
Motorola - MC68HC908JB8JPE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

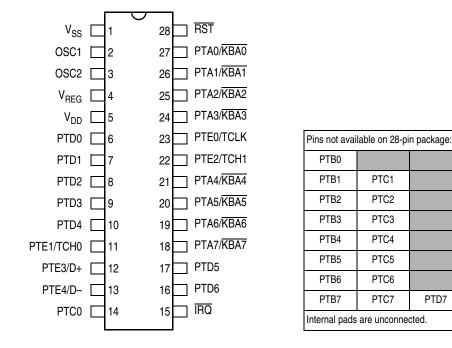
Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	3MHz
Connectivity	USB
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-DIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc908jb8jpe

Email: info@E-XFL.COM

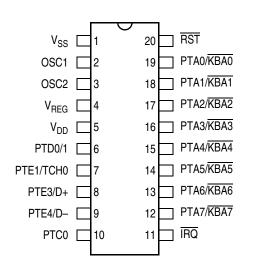
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

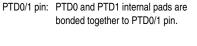
Section 18. Electrical Specifications

18.1	Contents	:53
18.2	Introduction	53
18.3	Absolute Maximum Ratings2	54
18.4	Functional Operating Range2	55
18.5	Thermal Characteristics2	:55
18.6	DC Electrical Characteristics2	56
18.7	Control Timing	57
18.8	Oscillator Characteristics	57
18.9	USB DC Electrical Characteristics	58
18.10	USB Low-Speed Source Electrical Characteristics2	:59
18.11	USB Signaling Levels	60
18.12	TImer Interface Module Characteristics	60
18.13	Memory Characteristics	61


Section 19. Mechanical Specifications

19.1	Contents
19.2	Introduction
19.3	44-Pin Plastic Quad Flat Pack (QFP)
19.4	28-Pin Small Outline Integrated Circuit (SOIC)265
19.5	20-Pin Dual In-Line Package (PDIP)
19.6	20-Pin Small Outline Integrated Circuit (SOIC)


Section 20. Ordering Information


20.1	Contents
20.2	Introduction
20.3	MC Order Numbers

PTD7

Pins not available on 20-pin package:									
PTB0			PTE0/TCLK						
PTB1	PTC1								
PTB2	PTC2	PTD2	PTE2/TCH1						
PTB3	PTC3	PTD3							
PTB4	PTC4	PTD4							
PTB5	PTC5	PTD5							
PTB6	PTC6	PTD6							
PTB7	PTC7	PTD7							
Internal pads are unconnected.									

NOTE: In 20-pin package, the PTD0 and PTD1 internal pads are bonded together to PTD0/1 pin.

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	TIM Status and Control	Read:	TOF	TOIL	TOTOD	0	0	DOO	DO1	DOO
\$000A	Register	Write:	0 TOIE		TSTOP	TRST		PS2	PS1	PS0
	(TSC)	Reset:	0	0	1	0	0	0	0	0
		Read:								
\$000B	Unimplemented	Write:								
		,								
	TIM Counter Register	Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$000C	High	Write:								
	(TCNTH)	Reset:	0	0	0	0	0	0	0	0
	TIM Counter Register	Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$000D	Low	Write:								
	(TCNTL)	Reset:	0	0	0	0	0	0	0	0
	TIM Counter Modulo Register High (TMODH)	Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$000E		Write:	Dit15	DITA	Dirio	DITZ	DILTI	DILTO	Dita	Dito
		Reset:	1	1	1	1	1	1	1	1
		Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$000F		Write:	Diti	Dito	Dito	DIL4	Dito	DILZ	Ditt	Dito
		Reset:	1	1	1	1	1	1	1	1
	TIM Channel 0 Status and	Read:	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CHOMAX
\$0010	Control Register		0	ONDE	MOOD	MOOA	LLOOD	LLOUA	1000	OHOMAA
	(TSC0)	Reset:	0	0	0	0	0	0	0	0
	TIM Channel 0	Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$0011	Register High	Write:	Bitro	BRIT	Birlo	DITL	BRIT	Bitro	Dito	Bito
	(TCH0H)	Reset:				Indetermina	te after rese	t		
	TIM Channel 0	Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$0012	Register Low		DI	Dito	Bito	Ditt	Bito	DAL	Ditt	Bito
	(TCH0L)	Reset:				Indetermina	te after rese	t		
	TIM Channel 1 Status and	Read:	CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MAX
\$0013	Control Register		0							
	(TSC1)	Reset:	0	0	0	0	0	0	0	0
				= Unimple	mented	R	= Reserve	d	U = Unaffec	ted by reset

Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)

NP

Memory Map

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0	
\$003C	USB Control Register 1 (UCR1)	Read: Write:	T1SEQ	STALL1	TX1E	FRESUM	TP1SIZ3	TP1SIZ2	TP1SIZ1	TP1SIZ0	
	(••••••)	Reset:	0	0	0	0	0	0	0	0	
		Read:	R0SEQ	SETUP	0	0	RP0SIZ3	RP0SIZ2	RP0SIZ1	RP0SIZ0	
\$003D	USB Status Register 0 (USR0)	Write:									
	()	Reset:				Unaffecte	d by reset				
		Read:	R2SEQ	TXACK	TXNAK	TXSTL	RP2SIZ3	RP2SIZ2	RP2SIZ1	RP2SIZ0	
\$003E	USB Status Register 1 (USR1)	Write:									
	()	Reset:	U	0	0	0	U	U	U	U	
		Read:									
\$003F	Unimplemented	Write:									
		•									
		Read:	_	_	_	_	_	_	SBSW	_	
\$FE00	Break Status Register (BSR)	Write:	R	R	R	R	R	R	See note	R	
	(BON)	Reset:							0		
Note: W	riting a logic 0 clears SBSW	Ι.									
)1 Reset Status Register (RSR)	Read:	POR	PIN	COP	ILOP	ILAD	USB	LVI	0	
\$FE01		Write:									
		POR:	1	0	0	0	0	0	0	0	
		Read:	R	R	R	Р	Р	Р	Р	D	
\$FE02	Reserved	Write:	n	n	п	R	R	R	R	R	
		L				•			•		
\$FE03	Break Flag Control Register	Read: Write:	BCFE	R	R	R	R	R	R	R	
		Reset:	0								
		Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0	
\$FE04	Interrupt Status Register 1	Write:	R	R	R	R	R	R	R	R	
÷. =• !	(INT1)	Reset:	0	0	0	0	0	0	0	0	
		Read:		-	-	-	-	-	-	-	
\$FE05	Reserved		R	R	R	R	R	R	R	R	
Ţ. 200	10001700			[[
				= Unimplei	mented	R	= Reserve	d	U = Unaffec	ted by reset	
	Figure 2.2. Control. Status, and Data Degisters (Sheet 7 of 9)										

Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)

Technical Data

6.8 Instruction Set Summary

Source Form	Operation	Description		E	Effect on CCR				Address Mode	ode	Operand	es
FOIII					I	Ν	z	С	Add	Opcode	Ope	Cycles
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP	Add with Carry	A ← (A) + (M) + (C)	¢	\$	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A9 B9 C9 D9 E9 F9 9EE9 9ED9	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ADD #opr ADD opr ADD opr, ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP	Add without Carry	A ← (A) + (M)	\$	\$	_	¢	\$	↔	IMM DIR EXT IX2 IX1 IX SP1 SP2	AB BB CB DB EB FB 9EEB 9EDB	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
AIS #opr	Add Immediate Value (Signed) to SP	$SP \leftarrow (SP) + (16 \mathrel{\scriptstyle{\scriptstyle \ll}} M)$	-	-	-	-	-	I	IMM	A7	ii	2
AIX #opr	Add Immediate Value (Signed) to H:X	$H:X \leftarrow (H:X) + (16 \mathrel{\scriptstyle{\scriptstyle \ll}} M)$	-	-	I		-	-	IMM	AF	ii	2
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)		\$	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
ASR <i>opr</i> ASRA ASRX ASR <i>opr</i> ,X ASR <i>opr</i> ,X ASR <i>opr</i> ,SP	Arithmetic Shift Right		\$	_	_	\$	\$	↔	DIR INH INH IX1 IX SP1	37 47 57 67 77 9E67	dd ff ff	4 1 4 3 5

