Microchip Technology - PIC16F913T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f913t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F913/914/916/917/946

28/40/44/64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology

High-Performance RISC CPU:

- Only 35 instructions to learn:
 - All single-cycle instructions except branches
- Operating speed:
- DC 20 MHz oscillator/clock input
- DC 200 ns instruction cycle
- · Program Memory Read (PMR) capability
- Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

- · Precision Internal Oscillator:
 - Factory calibrated to ±1%, typical
 - Software selectable frequency range of 8 MHz to 125 kHz
 - Software tunable
 - Two-Speed Start-up mode
 - External Oscillator fail detect for critical applications
 - Clock mode switching during operation for power savings
- · Software selectable 31 kHz internal oscillator
- · Power-Saving Sleep mode
- Wide operating voltage range (2.0V-5.5V)
- Industrial and Extended temperature range
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR) with software control option
- Enhanced Low-Current Watchdog Timer (WDT) with on-chip oscillator (software selectable nominal 268 seconds with full prescaler) with software enable
- Multiplexed Master Clear with pull-up/input pin
- Programmable code protection
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM retention: > 40 years

Low-Power Features:

- · Standby Current:
 - <100 nA @ 2.0V, typical
- Operating Current:
 - 11 μA @ 32 kHz, 2.0V, typical
 - 220 μA @ 4 MHz, 2.0V, typical
- Watchdog Timer Current:
 - 1 μA @ 2.0V, typical

Peripheral Features:

- · Liquid Crystal Display module:
 - Up to 60/96/168 pixel drive capability on 28/40/64-pin devices, respectively
 - Four commons
- Up to 24/35/53 I/O pins and 1 input-only pin:
 - High-current source/sink for direct LED drive
 - Interrupt-on-change pin
 - Individually programmable weak pull-ups
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (CVREF) module (% of VDD)
 - Comparator inputs and outputs externally accessible
- · A/D Converter:
 - 10-bit resolution and up to 8 channels
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Timer1 Gate (count enable)
 - Option to use OSC1 and OSC2 as Timer1 oscillator if INTOSCIO or LP mode is selected
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Addressable Universal Synchronous
 Asynchronous Receiver Transmitter (AUSART)
- Up to 2 Capture, Compare, PWM modules:
 - 16-bit Capture, max. resolution 12.5 ns
 - 16-bit Compare, max. resolution 200 ns
 - 10-bit PWM, max. frequency 20 kHz
- Synchronous Serial Port (SSP) with I²C[™]

I/O	Pin	A/D	LCD	Comparators	Timers	CCP	AUSART	SSP	Interrupt	Pull-Up	Basic
RA0	2	AN0	SEG12	C1-	—	—	—	—	—	—	—
RA1	3	AN1	SEG7	C2-	—	_	_	_	—	—	—
RA2	4	AN2/VREF-	COM2	C2+	_	_	_	_	_	_	_
RA3	5	AN3/VREF+	SEG15	C1+	—	_	—	_	—	—	—
RA4	6		SEG4	C1OUT	TOCKI	_	_	_	_	_	_
RA5	7	AN4	SEG5	C2OUT	_	_	_	SS	_	—	—
RA6	14	_	_	_	T10SO	_	_	_	_	_	OSC2/CLKOUT
RA7	13	_	_	—	T10SI	_	_	_	_	_	OSC1/CLKIN
RB0	33	_	SEG0	_	_	_	_	_	INT	Y	_
RB1	34	_	SEG1	—	_	_	_	_	_	Y	—
RB2	35	_	SEG2	_	_	_	_	_	_	Y	_
RB3	36	_	SEG3	—	_	_	_	_	_	Y	—
RB4	37	_	COM0	_	_	_	_	_	IOC	Y	_
RB5	38	_	COM1	—	_	_	_	_	IOC	Y	—
RB6	39	—	SEG14	—	—	_	—	—	IOC	Y	ICSPCLK/ICDCK
RB7	40	—	SEG13	—	—	—	—	—	IOC	Y	ICSPDAT/ICDDAT
RC0	15	—	VLCD1	—	—	_	—	—	_	—	—
RC1	16	—	VLCD2	—	—	—	—	—	—	—	—
RC2	17	—	VLCD3	—	—	_	—	—	_	—	—
RC3	18	—	SEG6	—	—	—	—	—	—	—	—
RC4	23	—	SEG11	—	T1G	_	—	SDO	_	—	—
RC5	24	—	SEG10	—	T1CKI	CCP1	—	—	—	—	—
RC6	25	—	SEG9	—	—	_	TX/CK	SCK/SCL	_	—	—
RC7	26	—	SEG8	—	—	—	RX/DT	SDI/SDA	—	—	—
RD0	19	—	COM3	—	—	—	—	—	—	—	—
RD1	20	—	—	—	—	—	—	—	—	—	—
RD2	21	—	—	—	—	CCP2	—	—	—	—	—
RD3	22	—	SEG16	—	—	—	—	—	—	—	_
RD4	27	_	SEG17	—		—	_	_	—	—	_
RD5	28	_	SEG18	—	_	—	_	_	_	_	—
RD6	29	_	SEG19	—		—	_	_	—	—	_
RD7	30	_	SEG20	—	_	—	_	_	_	_	—
RE0	8	AN5	SEG21	—		—	_	_	—	—	_
RE1	9	AN6	SEG22	—	_	—	_	_	_	—	_
RE2	10	AN7	SEG23	—		—	_	_	—	—	_
RE3	1	_	—			—	_	_	—	Y ⁽¹⁾	MCLR/VPP
_	11	—	—	_	—	_	_	—	—	—	Vdd
_	32	_	—			—	_	_	_		Vdd
_	12	—	—	_	—	_	_	—	—	—	Vss
	31	—	—	—	—	—	—	—	—	—	Vss

