDSE4      | SE39            | SE38                           | S37           | SE36           | SE35               | SE34                        | SE33     | SE32     |
| ED1h  | LCDSE3      | SE31            | SE30                           | SE29          | SE28           | SE27               | SE26                        | SE25     | SE24     |
| ED0h  | LCDSE2      | SE23            | SE22                           | SE21          | SE20           | SE19               | SE18                        | SE17     | SE16     |
| Legen | d: = unimpl | emented read as | · '∩'                          |               |                |                    |                             |          |          |

# 8.0 EXTERNAL MEMORY BUS

| Note: | The   | External  | Memory     | Bus    | is | not |
|-------|-------|-----------|------------|--------|----|-----|
|       | imple | mented on | 64-pin dev | /ices. |    |     |

The External Memory Bus (EMB) allows the device to access external memory devices (such as Flash, EPROM or SRAM) as program or data memory. It supports both 8 and 16-Bit Data Width modes, and three address widths of up to 20 bits.

The bus is implemented with 28 pins, multiplexed across four I/O ports. Three ports (PORTD, PORTE and PORTH) are multiplexed with the address/data bus for a total of 20 available lines, while PORTJ is multiplexed with the bus control signals.

A list of the pins and their functions is provided in Table 8-1.

### TABLE 8-1: PIC18F97J94 FAMILY EXTERNAL BUS – I/O PORT FUNCTIONS

| Name     | Port  | Bit | External Memory Bus Function           |
|----------|-------|-----|----------------------------------------|
| RD0/AD0  | PORTD | 0   | Address Bit 0 or Data Bit 0            |
| RD1/AD1  | PORTD | 1   | Address Bit 1 or Data Bit 1            |
| RD2/AD2  | PORTD | 2   | Address Bit 2 or Data Bit 2            |
| RD3/AD3  | PORTD | 3   | Address Bit 3 or Data Bit 3            |
| RD4/AD4  | PORTD | 4   | Address Bit 4 or Data Bit 4            |
| RD5/AD5  | PORTD | 5   | Address Bit 5 or Data Bit 5            |
| RD6/AD6  | PORTD | 6   | Address Bit 6 or Data Bit 6            |
| RD7/AD7  | PORTD | 7   | Address Bit 7 or Data Bit 7            |
| RE0/AD8  | PORTE | 0   | Address Bit 8 or Data Bit 8            |
| RE1/AD9  | PORTE | 1   | Address Bit 9 or Data Bit 9            |
| RE2/AD10 | PORTE | 2   | Address Bit 10 or Data Bit 10          |
| RE3/AD11 | PORTE | 3   | Address Bit 11 or Data Bit 11          |
| RE4/AD12 | PORTE | 4   | Address Bit 12 or Data Bit 12          |
| RE5/AD13 | PORTE | 5   | Address Bit 13 or Data Bit 13          |
| RE6/AD14 | PORTE | 6   | Address Bit 14 or Data Bit 14          |
| RE7/AD15 | PORTE | 7   | Address Bit 15 or Data Bit 15          |
| RH0/A16  | PORTH | 0   | Address Bit 16                         |
| RH1/A17  | PORTH | 1   | Address Bit 17                         |
| RH2/A18  | PORTH | 2   | Address Bit 18                         |
| RH3/A19  | PORTH | 3   | Address Bit 19                         |
| RJ0/ALE  | PORTJ | 0   | Address Latch Enable (ALE) Control Pin |
| RJ1/OE   | PORTJ | 1   | Output Enable (OE) Control Pin         |
| RJ2/WRL  | PORTJ | 2   | Write Low (WRL) Control Pin            |
| RJ3/WRH  | PORTJ | 3   | Write High (WRH) Control Pin           |
| RJ4/BA0  | PORTJ | 4   | Byte Address Bit 0 (BA0)               |
| RJ5/CE   | PORTJ | 5   | Chip Enable (CE) Control Pin           |
| RJ6/LB   | PORTJ | 6   | Lower Byte Enable (LB) Control Pin     |
| RJ7/UB   | PORTJ | 7   | Upper Byte Enable (UB) Control Pin     |

**Note:** For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional multiplexed features may be available on some pins.