Table 6-1. Instruction Set Summary (Sheet 1 of 9)

Technical Data

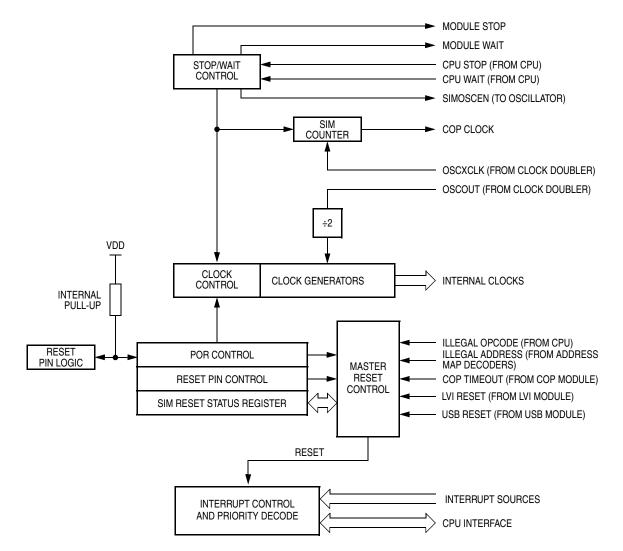


Figure 8-1. SIM Block Diagram

Table 8-1. SIM Module Signal N	lame Conventions
--------------------------------	------------------

Signal Name	Description
OSCXCLK	Clock doubler output which has twice the frequency of OSC1 from the oscillator
OSCOUT	The OSCXCLK frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = OSCXCLK \div 4 = f _{OSC} \div 2)
IAB	Internal address bus
IDB	Internal data bus
PORRST	Signal from the power-on reset module to the SIM
IRST	Internal reset signal
R/W	Read/write signal

MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3

System Integration Module (SIM)

SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing 0 to the SBSW bit clears it.

This code works if the H register has been pushed onto the stack in the break service routine software. This code should be executed at the end of the break service routine software.

HIBYTE	EQU	5	
LOBYTE	EQU	6	
;	If not	SBSW, do RTI	
	BRCLR	SBSW,BSR, RETURN	; See if wait mode or stop mode was exited ; by break.
	TST	LOBYTE, SP	; If RETURNLO is not zero,
	BNE	DOLO	; then just decrement low byte.
	DEC	HIBYTE, SP	; Else deal with high byte, too.
DOLO	DEC	LOBYTE, SP	; Point to WAIT/STOP opcode.
RETURN	PULH RTI		; Restore H register.

8.8.2 Reset Status Register

This register contains seven flags that show the source of the last reset. All flag bits are cleared automatically following a read of the register. The register is initialized on power-up as shown with the POR bit set and all other bits cleared. However, during a POR or any other internal reset, the $\overline{\text{RST}}$ pin is pulled low. After the pin is released, it will be sampled 32 XCLK cycles later. If the pin is not above a V_{IH} at that time, then the PIN bit in the RSR may be set in addition to whatever other bits are set.