TABLE 1:	PIC16F914/917	40-PIN	SUMMARY
----------	---------------	--------	---------

Note 1: Pull-up enabled only with external MCLR configuration.

Table of Contents

1.0	Device Overview	15
2.0	Memory Organization	
3.0	I/O Ports	43
4.0	Oscillator Module (With Fail-Safe Clock Monitor)	
5.0	Timer0 Module	
6.0	Timer1 Module with Gate Control	102
7.0	Timer2 Module	107
8.0	Comparator Module	109
9.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	121
10.0	Liquid Crystal Display (LCD) Driver Module	143
11.0	Programmable Low-Voltage Detect (PLVD) Module	171
12.0	Analog-to-Digital Converter (ADC) Module	175
13.0	Data EEPROM and Flash Program Memory Control	187
14.0	SSP Module Overview	193
15.0	Capture/Compare/PWM (CCP) Module	211
16.0	Special Features of the CPU	219
17.0	Instruction Set Summary	241
18.0	Development Support	251
19.0	Electrical Specifications	255
20.0	DC and AC Characteristics Graphs and Tables	
21.0	Packaging Information	305
Appe	endix A: Data Sheet Revision History	
Appe	endix B: Migrating From Other PIC [®] Devices	315
Appe	andix C: Conversion Considerations	316
Index	Χ	317
The N	Microchip Web Site	325
Custo	omer Change Notification Service	325
Custo	omer Support	
Read	der Response	
Produ	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

- To determine if an errata sheet exists for a particular device, please check with one of the following:
- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

PIC16F913/914/916/917/946

NOTES:

3.2.1.3 RA2/AN2/C2+/VREF-/COM2

Figure 3-3 shows the diagram for this pin. The RA2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- an analog input for Comparator C2
- a voltage reference input for the ADC
- an analog output for the LCD

REGISTER 3-4: PORTB: PORTB REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0				
bit 7	bit 7 bit 0										
Legend:	Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown							

bit 7-0 **RB<7:0>**: PORTB I/O Pin bits 1 = Port pin is >VIH min. 0 = Port pin is <VIL max.

REGISTER 3-5: TRISB: PORTB TRI-STATE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TRISB7	TRISB6	TRISB5	TRISB4	TRISB3 TRISB2 TRISB1		TRISB0	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 3-6: IOCB: PORTB INTERRUPT-ON-CHANGE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IOCB7	IOCB6	IOCB5	IOCB4	—			—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-4 **IOCB<7:4>:** Interrupt-on-Change bits 1 = Interrupt-on-change enabled 0 = Interrupt-on-change disabled

bit 3-0 Unimplemented: Read as '0'

3.5.1.4 RC3/SEG6

Figure 3-17 shows the diagram for this pin. The RC3 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

9.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 9-1 and Figure 9-2.

FIGURE 9-1: AUSART TRANSMIT BLOCK DIAGRAM

9.1.1.4 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

9.1.1.5 Transmitting 9-Bit Characters

The AUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set the AUSART will shift 9 bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the 8 Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See Section 9.1.2.7 "Address Detection" for more information on the Address mode.

