

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f913-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC6/TX/CK/SCK/SCL/SEG9	RC6	ST	CMOS	General purpose I/O.
	TX		CMOS	USART asynchronous serial transmit.
	СК	ST	CMOS	USART synchronous serial clock.
	SCK	ST	CMOS	SPI clock.
	SCL	ST ⁽⁴⁾	OD	l ² C™ clock.
	SEG9		AN	LCD analog output.
RC7/RX/DT/SDI/SDA/SEG8	RC7	ST	CMOS	General purpose I/O.
	RX	ST		USART asynchronous serial receive.
	DT	ST	CMOS	USART synchronous serial data.
	SDI	ST	CMOS	SPI data input.
	SDA	ST ⁽⁴⁾	OD	l ² C™ data.
	SEG8		AN	LCD analog output.
RD0/COM3 ^(1, 2)	RD0	ST	CMOS	General purpose I/O.
	COM3		AN	LCD analog output.
RD1 ⁽²⁾	RD1	ST	CMOS	General purpose I/O.
RD2/CCP2 ⁽²⁾	RD2	ST	CMOS	General purpose I/O.
	CCP2	ST	CMOS	Capture 2 input/Compare 2 output/PWM 2 output.
RD3/SEG16 ⁽²⁾	RD3	ST	CMOS	General purpose I/O.
	SEG16		AN	LCD analog output.
RD4/SEG17 ⁽²⁾	RD4	ST	CMOS	General purpose I/O.
	SEG17		AN	LCD analog output.
RD5/SEG18 ⁽²⁾	RD5	ST	CMOS	General purpose I/O.
	SEG18	_	AN	LCD analog output.
RD6/SEG19 ⁽²⁾	RD6	ST	CMOS	General purpose I/O.
	SEG19		AN	LCD analog output.
RD7/SEG20 ⁽²⁾	RD7	ST	CMOS	General purpose I/O.
	SEG20		AN	LCD analog output.
RE0/AN5/SEG21 ⁽²⁾	RE0	ST	CMOS	General purpose I/O.
	AN5	AN		Analog input Channel 5.
	SEG21		AN	LCD analog output.
RE1/AN6/SEG22 ⁽²⁾	RE1	ST	CMOS	General purpose I/O.
	AN6	AN		Analog input Channel 6.
	SEG22		AN	LCD analog output.
RE2/AN7/SEG23 ⁽²⁾	RE2	ST	CMOS	General purpose I/O.
	AN7	AN	—	Analog input Channel 7.
	SEG23	—	AN	LCD analog output.
RE3/MCLR/Vpp	RE3	ST	_	Digital input only.
	MCLR	ST	_	Master Clear with internal pull-up.
	Vpp	ΗV	—	Programming voltage.
Legend: AN = Analog inpu TTL = TTL compate HV = High Voltag	tible input	ST =		compatible input or output OD = Open Drain Trigger input with CMOS levels P = Power

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.

2: Pins available on PIC16F914/917 and PIC16F946 only.

3: Pins available on PIC16F946 only.

4: I²C Schmitt trigger inputs have special input levels.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressing	g this locatio	n uses conte	nts of FSR to	address dat	a memory (r	not a physica	l register)	xxxx xxxx	41,226
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	99,226
02h	PCL	Program C	Counter's (PC	C) Least Sign	ificant Byte					0000 0000	40,226
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	32,226
04h	FSR	Indirect Da	ata Memory A	Address Poin	ter					xxxx xxxx	41,226
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	44,226
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	54,226
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	62,226
08h	PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	71,226
09h	PORTE	RE7 ⁽³⁾	RE6 ⁽³⁾	RE5 ⁽³⁾	RE4 ⁽³⁾	RE3	RE2 ⁽²⁾	RE1 ⁽²⁾	RE0 ⁽²⁾	xxxx xxxx	76,226
0Ah	PCLATH	_	—	_	Write Buffer	for upper 5	bits of Progr	am Counter		0 0000	40,226
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	34,226
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	37,226
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF	_	CCP2IF ⁽²⁾	0000 -0-0	38,226
0Eh	TMR1L	Holding Re	egister for the	e Least Signi	ficant Byte of	the 16-bit TI	MR1			xxxx xxxx	102,226
0Fh	TMR1H	Holding Re	Holding Register for the Most Significant Byte of the 16-bit TMR1							xxxx xxxx	102,226
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	105,226
11h	TMR2	Timer2 Mc	dule Registe	er						0000 0000	107,226
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	108,226
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transmi	t Register				xxxx xxxx	196,226
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	195,226
15h	CCPR1L	Capture/C	ompare/PWN	A Register 1	(LSB)					xxxx xxxx	213,226
16h	CCPR1H	Capture/C	ompare/PWN	A Register 1	(MSB)					xxxx xxxx	213,226
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	212,226
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	131,226
19h	TXREG	USART Tr	ansmit Data	Register					•	0000 0000	130,226
1Ah	RCREG	USART Re	eceive Data F	Register						0000 0000	128,227
1Bh ⁽²⁾	CCPR2L	Capture/C	ompare/PWN	A Register 2	(LSB)					xxxx xxxx	213,227
1Ch ⁽²⁾	CCPR2H	Capture/C	ompare/PWN	A Register 2	(MSB)					xxxx xxxx	213,227
1Dh ⁽²⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	212,227
1Eh	ADRESH	A/D Resul	t Register Hig	gh Byte			•			xxxx xxxx	182,227
1Fh	ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	180,227