Universal Serial Bus Module (USB)

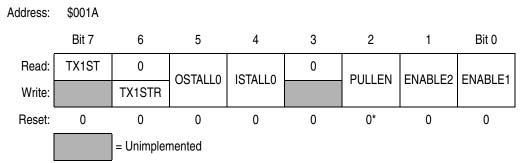

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0				
\$002C	USB Endpoint 1 Data	Read:												
	Register 4		UE1T47	UE1T46	UE1T45	UE1T44	UE1T43	UE1T42	UE1T41	UE1T40				
	(UE1D4)	Reset:				Unaffecte	cted by reset							
\$002D	USB Endpoint 1 Data	Read:												
	Register5		UE1T57	UE1T56	UE1T55	UE1T54	UE1T53	UE1T52	UE1T51	UE1T50				
	(UE1D5)	Reset:				Unaffecte	d by reset							
\$002E	USB Endpoint 1 Data	Read:												
	Register 6	Write:	UE1T67	UE1T66	UE1T65	UE1T64	UE1T63	UE1T62	UE1T61	UE1T60				
	(UE1D6)	Reset:				Unaffecte	d by reset							
\$002F	USB Endpoint 1 Data	Read:												
	Register 7	Write:	UE1T77	UE1T76	UE1T75	UE1T74	UE1T73	UE1T72	UE1T71	UE1T70				
	(UE1D7)	Reset:				Unaffecte	d by reset							
\$0030	USB Endpoint 2 Data Register 0 (UE2D0)	Read:	UE2R07	UE2R06	UE2R05	UE2R04	UE2R03	UE2R02	UE2R01	UE2R00				
		Write:	UE2T07	UE2T06	UE2T05	UE2T04	UE2T03	UE2T02	UE2T01	UE2T00				
		Reset:	et: Unaffected by reset											
\$0031	USB Endpoint 2 Data	Read:	UE2R17	UE2R16	UE2R15	UE2R14	UE2R13	UE2R12	UE2R11	UE2R10				
	Register 1	Write:	UE2T17	UE2T16	UE2T15	UE2T14	UE2T13	UE2T12	UE2T11	UE2T10				
	(UE2D1)	Reset:				Unaffecte	d by reset							
\$0032	USB Endpoint 2 Data	Read:	UE2R27	UE2R26	UE2R25	UE2R24	UE2R23	UE2R22	UE2R21	UE2R20				
	Register 2	Write:	UE2T27	UE2T26	UE2T25	UE2T24	UE2T23	UE2T22	UE2T21	UE2T20				
	(UE2D2)	Reset:				Unaffecte	d by reset							
\$0033	USB Endpoint 2 Data	Read:	UE2R37	UE2R36	UE2R35	UE2R34	UE2R33	UE2R32	UE2R31	UE2R30				
	Register 3	Write:	UE2T37	UE2T36	UE2T35	UE2T34	UE2T33	UE2T32	UE2T31	UE2T30				
	(UE2D3)	Reset:					d by reset							
\$0034	USB Endpoint 2 Data	Read:	UE2R47	UE2R46	UE2R45	UE2R44	UE2R43	UE2R42	UE2R41	UE2R40				
	Register 4	Write:	UE2T47	UE2T46	UE2T45	UE2T44	UE2T43	UE2T42	UE2T41	UE2T40				
	(UE2D4)	Reset:				Unaffecte	d by reset							
\$0035	USB Endpoint 2 Data	Read:	UE2R57	UE2R56	UE2R55	UE2R54	UE2R53	UE2R52	UE2R51	UE2R50				
	Register 5	Write:	UE2T57	UE2T56	UE2T55	UE2T54	UE2T53	UE2T52	UE2T51	UE2T50				
	(UE2D5)	Reset:	Unaffected by reset											
				= Unimplei	mented		U = Unaffeo	cted by rese	t					

Figure 9-1. USB I/O Register Summary (Sheet 3 of 4)

Technical Data

9.8.8 USB Control Register 3

* PULLEN bit is reset by POR or LVI reset only.

Figure 9-22. USB Control Register 3 (UCR3)

TX1ST — Endpoint 0 Transmit First Flag

This read-only bit is set if the endpoint 0 data transmit flag (TXD0F) is set when the USB control logic is setting the endpoint 0 data receive flag (RXD0F). In other words, if an unserviced endpoint 0 transmit flag is still set at the end of an endpoint 0 reception, then this bit will be set. This bit lets the firmware know that the endpoint 0 transmission happened before the endpoint 0 reception.