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

#### EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

| RES3:RES0 | = | ARG1H:ARG1L · ARG2H:ARG2L            |
|-----------|---|--------------------------------------|
|           | = | (ARG1H · ARG2H · 2 <sup>16</sup> ) + |
|           |   | (ARG1H · ARG2L · 2 <sup>8</sup> ) +  |
|           |   | (ARG1L · ARG2H · 2 <sup>8</sup> ) +  |
|           |   | (ARG1L · ARG2L)                      |

# EXAMPLE 9-3: 16 x 16 UNSIGNED

# MULTIPLY ROUTINE

|   | MOVF                                                        | ARG1L, W                                                                           |                                                                                          |
|---|-------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|   | MULWF                                                       | ARG2L                                                                              | ; ARG1L * ARG2L->                                                                        |
|   |                                                             |                                                                                    | ; PRODH:PRODL                                                                            |
|   | MOVFF                                                       | PRODH, RES1                                                                        | ;                                                                                        |
|   | MOVFF                                                       | PRODL, RESO                                                                        | ;                                                                                        |
| ; |                                                             |                                                                                    |                                                                                          |
|   | MOVF                                                        | ARG1H, W                                                                           |                                                                                          |
|   | MULWF                                                       | ARG2H                                                                              | ; ARG1H * ARG2H->                                                                        |
|   |                                                             |                                                                                    | ; PRODH:PRODL                                                                            |
|   | MOVFF                                                       | PRODH, RES3                                                                        | i                                                                                        |
|   | MOVFF                                                       | PRODL, RES2                                                                        | i                                                                                        |
| ; |                                                             |                                                                                    |                                                                                          |
|   | MOVF                                                        | ARG1L, W                                                                           |                                                                                          |
|   | MULWF                                                       | ARG2H                                                                              | ; ARG1L * ARG2H->                                                                        |
|   |                                                             |                                                                                    | ; PRODH:PRODL                                                                            |
|   | MOVF                                                        | PRODL, W                                                                           | ;                                                                                        |
|   | ADDWF                                                       | RES1, F                                                                            | ; Add cross                                                                              |
|   | MOVF                                                        | PRODH, W                                                                           | ; products                                                                               |
|   | ADDWFC                                                      | RES2, F                                                                            | ;                                                                                        |
|   | CLRF                                                        | WREG                                                                               | ;                                                                                        |
|   | ADDWFC                                                      | RES3, F                                                                            | ;                                                                                        |
| ; |                                                             |                                                                                    |                                                                                          |
|   | MOVF                                                        | ARG1H, W                                                                           | ;                                                                                        |
|   | MULWF                                                       | ARG2L                                                                              | ; ARG1H * ARG2L->                                                                        |
|   |                                                             |                                                                                    | ; PRODH:PRODL                                                                            |
|   | MOVF                                                        | PRODL, W                                                                           | ;                                                                                        |
|   | ADDWF                                                       | RES1, F                                                                            | ; Add cross                                                                              |
|   | MOVF                                                        | PRODH, W                                                                           | ; products                                                                               |
|   | ADDWFC                                                      | RES2, F                                                                            | ;                                                                                        |
|   | CLRF                                                        | WREG                                                                               | ;                                                                                        |
|   | ADDWFC                                                      | RES3, F                                                                            | ;                                                                                        |
| ; | MOVF<br>MULWF<br>ADDWF<br>ADDWF<br>ADDWFC<br>CLRF<br>ADDWFC | ARG1H, W<br>ARG2L<br>PRODL, W<br>RES1, F<br>PRODH, W<br>RES2, F<br>WREG<br>RES3, F | ;<br>; ARG1H * ARG2L-><br>; PRODH:PRODL<br>;<br>; Add cross<br>; products<br>;<br>;<br>; |

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

#### EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

| RES3:RES0= | ARG1H:ARG1L · ARG2H:ARG2L                          |
|------------|----------------------------------------------------|
| =          | (ARG1H · ARG2H · 2 <sup>16</sup> ) +               |
|            | (ARG1H · ARG2L · 2 <sup>8</sup> ) +                |
|            | (ARG1L · ARG2H · 2 <sup>8</sup> ) +                |
|            | (ARG1L · ARG2L) +                                  |
|            | (-1 · ARG2H<7> · ARG1H:ARG1L · 2 <sup>16</sup> ) + |
|            | (-1 · ARG1H<7> · ARG2H:ARG2L · 2 <sup>16</sup> )   |

#### EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

|    | MOVF    | ARG1L, W    |    |                  |
|----|---------|-------------|----|------------------|
|    | MULWF   | ARG2L       | ;  | ARG1L * ARG2L -> |
|    |         |             | ;  | PRODH:PRODL      |
|    | MOVFF   | PRODH, RES1 | ;  |                  |
|    | MOVFF   | PRODL, RESO | ;  |                  |
| ;  |         |             |    |                  |
|    | MOVF    | ARG1H, W    |    |                  |
|    | MULWF   | ARG2H       | ;  | ARG1H * ARG2H -> |
|    |         |             | ;  | PRODH:PRODL      |
|    | MOVFF   | PRODH, RES3 | ;  |                  |
|    | MOAF.F. | PRODL, RES2 | ;  |                  |
| i  | MOVE    | ADC11 W     |    |                  |
|    |         | ARGIL, W    |    |                  |
|    | MOLWF   | ARGZH       | ΄. | ARGIL " ARGZH -> |
|    | MOVE    | DRODI W     | ;  | PRODE            |
|    | ADDWF   | RESI F      | ;  | Add cross        |
|    | MOVE    | PRODH W     | ;  | products         |
|    | ADDWFC  | RES2. F     | ;  | produces         |
|    | CLRF    | WREG        | ;  |                  |
|    | ADDWFC  | RES3. F     | ;  |                  |
| ;  |         |             |    |                  |
|    | MOVF    | ARG1H, W    | ;  |                  |
|    | MULWF   | ARG2L       | ;  | ARG1H * ARG2L -> |
|    |         |             | ;  | PRODH:PRODL      |
|    | MOVF    | PRODL, W    | ;  |                  |
|    | ADDWF   | RES1, F     | ;  | Add cross        |
|    | MOVF    | PRODH, W    | ;  | products         |
|    | ADDWFC  | RES2, F     | ;  |                  |
|    | CLRF    | WREG        | ;  |                  |
|    | ADDWFC  | RES3, F     | ;  |                  |
| ;  |         |             |    |                  |
|    | BTFSS   | ARG2H, 7    | ;  | ARG2H:ARG2L neg? |
|    | BRA SIC | GN_ARG1     | ;  | no, check ARG1   |
|    | MOVF    | ARG1L, W    | ;  |                  |
|    | SUBWF   | RES2        | ;  |                  |
|    | MOVF    | ARG1H, W    | ;  |                  |
| ~- | SUBWFB  | RES3        | ;  |                  |
| SI | GN_ARGI |             |    |                  |
|    | BIFSS   | ARGIH, /    | ΄. | ARGIH·ARGIL neg? |
|    | BKA     | ADC21 W     | ΄. | no, done         |
|    | CUDWE   | ARGZL, W    | ;  |                  |
|    | MOVE    | ADCOU W     |    |                  |
|    | SUBWEB  | RES3        | '  |                  |
| ;  | SODALD  |             |    |                  |
| CO | NT CODE |             |    |                  |
|    | :       |             |    |                  |



### REGISTER 11-5: RPORn\_n: REMAPPED PERIPHERAL OUTPUT REGISTER n (FUNCTION MAPS TO PIN)

| R/W-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|---------|---------|---------|---------|--------|--------|--------|--------|
| RPORn_3 | RPORn_2 | RPORn_1 | RPORn_0 | RPmR_3 | RPmR_2 | RPmR_1 | RPmR_0 |
| bit 7   |         |         |         |        |        |        | bit 0  |

| Legend:           |                  |                               |                    |
|-------------------|------------------|-------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read a | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared          | x = Bit is unknown |

bit 7-4 **RPORn\_<3:0>:** RPn peripheral output function mapping

bit 3-0 **RPmR<3:0>:** RPm peripheral output function mapping

**Note 1:** Register values can only be changed if IOLOCK = 0.

# 13.3 LCD Clock Source Selection

The LCD driver module has three possible clock sources:

- FRC/8192
- SOSC Clock/32
- LPRC/32

The first clock source is the 8 MHz Fast Internal RC (FRC) Oscillator divided by 8,192. This divider ratio is chosen to provide about 1 kHz output. The divider is not programmable. Instead, the LCD prescaler bits, LCDPS<3:0>, are used to set the LCD frame clock rate.

The second clock source is the SOSC Oscillator/32. This also outputs about 1 kHz when a 32.768 kHz crystal is used with the SOSC Oscillator. To use the SOSC Oscillator as a clock source, set the SOSCEN (T1CON<3>) bit.

The third clock source is a 31.25 kHz internal LPRC Oscillator/32 that provides approximately 1 kHz output.

The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

These clock sources are selected through the bits, CS<1:0> (LCDCON<4:3>).

#### 13.3.1 LCD PRESCALER

A 16-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable. Its value is set by the LP<3:0> bits (LCDPS<3:0>) that determine the prescaler assignment and prescale ratio.

Selectable prescale values are from 1:1 through 1:16, in increments of one.



#### FIGURE 13-2: LCD CLOCK GENERATION





# 15.6 Timer1/3/5 Interrupt

The TMRx register pair (TMRxH:TMRxL) increments from 0000h to FFFFh and overflows to 0000h. The Timerx interrupt, if enabled, is generated on overflow and is latched in the interrupt flag bit, TMRxIF. Table 15-3 gives each module's flag bit.

