

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f913t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O	Pin	A/D	LCD	Comparators	Timers	ССР	AUSART	SSP	Interrupt	Pull-Up	Basic
RA0	27	AN0	SEG12	C1-	—	—	_	_	—	—	_
RA1	28	AN1	SEG7	C2-	—	—	—	_	—	—	_
RA2	29	AN2/VREF-	COM2	C2+	_	_	_	_	_	_	_
RA3	30	AN3/VREF+	SEG15	C1+	_	_	—	_	—	—	_
RA4	31	_	SEG4	C1OUT	TOCKI	_	_	_	_	_	_
RA5	32	AN4	_	C2OUT	_	_	—	SS	—	—	_
RA6	40	SEG5	_	_	T10S0	_	_	_	—	_	OSC2/CLKOUT
RA7	39	—	_	—	T10SI	—	—	_	—	—	OSC1/CLKIN
RB0	15	_	SEG0	—	_	—	—	_	INT	Y	_
RB1	16	_	SEG1	_	_	_	_	_	_	Y	—
RB2	17	—	SEG2	_	_	_	_	_	_	Y	_
RB3	18	—	SEG3	—	—	—	—	_	_	Y	_
RB4	21	_	COM0	_	_	_	_	_	IOC	Y	_
RB5	22	_	COM1	_	_	_	_	_	IOC	Y	—
RB6	23	—	SEG14	—	_	_	—	_	IOC	Y	ICSPCLK/ICDCK
RB7	24	—	SEG13	_	_	_	_	_	IOC	Y	ICSPDAT/ICDDAT
RC0	49	—	VLCD1	—	—	—	—	_	—	—	_
RC1	50	—	VLCD2	—	—	—	—	_	_	_	_
RC2	51	—	VLCD3	—	_	_	—	_	—	_	_
RC3	52	_	SEG6	_	_	_	_	_	_		_
RC4	59	_	SEG11	_	T1G	_	_	SDO	_	_	_
RC5	60	—	SEG10	_	T1CKI	CCP1	_	_	_	_	—
RC6	61	_	SEG9	_	_	_	TX/CK	SCK/SCL	_	_	_
RC7	62	—	SEG8	—	_	_	RX/DT	SDI/SDA	—	—	_
RD0	53	—	COM3	—	—	_	—	—	—	—	-
RD1	54	—	_	—	_	_	—	—	—	—	_
RD2	55	—	—	_	_	CCP2	—	—	—	—	_
RD3	58	—	SEG16	—	_	_	—	—	—	—	_
RD4	63	—	SEG17	_	_	_	—	—	—	—	_
RD5	64	—	SEG18	—	_	_	—	—	—	—	_
RD6	1	—	SEG19	—	—	_	—	—	—	—	_
RD7	2	—	SEG20	—	_	_	—	—	—	—	_
RE0	33	AN5	SEG21	—	—	_	—	—	—	—	_
RE1	34	AN6	SEG22	—	_	_	—	—	—	—	_
RE2	35	AN7	SEG23	_	—	_	—	—	—	—	_
RE3	36	—	—	—	—	—	—	—	—	Y ⁽¹⁾	MCLR/VPP
RE4	37	_	SEG24	_	_	_	_	_	_	_	—
RE5	42	—	SEG25	—	_	_	—	—	—	—	_
RE6	43	_	SEG26	_		_	_	_	_	_	_
RE7	44		SEG27								_
RF0	11		SEG32								_
RF1	12		SEG33	_							_
RF2	13	_	SEG34	_		_	_	_	_	_	_

Note 1: Pull-up enabled only with external MCLR configuration.

TABLE 1-1: PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)