Reset clears this bit.

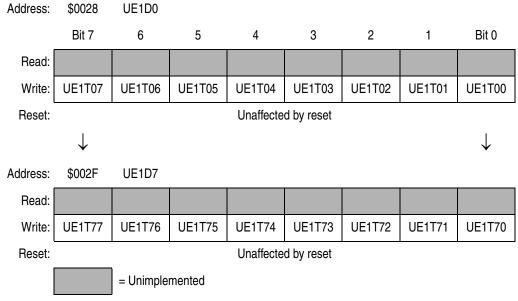
1 = IN transaction occurred before SETUP/OUT

0 = IN transaction occurred after SETUP/OUT

TX1STR — Clear Endpoint 0 Transmit First Flag

Writing a logic 1 to this write-only bit will clear the TX1ST bit if it is set. Writing a logic 0 to the TX1STR has no effect. Reset clears this bit.

OSTALL0 — Endpoint 0 Force STALL Bit for OUT token


This read/write bit causes endpoint 0 to return a STALL handshake when polled by an OUT token by the USB host controller. Reset clears this bit.

1 = Send STALL handshake

0 = Default

9.8.13 USB Endpoint 1 Data Registers

Figure 9-27. USB Endpoint 1 Data Registers (UE1D0–UE1D7)

UE1Tx7–UE1Tx0 — Endpoint 1 Transmit or Receive Data Buffer

These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 1.

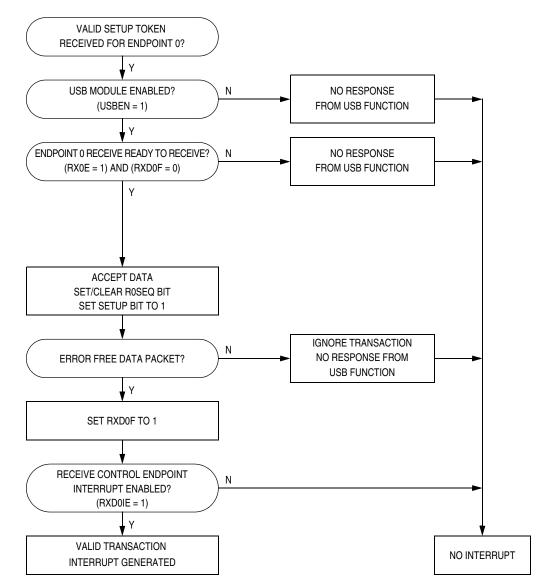
Universal Serial Bus Module (USB)

9.8.14 USB Endpoint 2 Data Registers

Address:	\$0030	UE2D0						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	UE2R07	UE2R06	UE2R05	UE2R04	UE2R03	UE2R02	UE2R01	UE2R00
Write:	UE2T07	UE2T06	UE2T05	UE2T04	UE2T03	UE2T02	UE2T01	UE2T00
Reset:				Unaffecte	d by reset			
	\downarrow							\downarrow
Address:	↓ \$0037	UE2D7						\downarrow
Address: Read:	↓ \$0037 UE2R77	UE2D7 UE2R76	UE2R75	UE2R74	UE2R73	UE2R72	UE2R71	↓ UE2R70
	•		UE2R75 UE2T75	UE2R74 UE2T74	UE2R73 UE2T73	UE2R72 UE2T72	UE2R71 UE2T71	↓ UE2R70 UE2T70

Figure 9-28. USB Endpoint 2 Data Registers (UE2D0–UE2D7)

UE2Rx7–UE2Rx0 — Endpoint 2 Receive Data Buffer


These read-only bits are serially loaded with OUT token data directed at endpoint 2. The data is received over the USB's D+ and D– pins.

UE2Tx7-UE2Tx0 — Endpoint 2 Transmit Data Buffer

These write-only buffers are loaded by software with data to be sent on the USB bus on the next IN token directed at endpoint 2.