TABLE 2-1: PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: PIC16F914/917 and PIC16F946 only, forced '0' on PIC16F913/916.

3: PIC16F946 only, forced to '0' on PIC16F91X.

2.2.2.7 PIR2 Register

The PIR2 register contains the interrupt flag bits, as shown in Register 2-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	—	CCP2IF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSFIF: Oscillator Fail Interrupt Flag bit
	 1 = System oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = System clock operating
bit 6	C2IF: Comparator C2 Interrupt Flag bit
	 1 = Comparator output (C2OUT bit) has changed (must be cleared in software) 0 = Comparator output (C2OUT bit) has not changed
bit 5	C1IF: Comparator C1 Interrupt Flag bit
	 1 = Comparator output (C1OUT bit) has changed (must be cleared in software) 0 = Comparator output (C1OUT bit) has not changed
bit 4	LCDIF: LCD Module Interrupt bit
	1 = LCD has generated an interrupt
	0 = LCD has not generated an interrupt
bit 3	Unimplemented: Read as '0'
bit 2	LVDIF: Low Voltage Detect Interrupt Flag bit
	1 = LVD has generated an interrupt
	0 = LVD has not generated an interrupt
bit 1	Unimplemented: Read as '0'
bit 0	CCP2IF: CCP2 Interrupt Flag bit ⁽¹⁾
	Capture Mode:
	 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	Compare Mode:
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	PWM mode:
	Unused in this mode
Note 1:	PIC16F914/PIC16F917/PIC16F946 only.

REGISTER 3-4: PORTB: PORTB REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplen	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 7-0 **RB<7:0>:** PORTB I/O Pin bits 1 = Port pin is >VIH min. 0 = Port pin is <VIL max.

REGISTER 3-5: TRISB: PORTB TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

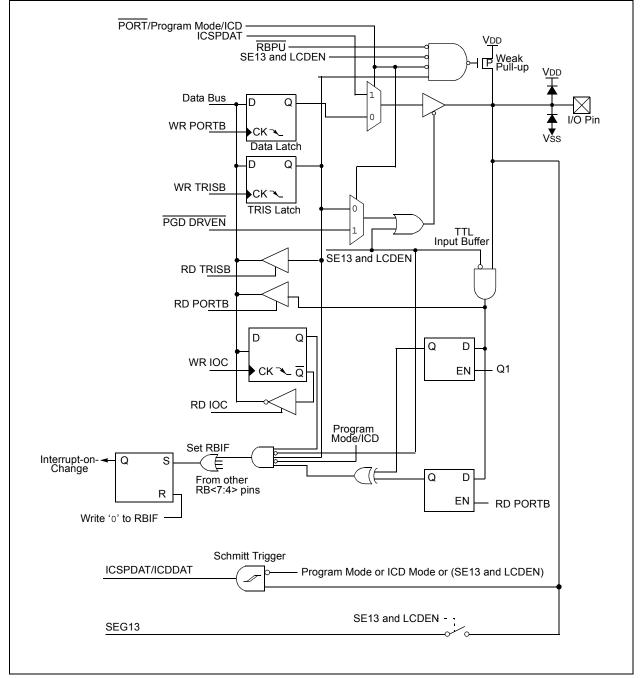
0 = PORTB pin configured as an output

REGISTER 3-6: IOCB: PORTB INTERRUPT-ON-CHANGE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IOCB7	IOCB6	IOCB5	IOCB4	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 **IOCB<7:4>:** Interrupt-on-Change bits 1 = Interrupt-on-change enabled 0 = Interrupt-on-change disabled


bit 3-0 Unimplemented: Read as '0'

3.4.3.8 RB7/ICSPDAT/ICDDAT/SEG13

Figure 3-13 shows the diagram for this pin. The RB7 pin is configurable to function as one of the following:

- a general purpose I/O
- an In-Circuit Serial Programming[™] I/O
- an ICD data I/O
- an analog output for the LCD

4.5.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 4-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See **Section 4.5.4 "Frequency Select Bits (IRCF)**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled:

- Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not.