#### TABLE 15-3: TIMER1/3/5 INTERRUPT FLAG BITS

| Timer Module | Flag Bit |
|--------------|----------|
| 1            | PIR1<0>  |
| 3            | PIR2<1>  |
| 5            | PIR5<1>  |

This interrupt can be enabled or disabled by setting or clearing the TMRxIE bit, respectively. Table 15-4 gives each module's enable bit.

#### TABLE 15-4: TIMER1/3/5 INTERRUPT ENABLE BITS

| Timer Module | Flag Bit |
|--------------|----------|
| 1            | PIE1<0>  |
| 3            | PIE2<1>  |
| 5            | PIE5<1>  |

# 15.7 Resetting Timer1/3/5 Using the ECCP Special Event Trigger

If the ECCP modules are configured to use Timerx and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timerx. The trigger from ECCP2 will also start an A/D conversion if the A/D module is enabled (For more information, see **Section 18.3.4 "Special Event Trigger"**.)

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timerx.

If Timerx is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timerx coincides with a Special Event Trigger from an ECCP module, the write will take precedence.

| Note: | The Special Event Triggers from the        |
|-------|--------------------------------------------|
|       | ECCPx module will only clear the TMR3      |
|       | register's content, but not set the TMR3IF |
|       | interrupt flag bit (PIR1<0>).              |

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 18-2, Register 18-3 and Register 19-2

# 17.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

The key features of the Real-Time Clock and Calendar (RTCC) module are:

- Hardware Real-Time Clock and Calendar (RTCC)
- Provides hours, minutes and seconds using 24- hour format
- · Visibility of one-half second period
- Provides calendar weekday, date, month and year
- Alarm configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week or one month
- Alarm repeat with decrementing counter
- Alarm with indefinite repeat chime
- · Year 2000 to 2099 leap year correction
- BCD format for smaller software overhead
- · Optimized for long term battery operation
- · Fractional second synchronization

- Multiple clock sources
  - SOSC
  - LPRC
  - 50 Hz
  - 60 Hz
- User calibration of the 32.768 kHz clock crystal frequency with periodic auto-adjust
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error

The RTCC module is intended for applications where accurate time must be maintained for an extended period with minimum to no intervention from the CPU. The module is optimized for low-power usage in order to provide extended battery life, while keeping track of time.

The module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

Hours are measured in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.



# FIGURE 17-1: RTCC BLOCK DIAGRAM

# 17.1.4 RTCEN BIT WRITE

RTCWREN (RTCCON1<5>) must be set before a write to RTCEN can take place. Any write to the RTCEN bit, while RTCWREN = 0, will be ignored.

Like the RTCEN bit, the RTCVALH and RTCVALL registers can only be written to when RTCWREN = 1. A write to these registers, while RTCWREN = 0, will be ignored.

# FIGURE 17-2: TIMER DIGIT FORMAT

# 17.2 Operation

### 17.2.1 REGISTER INTERFACE

The register interface for the RTCC and alarm values is implemented using the Binary Coded Decimal (BCD) format. This simplifies the firmware when using the module, as each of the digits is contained within its own 4-bit value (see Figure 17-2 and Figure 17-3).



## FIGURE 17-3: ALARM DIGIT FORMAT



# 20.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

## 20.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit<sup>™</sup> (I<sup>2</sup>C)
  - Full Master mode
  - Slave mode (with general address call)

The I<sup>2</sup>C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode with 5-bit and 7-bit address masking (with address masking for both 10-bit and 7-bit addressing)

All members of the PIC18FXXJ94 have two MSSP modules, designated as MSSP1 and MSSP2. Each module operates independently of the other.

Note: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names and module I/O signals use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required. Control bit names are not individuated.

# 20.2 Control Registers

Each MSSP module has four associated control registers. These include a STATUS register (SSPxSTAT) and three control registers (SSPxCON1, SSPxCON2, and SSPxCON3). The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or  $I^2C$  mode.

Additional details are provided under the individual sections. On all PIC18F97J94 family devices, the SPI DMA capability can only be used in conjunction with MSSP1. The SPI DMA feature is described in **Section 20.4 "SPI DMA Module"**.

Note: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCON register names. SSP1CON1 and SSP1CON2 control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.

Note: The SSPxBUF register cannot be used with read-modify-write instructions, such as BCF, COMF, etc. To avoid lost data in Master mode, a read of the SSPxBUF must be per-

formed to clear the Buffer Full (BF) detect bit (SSPSTAT<0>) between each transmission.