SETUP transactions cannot be stalled by the USB function. A SETUP received by a control endpoint will clear the ISTALL0 and OSTALL0 bits. The conditions for receiving a SETUP interrupt are shown in Figure 9-30.

11.7.1 Wait Mode

The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode.

If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.

11.7.2 Stop Mode

The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.

11.8 TIM During Break Interrupts

A break interrupt stops the TIM counter.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See **8.8.3 Break Flag Control Register**.)

To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.

Technical Data

11.9 I/O Signals

Port E shares three of its pins with the TIM. PTE0/TCLK is an external clock input to the TIM prescaler. The two TIM channel I/O pins are PTE1/TCH0 and PTE2/TCH1.

11.9.1 TIM Clock Pin (PTE0/TCLK)

PTE0/TCLK is an external clock input that can be the clock source for the TIM counter instead of the prescaled internal bus clock. Select the PTE0/TCLK input by writing logic 1s to the three prescaler select bits, PS[2:0]. (See **11.10.1 TIM Status and Control Register**.) The minimum TCLK pulse width, TCLK_{LMIN} or TCLK_{HMIN}, is:

$$\frac{1}{bus frequency} + t_{SU}$$

The maximum TCLK frequency is:

bus frequency ÷ 2

PTE0/TCLK is available as a general-purpose I/O pin when not used as the TIM clock input. When the PTE0/TCLK pin is the TIM clock input, it is an input regardless of the state of the DDRE0 bit in data direction register E.

11.9.2 TIM Channel I/O Pins (PTE1/TCH0:PTE2/TCH1)

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTE1/TCH0 can be configured as buffered output compare or buffered PWM pins.

11.10 I/O Registers

The following I/O registers control and monitor operation of the TIM:

- TIM status and control register (TSC)
- TIM counter registers (TCNTH:TCNTL)
- TIM counter modulo registers (TMODH:TMODL)
- TIM channel status and control registers (TSC0 and TSC1)
- TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)

MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 - Rev. 2.3

When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. (See **Table 11-3**.) Reset clears the MSxA bit.

- 1 = Initial output level low
- 0 = Initial output level high
- **NOTE:** Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC).

ELSxB and ELSxA — Edge/Level Select Bits

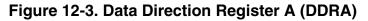
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x.

When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs.

When ELSxB and ELSxA are both clear, channel x is not connected to port E, and pin PTEx/TCHx is available as a general-purpose I/O pin. Table 11-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.

MSxB	MSxA	ELSxB	ELSxA	Mode	Configuration		
x	0	0	0	Output	Pin under port control; initial output level high		
x	1	0	0	Preset	Pin under port control; initial output level low		
0	0	0	1		Capture on rising edge only		
0	0	1	0	Input Capture	Capture on falling edge only		
0	0	1	1	e aprai e	Capture on rising or falling edge		
0	1	0	1	Output	Toggle output on compare		
0	1	1	0	Compare	Clear output on compare		
0	1	1	1	or PWM	Set output on compare		
1	Х	0	1	Buffered	Toggle output on compare		
1	Х	1	0	Output Compare or	Clear output on compare		
1	Х	1	1	Buffered PWM	Set output on compare		

Table 11-3. Mode, Edge, and Level Selection



12.3.2 Data Direction Register A

Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.

Address:	\$0004							
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0
Reset:	0*	0	0	0	0	0	0	0

* DDRA7 bit is reset by POR or LVI reset only.

DDRA[7:0] — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs.

- 1 = Corresponding port A pin configured as output
- 0 = Corresponding port A pin configured as input
- **NOTE:** Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 12-4 shows the port A I/O logic.