9.1.1.6 Asynchronous Transmission Set-up:

- Initialize the SPBRG register and the BRGH bit to 1 achieve the desired baud rate (see Section 9.2 "AUSART Baud Rate Generator (BRG)").
- Enable the asynchronous serial port by clearing 2 the SYNC bit and setting the SPEN bit.
- If 9-bit transmission is desired, set the TX9 con-3. trol bit. A set ninth data bit will indicate that the 8 Least Significant data bits are an address when the receiver is set for address detection.
- 4 Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt 5. enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- If 9-bit transmission is selected, the ninth bit 6 should be loaded into the TX9D data bit.
- 7 Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 9-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

ASYNCHRONOUS TRANSMISSION

FIGURE 9-3:

9.2 AUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit timer that is dedicated to the support of both the asynchronous and synchronous AUSART operation.

The SPBRG register determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by the BRGH bit of the TXSTA register. In Synchronous mode, the BRGH bit is ignored.

Table 9-3 contains the formulas for determining the baud rate. Example 9-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 9-3. It may be advantageous to use the high baud rate (BRGH = 1), to reduce the baud rate error.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

EXAMPLE 9-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode:

Desired Baud Rate =
$$\frac{FOSC}{64(SPBRG+1)}$$

Solving for SPBRG:

Configuration Bits			Baud Pate Formula		
SYNC	BRGH				
0	0	Asynchronous	Fosc/[64 (n+1)]		
0	1	Asynchronous	Fosc/[16 (n+1)]		
1	x	Synchronous	Fosc/[4 (n+1)]		

TABLE 9-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRG register

TABLE 9-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the Baud Rate Generator.

PIC16F913/914/916/917/946

FIGURE 10-13: TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

R/W-x	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0		
EEPGD	_			WRERR	WREN	WR	RD		
bit 7							bit 0		
Legend:									
S = Bit can only be set									
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	EEPGD: Prog 1 = Accesses 0 = Accesses	ram/Data EEP program mem data memory	ROM Select ory	bit					
bit 6-4	Unimplement	ted: Read as 'o)'						
bit 3	WRERR: EEF	PROM Error Fla	ng bit						
hit 2	 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOR Reset) 0 = The write operation completed 								
	1 = Allows wri 0 = Inhibits wr	ite cycles	EEPROM						
bit 1	WR: Write Co <u>EEPGD = 1</u> : This bit is igno <u>EEPGD = 0</u> : 1 = Initiates a be set, no 0 = Write cyc	ntrol bit pred write cycle (Th ot cleared, in so le to the data E	ne bit is clear oftware.) EPROM is c	ed by hardware omplete	once write is co	omplete. The W	/R bit can only		
bit 0	RD: Read Co	ntrol bit							
	 1 = Initiates a software. 0 = Does not 	a memory read) initiate a memo	I (the RD is ory read	cleared in har	dware and can	only be set, r	not cleared, in		

REGISTER 13-5: EECON1: EEPROM CONTROL REGISTER

13.1.2 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD control bit, and then set control bit RD of the EECON1 register. The data is available in the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1:	DATA EEPROM READ

BANKSEL	EEADRL	;
MOVF	DATA_EE_ADDR,W	;Data Memory
MOVWF	EEADRL	;Address to read
BANKSEL	EECON1	i
BCF	EECON1, EEPGD	;Point to Data
		;memory
BSF	EECON1,RD	;EE Read
BANKSEL	EEDATL	i
MOVF	EEDATL,W	;W = EEPROM Data

13.1.3 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the sequence described below is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software. The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADRL. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATL register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 13-2: DATA EEPROM WRITE

		BANKSEL	EECON1	;
		BTFSC	EECON1,WR	;Wait for write
		GOTO	\$-1	;to complete
		BANKSEL	EEADRL	;
		MOVF	DATA_EE_ADDR,W	;Data Memory
		MOVWF	EEADRL	;Address to write
		MOVF	DATA_EE_DATA,W	;Data Memory Value
		MOVWF	EEDATL	;to write
		BANKSEL	EECON1	;
		BCF	EECON1, EEPGD	;Point to DATA
				;memory
		BSF	EECON1,WREN	;Enable writes
		BCF	INTCON,GIE	;Disable INTs.
		MOVLW	55h	;
ð	Ge	MOVWF	EECON2	;Write 55h
uire	Per	MOVLW	AAh	;
Seq	ē	MOVWF	EECON2	;Write AAh
ш	0)	BSF	EECON1,WR	;Set WR bit to
				;begin write
		BSF	INTCON, GIE	;Enable INTs.
		BCF	EECON1,WREN	;Disable writes

14.5 Master Mode

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 14-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). This could be useful in receiver applications as a Line Activity Monitor mode. The clock polarity is selected by appropriately programming the CKP bit of the SSPCON register. This then, would give waveforms for SPI communication as shown in Figure 14-3, Figure 14-5 and Figure 14-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 20 MHz) of 5 Mbps.