4.5.4 FREQUENCY SELECT BITS (IRCF)

The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 4-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

- 8 MHz
- 4 MHz (Default after Reset)
- 2 MHz
- 1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- 31 kHz (LFINTOSC)

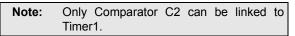
Note:	Following any Reset, the IRCF<2:0> bits of
	the OSCCON register are set to '110' and
	the frequency selection is set to 4 MHz.
	The user can modify the IRCF bits to
	select a different frequency.

4.5.5 HF AND LF INTOSC CLOCK SWITCH TIMING

When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 4-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows:

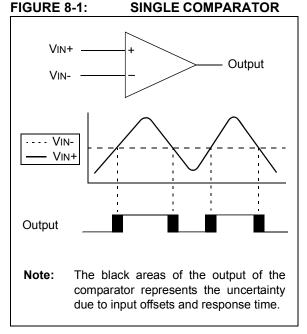
- 1. IRCF<2:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock.
- CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required.
- 6. Clock switch is complete.

See Figure 4-1 for more details.


If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located under the oscillator parameters of **Section 19.0** "**Electrical Specifications**".

8.0 COMPARATOR MODULE


Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Dual comparators
- Multiple comparator configurations
- Comparator outputs are available internally/externally
- Programmable output polarity
- · Interrupt-on-change
- · Wake-up from Sleep
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference

8.1 Comparator Overview

A comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

This device contains two comparators as shown in Figure 8-2 and Figure 8-3. The comparators are not independently configurable.

	SYNC = 0, BRGH = 1											
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	_		_		_	_	300	0.16	207
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	_	_	_
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5
19.2k	19.23k	0.16	12	19.2k	0.00	11	_	_	_	_	_	_
57.6k	—	_	_	57.60k	0.00	3	—	_	_	—	_	_
115.2k	—	_	—	115.2k	0.00	1	_	_	—	_	_	—

TABLE 9-5: BAUD RATES FOR ASYNCHRONOUS MODES

9.3.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the AUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the AUSART.

The LCD SEG8 and SEG9 functions must be disabled by clearing the SE8 and SE9 bits of the LCDSE1 register, if the RX/DT and TX/CK pins are shared with the LCD peripheral.

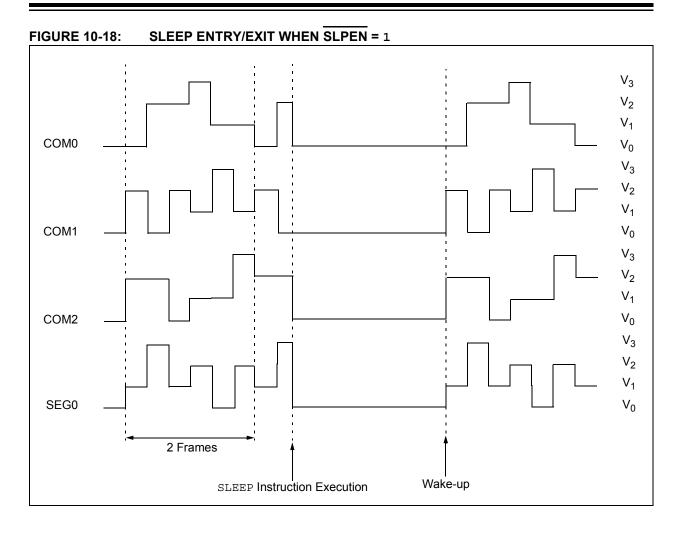
9.3.2.1 AUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 9.3.1.2 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 9.3.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the CREN and SREN bits.
- 3. If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the TXIE bit.
- 4. If 9-bit transmission is desired, set the TX9 bit.
- 5. Enable transmission by setting the TXEN bit.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant 8 bits to the TXREG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	X000 000X	0000 000X
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	XREG AUSART Transmit Data Register									0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