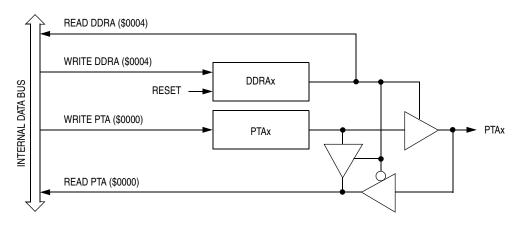
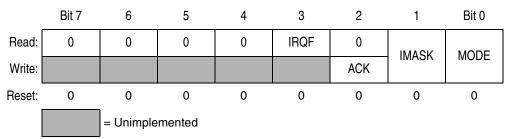


Figure 12-4. Port A I/O Circuit


MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3

13.8 IRQ Status and Control Register

The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module. The ISCR has the following functions:

- Shows the state of the IRQ flag
- Clears the IRQ latch
- Masks IRQ interrupt request
- Controls triggering sensitivity of the IRQ pin

Address: \$001E

IRQF — IRQ Flag

This read-only status bit is high when the IRQ interrupt is pending.

- 1 = IRQ interrupt pending
- 0 = IRQ interrupt not pending

ACK — IRQ Interrupt Request Acknowledge Bit

Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK.

IMASK — IRQ Interrupt Mask Bit

Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.

- 1 = IRQ interrupt requests disabled
- 0 = IRQ interrupt requests enabled
- MODE IRQ Edge/Level Select Bit

This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE.

 $1 = \overline{IRQ}$ interrupt requests on falling edges and low levels

Technical Data

Technical Data — MC68HC908JB8•MC68HC08JB8•MC68HC08JT8

Section 15. Computer Operating Properly (COP)

15.1 Contents

15.2 Introduction
15.3 Functional Description
15.4 I/O Signals
15.4.1 OSCXCLK
15.4.2 STOP Instruction
15.4.3 COPCTL Write
15.4.4 Power-On Reset
15.4.5 Internal Reset
15.4.6 Reset Vector Fetch
15.4.7 COPD (COP Disable)
15.4.8 COPRS (COP Rate Select)
15.5 COP Control Register
15.6 Interrupts
15.7 Monitor Mode
15.8 Low-Power Modes
15.8.1 Wait Mode
15.8.2 Stop Mode
15.9 COP Module During Break Mode

15.2 Introduction

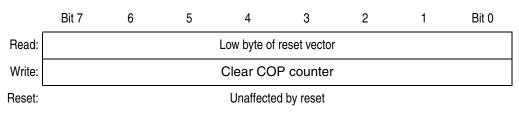
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register.

MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3

COPRS — COP Rate Select Bit

COPRS selects the COP timeout period. Reset clears COPRS.

- 1 = COP timeout period is $(2^{13} 2^4) \times OSCXOUT$ cycles
- 0 = COP timeout period is $(2^{18} 2^4) \times OSCXOUT$ cycles
- COPD COP Disable Bit


COPD disables the COP module.

- 1 = COP module disabled
- 0 = COP module enabled

15.5 COP Control Register

The COP control register is located at address \$FFFF and overlaps the reset vector. Writing any value to \$FFFF clears the COP counter and starts a new timeout period. Reading location \$FFFF returns the low byte of the reset vector.

Address: \$FFFF

Figure 15-3. COP Control Register (COPCTL)

15.6 Interrupts

The COP does not generate CPU interrupt requests.

15.7 Monitor Mode

The COP is disabled in monitor mode when $V_{DD} + V_{HI}$ is present on the IRQ pin or on the RST pin.

A.5 Reserved Registers

The two registers at \$FE08 and \$FE09 are reserved locations on the MC68HC08JB8.

On the MC68HC908JB8, these two locations are the FLASH control register and the FLASH block protect register respectively.

A.6 Monitor ROM

The monitor program (monitor ROM: \$FE10–\$FFDF) on the MC68HC08JB8 is for device testing only. \$FC00–\$FDFF are unused.

A.7 Electrical Specifications

Electrical specifications for the MC68HC908JB8 apply to the MC68HC08JB8, except for the parameters indicated below.

MC68HC908JB8•MC68HC08JB8•MC68HC08JT8 — Rev. 2.3