Figure 14-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

Write to SSPBUF SCK (CKP = 0 $\dot{C}KE = 0$) SCK (CKP = 1 $\dot{C}KE = 0$ 4 Clock Modes SCK (CKP = 0)ČKE = 1) SCK (CKP = 1 CKE = 1) SDO bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 bit 7 bit 3 (CKE = 0)SDO bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 bit 7 bit 3 (CKE = 1) SDI (SMP = 0)hit 7 bit 0 Input Sample $(SM\dot{P} = 0)$ SDI (SMP = 1) bit 7 bit 0 Input Sample (SMP = 1)I SSPIF Next Q4 Cycle SSPSR to after Q2↓ SSPBUF

FIGURE 14-3: SPI MODE WAVEFORM (MASTER MODE)

PIC16F913/914/916/917/946

16.2 Resets

The PIC16F91X/946 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- · Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

They are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations, as indicated in Table 16-2. These bits are used in software to determine the nature of the Reset. See Table 16-5 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 16-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 19.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

19.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40° to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +6.5V
Voltage on MCLR with respect to Vss	0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	95 mA
Maximum current into VDD pin	95 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sourced by all ports (combined)	
Maximum current sunk by all ports (combined)	

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - ∑ IOH} + ∑ {(VDD - VOH) x IOH} + ∑(VOL x IOL).
 2: PORTD and PORTE are not implemented in PIC16F913/916 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

19.1 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial) PIC16F913/914/916/917/946-E (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Sym.	Characteristic	Min. Typ† Max. Units Conditions				
D001 D001C D001D	Vdd	Supply Voltage	2.0 2.0 3.0 4.5		5.5 5.5 5.5 5.5	V V V V	Fosc < = 8 MHz: HFINTOSC, EC Fosc < = 4 MHz Fosc < = 10 MHz Fosc < = 20 MHz
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	—	V	Device in Sleep mode
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See Section 16.2.1 "Power-on Reset (POR)" for details.
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		_	V/ms	See Section 16.2.1 "Power-on Reset (POR)" for details.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

19.5 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial) PIC16F913/914/916/917/946-E (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O Port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \le VDD \le 5.5V$
D030A			Vss	—	0.15 VDD	V	$2.0V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2 VDD	V	$2.0V \le VDD \le 5.5V$
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	—	0.2 VDD	V	
D033		OSC1 (XT mode)	Vss	—	0.3	V	
D033A		OSC1 (HS mode)	Vss	—	0.3 VDD	V	
	Viн	Input High Voltage					
		I/O ports:		—			
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT mode)	1.6	—	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	±0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μA	$VSS \leq VPIN \leq VDD$
D063		OSC1	—	±0.1	± 5	μA	$Vss \le VPIN \le VDD$, XT, HS and LP oscillator configuration
D070*	Ipur	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁵⁾					
D080		I/O ports	—	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
	Vон	Output High Voltage ⁽⁵⁾					
D090		I/O ports	Vdd - 0.7	_	—	V	ІОН = -3.0 mA, VDD = 4.5V (Ind.)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 13.0 "Data EEPROM and Flash Program Memory Control" for additional information.

5: Including OSC2 in CLKOUT mode.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness A3			0.20 REF			
Overall Width	Е	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.20		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.20		
Contact Width	b	0.23	0.30	0.35		
Contact Length	L	0.50	0.55	0.70		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

Registers	62
TRISC Register	62
TRISD	
Registers	71
TRISD Register	71
TRISE	
Registers	
TRISE Register	
TRISF	
Registers	
TRISF Register	
TRISG	
Registers	
TRISG Register	
Two-Speed Clock Start-up Mode	
TXREG	123
TXSTA Register	130
BRGH Bit	132

U

UA	
Synchronous Master Mode	
Requirements. Synchronous Receive	
Requirements, Synchronous Transmission 275	
Timing Diagram, Synchronous Receive	
Timing Diagram, Synchronous Transmission 275	
.,	

V

Voltage Reference. See Comparator	Voltage
Reference (CVREF)	
Voltage References	
Associated registers	119
VREF. SEE ADC Reference Voltage	

W

Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	
Clock Source	
Modes	
Period	
Specifications	269
WCOL bit	195
WDTCON Register	
WPUB Register	
Write Collision Detect bit (WCOL)	195
WWW Address	325
WWW, On-Line Support	13