#### 20.3.4 ENABLING SPI I/O

To enable the serial port, the peripheral must first be mapped to I/O pins using the PPS-Lite feature. To enable the SPI peripheral, the MSSPx Enable bit, SSPEN (SSPxCON1<5>) must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCON registers and then set the SSPEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx is automatically controlled by the SPI module
- SDOx must have the TRIS bit cleared for the corresponding RPn pin.
- SCKx (Master mode) must have the TRIS bit cleared for the corresponding RPn pin
- SCKx (Slave mode) must have the TRIS bit set for the corresponding RPn pin
- SSx must have the TRIS bit set for the corresponding RPn pin.

Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

# FIGURE 20-2: SPI MASTER/SLAVE CONNECTION

#### 20.3.5 TYPICAL CONNECTION

Figure 20-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCKx signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- · Master sends dummy data Slave sends data



| R/W-0         | R-0                 | R/W-0            | R/W-0          | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
|---------------|---------------------|------------------|----------------|------------------|------------------|-----------------|-------|
| ADRC          | EXTSAM              | PUMPEN           | SAMC4          | SAMC3            | SAMC2            | SAMC1           | SAMC0 |
| bit 7         |                     |                  |                |                  |                  |                 | bit 0 |
|               |                     |                  |                |                  |                  |                 |       |
| Legend:       |                     |                  |                |                  |                  |                 |       |
| R = Readable  | e bit               | W = Writable I   | oit            | U = Unimplen     | nented bit, read | d as '0'        |       |
| -n = Value at | POR                 | '1' = Bit is set |                | '0' = Bit is cle | ared             | x = Bit is unkr | nown  |
|               |                     |                  |                |                  |                  |                 |       |
| bit 7         | ADRC: A/D C         | onversion Cloc   | k Source bit   |                  |                  |                 |       |
|               | 1 = RC Clock        | ĸ                |                |                  |                  |                 |       |
|               | 0 = Clock der       | rived from syste | em clock       |                  |                  |                 |       |
| bit 6         | EXTSAM: Ex          | tended Samplir   | ng Time bit    |                  |                  |                 |       |
|               | 1 = A/D is sti      | ll sampling afte | r SAMP = 0     |                  |                  |                 |       |
|               | 0 = A/D is fin      | ished sampling   |                |                  |                  |                 |       |
| bit 5         | PUMPEN: Ch          | arge Pump En     | able bit       |                  |                  |                 |       |
|               | 1 = Charge p        | oump for switch  | es is enabled  |                  |                  |                 |       |
|               | 0 = Charge p        | oump for switch  | es is disabled |                  |                  |                 |       |
| bit 4-0       | SAMC<4:0>:          | Auto-Sample T    | ime Select bit | S                |                  |                 |       |
|               | 11111 <b>= 31 T</b> | AD               |                |                  |                  |                 |       |
|               | •••                 | _                |                |                  |                  |                 |       |
|               | 00001 = 1 IAI       |                  |                |                  |                  |                 |       |
|               |                     |                  |                |                  |                  |                 |       |

#### REGISTER 22-8: ADCON3H: A/D CONTROL REGISTER 3 HIGH

#### REGISTER 22-9: ADCON3L: A/D CONTROL REGISTER 3 LOW

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-0 ADCS<7:0>: A/D Conversion Clock Select bits ((ADCS<7:0> + 1) 2/Fosc) = TAD

11111111 • • • = Reserved 01000000 00111111 = 64 · 2/Fosc = TAD • • • 00000001 = 2 · 2/Fosc = TAD 00000000 = 2/Fosc = TAD