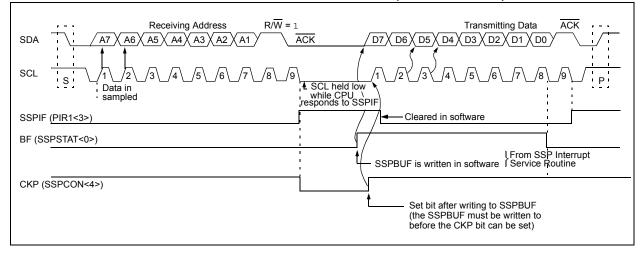

TABLE 9-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

NOTES:

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0
bit 7	1				1	•	bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	WFT: Wavefe	orm Type Selec	t bit				
		vaveform (phas vaveform (phas					
bit 6	BIASMD: Bia	as Mode Select	bit				
	When LMUX	< <u>1:0> = 00:</u>					
	0 = Static Bia	as mode (do no	t set this bit t	oʻ1')			
	When LMUX						
	1 = 1/2 Bias						
	0 = 1/3 Bias When LMUX						
	1 = 1/2 Bias						
	1 = 1/2 Bias 0 = 1/3 Bias						
	When LMUX						
	0 = 1/3 Bias	mode (do not s	et this bit to '	1')			
bit 5	LCDA: LCD	Active Status bi	t				
		er module is ac er module is ina					
bit 4	WA: LCD W	rite Allow Status	bit				
		o the LCDDATA o the LCDDATA					
bit 3-0		D Prescaler Se	-				
	1111 = 1:16						
	1110 = 1:15						
	1101 = 1:14 1100 = 1:13						
	1011 = 1:12						
	1010 = 1:11						
	1001 = 1:10						
	1000 = 1:9						
	0111 = 1:8						
	0110 = 1:7 0101 = 1:6						
	0100 = 1:5						
	0011 = 1:4						
	0010 = 1:3						
	0001 = 1:2						
	0000 = 1:1						

REGISTER 10-2: LCDPS: LCD PRESCALER SELECT REGISTER



14.12.3 TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will ninth bit. be sent on the and pin RC6/TX/CK/SCK/SCL/SEG9 is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC6/TX/CK/SCK/SCL/SEG9 should be enabled by setting bit CKP of the SSPCON register. The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 14-10).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC6/TX/CK/SCK/SCL/SEG9 should be enabled by setting bit CKP.

FIGURE 14-10: I²C[™] WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

REGISTER 16-2:	WDTCON – WATCHDOG TIMER CONTROL REGISTER (ADDRESS: 105h)										
	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0			
		_	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN			
	bit 7							bit 0			
bit 7-5	Unimplem	ented: Rea	d as '0'								

bit 4-1 WDTPS<3:0>: Watchdog Timer Period Select bits

Bit Value = Prescale Rate 0000 = 1:320001 = 1:64 0010 = 1:128 0011 = 1:256 0100 = 1:512 (Reset value) 0101 = 1:1024 0110 = 1:2048 0111 = 1:4096 1000 = 1:8192 1001 = 1:16384 1010 = 1:32768 1011 = 1:65536 1100 = reserved 1101 = reserved 1110 = reserved 1111 = reserved

SWDTEN: Software Enable or Disable the Watchdog Timer bit⁽¹⁾ bit 0

1 = WDT is turned on

0 = WDT is turned off (Reset value)

Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

SUMMARY OF WATCHDOG TIMER REGISTERS TABLE 16-8:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
WDTCON	-	—	—	WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 16-1 for operation of all Configuration Word register bits.

18.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

18.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

18.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

19.3 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial)

DC CHARACTERISTICS			ard Oper				s otherwise stated) 35°C for industrial		
Param P		Min	Truck		Unite	Conditions			
No.	Device Characteristics	Min.	Тур†	Max.	Units	VDD	Note		
D020	Power-down Base	_	0.05	1.2	μA	2.0	WDT, BOR, Comparators, VREF and		
	Current(IPD) ⁽²⁾	—	0.15	1.5	μA	3.0	T1OSC disabled		
		—	0.35	1.8	μA	5.0			
		_	150	500	nA	3.0	$-40^{\circ}C \le T_A \le +25^{\circ}C$		
D021		_	1.0	2.2	μA	2.0	WDT Current ⁽¹⁾		
		—	2.0	4.0	μA	3.0			
		_	3.0	7.0	μA	5.0			
D022A		_	42	60	μA	3.0	BOR Current ⁽¹⁾		
		_	85	122	μA	5.0			
D022B		_	22	28	μA	2.0	PLVD Current		
		_	25	35	μA	3.0			
		—	33	45	μA	5.0			
D023		_	32	45	μA	2.0	Comparator Current ⁽¹⁾ , both		
		_	60	78	μA	3.0	comparators enabled		
		—	120	160	μA	5.0			
D024		—	30	36	μA	2.0	CVREF Current ⁽¹⁾ (high range)		
		_	45	55	μA	3.0			
		_	75	95	μA	5.0			
D025*		_	39	47	μA	2.0	CVREF Current ⁽¹⁾ (low range)		
		—	59	72	μA	3.0			
		—	98	124	μA	5.0			
D026		_	2.0	5.0	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
			2.5	5.5	μA	3.0			
			3.0	7.0	μA	5.0			
D027		—	0.30	1.6	μA	3.0	A/D Current ⁽¹⁾ , no conversion in		
		_	0.36	1.9	μA	5.0	progress		