Name	Function	Input Type	Output Type	Description	
RC6/TX/CK/SCK/SCL/SEG9	RC6	ST	CMOS	General purpose I/O.	
	ТХ		CMOS	USART asynchronous serial transmit.	
	СК	ST	CMOS	USART synchronous serial clock.	
	SCK	ST	CMOS	SPI clock.	
	SCL	ST ⁽⁴⁾	OD	I ² C [™] clock.	
	SEG9		AN	LCD analog output.	
RC7/RX/DT/SDI/SDA/SEG8	RC7	ST	CMOS	General purpose I/O.	
	RX	ST	—	USART asynchronous serial receive.	
	DT	ST	CMOS	USART synchronous serial data.	
	SDI	ST	CMOS	SPI data input.	
	SDA	ST ⁽⁴⁾	OD	I ² C™ data.	
	SEG8		AN	LCD analog output.	
RD0/COM3 ^(1, 2)	RD0	ST	CMOS	General purpose I/O.	
	COM3		AN	LCD analog output.	
RD1 ⁽²⁾	RD1	ST	CMOS	General purpose I/O.	
RD2/CCP2 ⁽²⁾	RD2/CCP2 ⁽²⁾ RD2		CMOS	General purpose I/O.	
	CCP2	ST	CMOS	Capture 2 input/Compare 2 output/PWM 2 output.	
RD3/SEG16 ⁽²⁾ RD3		ST	CMOS	General purpose I/O.	
	SEG16	—	AN	LCD analog output.	
RD4/SEG17 ⁽²⁾ RD4		ST	CMOS	General purpose I/O.	
	SEG17		AN	LCD analog output.	
RD5/SEG18 ⁽²⁾	RD5	ST	CMOS	General purpose I/O.	
	SEG18		AN	LCD analog output.	
RD6/SEG19 ⁽²⁾	RD6	ST	CMOS	General purpose I/O.	
	SEG19		AN	LCD analog output.	
RD7/SEG20 ⁽²⁾	RD7	ST	CMOS	General purpose I/O.	
	SEG20		AN	LCD analog output.	
RE0/AN5/SEG21 ⁽²⁾	RE0	ST	CMOS	General purpose I/O.	
	AN5	AN	_	Analog input Channel 5.	
	SEG21		AN	LCD analog output.	
RE1/AN6/SEG22 ⁽²⁾	RE1	ST	CMOS	General purpose I/O.	
	AN6	AN	_	Analog input Channel 6.	
	SEG22		AN	LCD analog output.	
RE2/AN7/SEG23 ⁽²⁾	RE2	ST	CMOS	General purpose I/O.	
	AN7	AN	_	Analog input Channel 7.	
	SEG23		AN	LCD analog output.	
RE3/MCLR/VPP RE3		ST		Digital input only.	
	MCLR	ST		Master Clear with internal pull-up.	
	Vpp	HV	—	Programming voltage.	
Legend: AN = Analog input TTI = TTI compatib	or output	CMOS = ST =	CMOS	compatible input or output OD = Open Drain Trigger input with CMOS levels P = Power	
HV = High Voltage XTAL = Crystal					

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.

2: Pins available on PIC16F914/917 and PIC16F946 only.

3: Pins available on PIC16F946 only.

4: I²C Schmitt trigger inputs have special input levels.

3.2.1.5 RA4/C1OUT/T0CKI/SEG4

Figure 3-5 shows the diagram for this pin. The RA4 pin is configurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator C1
- a clock input for Timer0
- an analog output for the LCD

3.4.3.6 RB5/COM1

Figure 3-11 shows the diagram for this pin. The RB5 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

FIGURE 3-11: BLOCK DIAGRAM OF RB5

3.8 PORTF and TRISF Registers

PORTF is an 8-bit port with Schmitt Trigger input buffers. RF<7:0> are individually configured as inputs or outputs, depending on the state of the port direction. The port bits are also multiplexed with LCD segment functions. PORTF is available on the PIC16F946 only.

EXAMPLE 3-6: INITIALIZING PORTF

BANKSEL	PORTF	;
CLRF	PORTF	;Init PORTF
BANKSEL	TRISF	;
MOVLW	0FFh	;Set RF<7:0> as inputs
MOVWF	TRISF	;

REGISTER 3-14: PORTF: PORTF REGISTER⁽¹⁾

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	
bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **RF<7:0>**: PORTF I/O Pin bits

1 = Port pin is >VIH min.0 = Port pin is <VIL max.

Note 1: PIC16F946 only.

REGISTER 3-15: TRISF: PORTF TRI-STATE REGISTER⁽¹⁾

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **TRISF<7:0>:** PORTF Tri-State Control bits

1 = PORTF pin configured as an input (tri-stated)0 = PORTF pin configured as an output

Note 1: PIC16F946 only.

4.5.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 4-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See **Section 4.5.4 "Frequency Select Bits (IRCF)**" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled:

- Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not.

4.5.4 FREQUENCY SELECT BITS (IRCF)

The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 4-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

- 8 MHz
- 4 MHz (Default after Reset)
- 2 MHz
- 1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<2:0> bits of							
	the OSCCON register are set to '110' and							
	the frequency selection is set to 4 MHz.							
	The user can modify the IRCF bits to							
	select a different frequency.							

4.5.5 HF AND LF INTOSC CLOCK SWITCH TIMING

When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 4-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows:

- 1. IRCF<2:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock.
- CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required.
- 6. Clock switch is complete.

See Figure 4-1 for more details.

If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer.

Start-up delay specifications are located under the oscillator parameters of **Section 19.0** "**Electrical Specifications**".