# REGISTER 22-13: ADCHS0L: A/D SAMPLE SELECT REGISTER 0 LOW

| R/W-0         | R/W-0                   | R/W-0                      | R/W-0                  | R/W-0            | R/W-0           | R/W-0          | R/W-0  |
|---------------|-------------------------|----------------------------|------------------------|------------------|-----------------|----------------|--------|
| CH0NA2        | CH0NA1                  | CH0NA0                     | CH0SA4                 | CH0SA3           | CH0SA2          | CH0SA1         | CH0SA0 |
| bit 7         |                         |                            |                        |                  |                 |                | bit 0  |
|               |                         |                            |                        |                  |                 |                |        |
| Legend:       |                         |                            |                        |                  |                 |                |        |
| R = Readabl   | le bit                  | W = Writable               | bit                    | U = Unimple      | mented bit, rea | d as '0'       |        |
| -n = Value at | t POR                   | '1' = Bit is set           |                        | '0' = Bit is cle | ared            | x = Bit is unk | nown   |
|               |                         |                            |                        |                  |                 |                |        |
| bit 7-5       | CH0NA<2:0               | >: Sample A Ch             | annel 0 Negat          | ve Input Selec   | t bits          |                |        |
|               | 1xx = Unim              | plemented                  | anner e rregat         |                  |                 |                |        |
|               | 011 = Unim              | plemented                  |                        |                  |                 |                |        |
|               | 010 = AN1               |                            |                        |                  |                 |                |        |
|               | 001 = Unim              | plemented                  |                        |                  |                 |                |        |
|               | 000 = VREF-             | -/AVss                     |                        |                  |                 |                |        |
| bit 4-0       | CH0SA<4:0               | >: Sample A Ch             | annel 0 Positiv        | e Input Select   | bits            |                |        |
|               | 11111 <b>= V</b> BA     | AT/2 <sup>(1)</sup>        |                        |                  |                 |                |        |
|               | 11110 <b>= AV</b> C     | (1) <sub>DC</sub>          |                        |                  |                 |                |        |
|               | 11101 <b>= AV</b> s     | <sub>SS</sub> (1)          |                        |                  |                 |                |        |
|               | 11100 <b>= Bar</b>      | nd gap reference           | e (VBG) <sup>(1)</sup> |                  |                 |                |        |
|               | 11011 <b>= V</b> BG     | ∋/2 <sup>(1)</sup>         |                        |                  |                 |                |        |
|               | 11010 <b>= V</b> BC     | 6 <sup>(1)</sup>           |                        |                  |                 |                |        |
|               | 11001 = CTN             | MU                         |                        |                  |                 |                |        |
|               | 11000 = CIN             | MU temperature             | sensor input (         | does not requi   | re ADCIMUEN     | N1H<0> to be s | et)    |
|               | 10111 = AN2             | 23( <del>*</del> )         |                        |                  |                 |                |        |
|               | 10110 = AN2             | 22 <sup>(-)</sup><br>01(2) |                        |                  |                 |                |        |
|               | 10101 - AN2             | 2 ( <b>2</b> )             |                        |                  |                 |                |        |
|               | $10011 = \Delta N^2$    | 19                         |                        |                  |                 |                |        |
|               | $10010 = AN^{2}$        | 18                         |                        |                  |                 |                |        |
|               | 10001 = AN              | 17                         |                        |                  |                 |                |        |
|               | 10000 = AN <sup>2</sup> | 16                         |                        |                  |                 |                |        |
|               | 01111 = AN <sup>2</sup> | 15                         |                        |                  |                 |                |        |
|               | 01110 = AN <sup>2</sup> | 14                         |                        |                  |                 |                |        |
|               | 01101 = AN <sup>2</sup> | 13                         |                        |                  |                 |                |        |
|               | 01100 = AN <sup>2</sup> | 12                         |                        |                  |                 |                |        |
|               | 01011 = AN              | 11                         |                        |                  |                 |                |        |
|               | 01010 = AN <sup>2</sup> | 10                         |                        |                  |                 |                |        |
|               | 01001 = ANS             | 9                          |                        |                  |                 |                |        |
|               | 01000 = AN8             | 8                          |                        |                  |                 |                |        |
|               | 00111 = AN              | /<br>c                     |                        |                  |                 |                |        |
|               | 00110 - ANG             | 5                          |                        |                  |                 |                |        |
|               | 00101 - AN              | 1                          |                        |                  |                 |                |        |
|               | 00011 = AN              | 3                          |                        |                  |                 |                |        |
|               | 00010 = AN2             | 2                          |                        |                  |                 |                |        |
|               | 00001 = AN              | 1                          |                        |                  |                 |                |        |
|               | 00000 = AN(             | D                          |                        |                  |                 |                |        |

- Note 1: These input channels do not have corresponding memory mapped result buffers.
  - 2: These channels are implemented in 80-pin and 100-pin devices only.



For the 10-bit transfer function (when 10-bit resolution is available):

- The first code transition occurs when the input voltage is ((VR+) (VR-))/1024 or 1.0 LSb.
- The '00 0000 0001' code is centered at VR- + (1.5 \* (((VR+) (VR-)) / 1024).
- The '10 0000 0000' code is centered at VREFL + (512.5 \* (((VR+) (VR-)) /1024).
- An input voltage less than VR- + (((VR-) (VR-)) / 1024) converts as '00 0000 0000'.
- An input voltage greater than (VR-) + ((1023 (VR+)) (VR-))/1024) converts as '11 1111 1111'.