* These parameters are characterized but not tested.

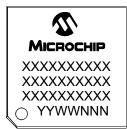
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

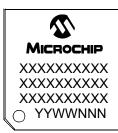
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

Package Marking Information (Continued)

44-Lead QFN


28-Lead SOIC


28-Lead SSOP

44-Lead TQFP

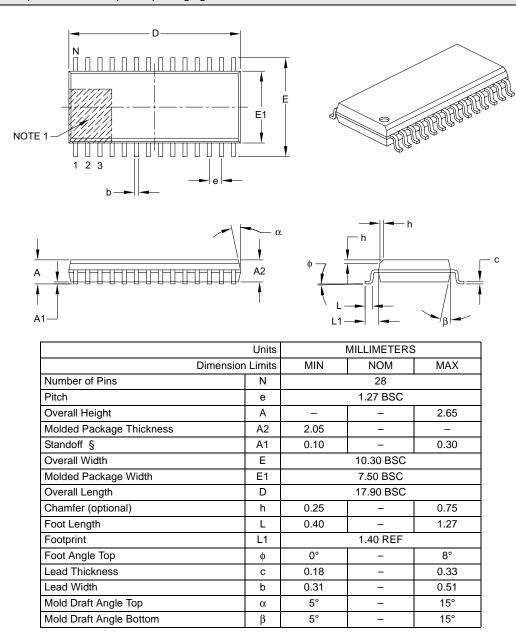
64-Lead TQFP (10x10x1mm)

Example

Example

Example

Example



Example

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

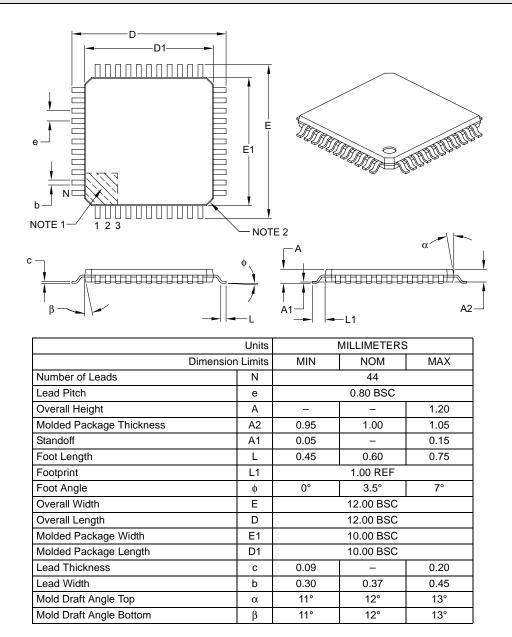
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

Registers	62
TRISC Register	62
TRISD	
Registers	71
TRISD Register	71
TRISE	
Registers	76
TRISE Register	76
TRISF	
Registers	81
TRISF Register	81
TRISG	
Registers	
TRISG Register	
Two-Speed Clock Start-up Mode	
TXREG	
TXSTA Register	
BRGH Bit	

U

UA	
Synchronous Master Mode	
Requirements, Synchronous Receive	
Requirements, Synchronous Transmission 275	
Timing Diagram, Synchronous Receive	
Timing Diagram, Synchronous Transmission 275	

V

Voltage Reference. See Comparator Voltage	
Reference (CVREF)	
Voltage References	
Associated registers11	9
VREF. SEE ADC Reference Voltage	

W

Wake-up Using Interrupts	236
Watchdog Timer (WDT)	234
Associated Registers	235
Clock Source	234
Modes	234
Period	234
Specifications	269
WCOL bit	195
WDTCON Register	235
WPUB Register	55
Write Collision Detect bit (WCOL)	195
WWW Address	325
WWW, On-Line Support	13