| REGISTER 23-2: CMST | AT: COMPARATOR | STATUS REGISTER |
|---------------------|----------------|-----------------|
|---------------------|----------------|-----------------|

| U-0     | U-0 | U-0 | U-0 | U-0 | R-x   | R-x   | R-x   |
|---------|-----|-----|-----|-----|-------|-------|-------|
|         | —   | _   | —   | —   | C3OUT | C2OUT | C1OUT |
| bit 7   |     |     |     |     |       |       | bit 0 |
|         |     |     |     |     |       |       |       |
| Lonondi |     |     |     |     |       |       |       |

| Legena.           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 7-3 Unimplemented: Read as '0'

| bit 2-0 | C3OUT:C1OUT: Comparator x Status bits           |
|---------|-------------------------------------------------|
|         | If CPOL (CMxCON<5>)= 0 (non-inverted polarity): |
|         |                                                 |

1 = Comparator x's VIN+ > VIN-

0 = Comparator x's VIN+ < VIN-

CPOL = 1 (inverted polarity):

1 = Comparator x's VIN+ < VIN-

0 = Comparator x's VIN + > VIN

# 23.2 Comparator Operation

A single comparator is shown in Figure 23-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input, VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input, VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 23-2 represent the uncertainty due to input offsets and response time.

FIGURE 23-2: SINGLE COMPARATOR



# 23.3 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response to a comparator input change. Otherwise, the maximum delay of the comparators should be used (see **Section 30.0 "Electrical Specifications"**).

# 23.4 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 23-3. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and VSs. The analog input, therefore, must be between VSs and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur.

A maximum source impedance of  $10 \text{ k}\Omega$  is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

#### REGISTER 24-2: CVRCONL: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER LOW

| R/W-0 | R/W-0 | R/W-0   | R/W-0   | U-0 | U-0 | U-0 | R/W-0  |
|-------|-------|---------|---------|-----|-----|-----|--------|
| CVREN | CVROE | CVRPSS1 | CVRPSS0 | —   | —   | —   | CVRNSS |
| bit 7 |       |         |         |     |     |     | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 7   | CVREN: Comparator Voltage Reference Enable bit                        |
|---------|-----------------------------------------------------------------------|
|         | 1 = CVREF circuit is powered on                                       |
|         | 0 = CVREF circuit is powered down                                     |
| bit 6   | CVROE: Comparator VREF Output Enable bit                              |
|         | 1 = CVREF voltage level is output on CVREF pin                        |
|         | 0 = CVREF voltage level is disconnected from CVREF pin                |
| bit 5-4 | CVRPSS<1:0>: Comparator VREF Positive Source (VPOSSRC) Selection bits |
|         | 11 = Reserved, do not use. Positive source is floating                |
|         | 10 = VBG (Band gap)                                                   |
|         | $01 = \mathbf{V} \mathbf{R} \mathbf{F} \mathbf{F}$                    |
|         |                                                                       |
| bit 3-1 | Unimplemented: Read as '0'                                            |
| bit 0   | CVRNSS: Comparator VREF Negative Source (VNEGSRC) Selection bit       |
|         | 01 = VREF-                                                            |
|         | 00 = AVss                                                             |

# FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM



The USB Specification limits the power taken from the bus. Each device is ensured 100 mA at approximately 5V (one unit load). Additional power may be requested, up to a maximum of 500 mA.

Note that power above one unit load is a request and the host or hub is not obligated to provide the extra current. Thus, a device capable of consuming more than one unit load must be able to maintain a low-power configuration of a one unit load or less, if necessary.

The USB Specification also defines a Suspend mode. In this situation, current must be limited to 500  $\mu$ A, averaged over one second. A device must enter a suspend state after 3 ms of inactivity (i.e., no SOF tokens for 3 ms). A device entering Suspend mode must drop current consumption within 10 ms after suspend. Likewise, when signaling a wake-up, the device must signal a wake-up within 10 ms of drawing current above the suspend limit.

# 27.9.5 ENUMERATION

When the device is initially attached to the bus, the host enters an enumeration process in an attempt to identify the device. Essentially, the host interrogates the device, gathering information, such as power consumption, data rates and sizes, protocol and other descriptive information; descriptors contain this information. A typical enumeration process would be as follows:

- 1. USB Reset Reset the device. Thus, the device is not configured and does not have an address (Address 0).
- 2. Get Device Descriptor The host requests a small portion of the device descriptor.
- 3. USB Reset Reset the device again.
- 4. Set Address The host assigns an address to the device.
- 5. Get Device Descriptor The host retrieves the device descriptor, gathering info, such as manufacturer, type of device, maximum control packet size.
- 6. Get configuration descriptors.
- 7. Get any other descriptors.
- 8. Set a configuration.

The exact enumeration process depends on the host.

### 27.9.6 DESCRIPTORS

There are eight different standard descriptor types, of which, five are most important for this device.

### 27.9.6.1 Device Descriptor

The device descriptor provides general information, such as manufacturer, product number, serial number, the class of the device and the number of configurations. There is only one device descriptor.

# 27.9.6.2 Configuration Descriptor

The configuration descriptor provides information on the power requirements of the device and how many different interfaces are supported when in this configuration. There may be more than one configuration for a device (i.e., low-power and high-power configurations).

### 27.9.6.3 Interface Descriptor

The interface descriptor details the number of endpoints used in this interface, as well as the class of the interface. There may be more than one interface for a configuration.

#### 27.9.6.4 Endpoint Descriptor

The endpoint descriptor identifies the transfer type (**Section 27.9.3 "Transfers"**) and direction, and some other specifics for the endpoint. There may be many endpoints in a device and endpoints may be shared in different configurations.

#### 27.9.6.5 String Descriptor

Many of the previous descriptors reference one or more string descriptors. String descriptors provide human readable information about the layer (Section 27.9.1 "Layered Framework") they describe. Often these strings show up in the host to help the user identify the device. String descriptors are generally optional to save memory and are encoded in a unicode format.

#### 27.9.7 BUS SPEED

Each USB device must indicate its bus presence and speed to the host. This is accomplished through a  $1.5 \text{ k}\Omega$  resistor, which is connected to the bus at the time of the attachment event.

Depending on the speed of the device, the resistor either pulls up the D+ or D- line to 3.3V. For a lowspeed device, the pull-up resistor is connected to the D- line. For a full-speed device, the pull-up resistor is connected to the D+ line.

# 27.9.8 CLASS SPECIFICATIONS AND DRIVERS

USB specifications include class specifications, which operating system vendors optionally support. Examples of classes include: Audio, Mass Storage, Communications and Human Interface (HID). In most cases, a driver is required at the host side to 'talk' to the USB device. In custom applications, a driver may need to be developed. Fortunately, drivers are available for most common host systems for the most common classes of devices. Thus, these drivers can be reused.

| U-1               | U-1                                                                                                                                         | U-1                  | U-1           | R/WO-1                | R/WO-1   | R/WO-1             | R/WO-1  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------------------|----------|--------------------|---------|
| _                 | _                                                                                                                                           | _                    | —             | MSSPMSK1              | MSSPMSK2 | LS48MHZ            | IOL1WAY |
| bit 7             |                                                                                                                                             |                      |               |                       |          |                    | bit 0   |
|                   |                                                                                                                                             |                      |               |                       |          |                    |         |
| Legend:           |                                                                                                                                             | P = Programmable bit |               | WO = Write-Once bit   |          |                    |         |
| R = Readable bit  |                                                                                                                                             | W = Writable         | bit           | U = Unimplemented bit |          |                    |         |
| -n = Value at POR |                                                                                                                                             | '1' = Bit is se      | t             | '0' = Bit is cleared  |          | x = Bit is unknown |         |
|                   |                                                                                                                                             |                      |               |                       |          |                    |         |
| bit 7-4           | Unimplemented: Program the corresponding Flash Configuration bit to '1'                                                                     |                      |               |                       |          |                    |         |
| bit 3             | it 3 MSSPMSK1: MSSP1 7-Bit Address Masking Mode Enable bit                                                                                  |                      |               |                       |          |                    |         |
|                   | 1 = 7-Bit Address Masking mode enable                                                                                                       |                      |               |                       |          |                    |         |
|                   | 0 = 5-Bit Address Masking mode enable                                                                                                       |                      |               |                       |          |                    |         |
| bit 2             | MSSPMSK                                                                                                                                     | 2: MSSP2 7-E         | it Address Ma | sking Mode Ena        | ble bit  |                    |         |
|                   | 1 = 7-Bit Address Masking mode enable                                                                                                       |                      |               |                       |          |                    |         |
|                   | 0 = 5-Bit Address Masking mode enable                                                                                                       |                      |               |                       |          |                    |         |
| bit 1             | LS48MHZ: Low-Speed USB Clock Selection bit                                                                                                  |                      |               |                       |          |                    |         |
|                   | 1 = 48 MHz system clock is expected; divide-by-8 generates low-speed USB clock                                                              |                      |               |                       |          |                    |         |
|                   | 0 = 24 MHz system clock is expected; divide-by-4 generates low-speed USB clock                                                              |                      |               |                       |          |                    |         |
| bit 0             | IOL1WAY: IOLOCK Bit One-Way Set Enable bit                                                                                                  |                      |               |                       |          |                    |         |
|                   | 1 = The IOLOCK bit can only be set once (provided an unlocking sequence is executed); this prevents any possible future RP register changes |                      |               |                       |          |                    |         |

#### REGISTER 28-9: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

any <sub>b</sub> iture RP register changes

0 = The IOLOCK bit can be set and cleared as needed (provided an unlocking sequence is executed)