8.2 Comparator Configuration

There are eight modes of operation for the comparator. The CM<2:0> bits of the CMCON0 register are used to select these modes as shown in Figure 8-5. I/O lines change as a function of the mode and are designated as follows:

- Analog function (A): digital input buffer is disabled
- Digital function (D): comparator digital output, overrides port function
- Normal port function (I/O): independent of comparator

The port pins denoted as "A" will read as a '0' regardless of the state of the I/O pin or the I/O control TRIS bit. Pins used as analog inputs should also have the corresponding TRIS bit set to '1' to disable the digital output driver. Pins denoted as "D" should have the corresponding TRIS bit set to '0' to enable the digital output driver.

Note:	Comparator interrupts should be disabled
	during a Comparator mode change to
	prevent unintended interrupts.

FIGURE 8-7: COMPARATOR INTERRUPT TIMING WITH CMCON0 READ

- Note 1: If a change in the CMCON0 register (CxOUT) occurs when a read operation is being executed (start of the Q2 cycle), then the CxIF Interrupt Flag bit of the PIR2 register may not get set.
 - 2: When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 µs for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

8.6 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the **Section 19.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by selecting mode CM<2:0> = 000 or CM<2:0> = 111 of the CMCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

8.7 Effects of a Reset

A device Reset forces the CMCON0 and CMCON1 registers to their Reset states. This forces the Comparator module to be in the Comparator Reset mode (CM<2:0> = 000). Thus, all comparator inputs are analog inputs with the comparator disabled to consume the smallest current possible.

9.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)

The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 9-1 and Figure 9-2.

FIGURE 9-1: AUSART TRANSMIT BLOCK DIAGRAM

NOTES:

NOTES:

15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin. Since the CCPx pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCPx pin output driver.

Note:	Clearing	the	CCPxCON	register	will
	relinquish	CCP	x control of th	пе ССРх ј	oin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.3.7** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 15-2) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT

16.3.1 RB0/INT/SEG0 INTERRUPT

External interrupt on RB0/INT/SEG0 pin is edge-triggered; either rising if the INTEDG bit of the OPTION register is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT/SEG0 pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The RB0/INT/SEG0 interrupt can wake-up the processor from Sleep if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up (0004h). See Section 16.5 "Power-Down Mode (Sleep)" for details on Sleep and Figure 16-10 for timing of wake-up from Sleep through RB0/INT/SEG0 interrupt.

16.3.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing T0IE bit of the INTCON register. See **Section 5.0 "Timer0 Module"** for operation of the Timer0 module.

16.3.3 PORTB INTERRUPT

An input change on PORTB change sets the RBIF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing the RBIE bit of the INTCON register. Plus, individual pins can be configured through the IOCB register.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

FIGURE 16-7: INTERRUPT LOGIC

19.1 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial) PIC16F913/914/916/917/946-E (Extended)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Sym.	Characteristic	Min. Typ† Max. Units Conditions				Conditions	
D001 D001C D001D	Vdd	Supply Voltage	2.0 2.0 3.0 4.5		5.5 5.5 5.5 5.5	V V V V	Fosc < = 8 MHz: HFINTOSC, EC Fosc < = 4 MHz Fosc < = 10 MHz Fosc < = 20 MHz	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	—	V	Device in Sleep mode	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See Section 16.2.1 "Power-on Reset (POR)" for details.	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		_	V/ms	See Section 16.2.1 "Power-on Reset (POR)" for details.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2 5		_	μs μs	VDD = 5V, -40°C to +85°C VDD = 5V	
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	16 16	29 31	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V	
32	Tost	Oscillation Start-up Timer Period ^(1, 2)		1024	_	Tosc	(NOTE 3)	
33*	TPWRT	Power-up Timer Period	40	65	140	ms		
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset		_	2.0	μs		
35	VBOR	Brown-out Reset Voltage	2.0 2.0		2.2 2.25	V V	-40°C to +85°C, (NOTE 4) -40°C to +125°C, (NOTE 4)	
36*	VHYST	Brown-out Reset Hysteresis	_	50	—	mV		
37*	TBOR	Brown-out Reset Minimum Detection Period	100	_	_	μs	Vdd ≤ Vbor	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: By design.
- 3: Period of the slower clock.
- **4:** To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

DC CHA	RACTERIS	STICS	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V							
Sym.	ym. Characteristic			Typ†	Max. (85°C)	Max. (125°C)	Units	Conditions		
VPLVD	PLVD	LVDL<2:0> = 001	1.900	2.0	2.100	2.125	V			
	Voltage	LVDL<2:0> = 010	2.000	2.1	2.200	2.225	V			
		LVDL<2:0> = 011	2.100	2.2	2.300	2.325	V			
		LVDL<2:0> = 100	2.200	2.3	2.400	2.425	V			
		LVDL<2:0> = 101	3.825	4.0	4.175	4.200	V			
		LVDL<2:0> = 110	4.025	4.2	4.375	4.400	V			
		LVDL<2:0> = 111	4.425	4.5	4.675	4.700	V			
*TPLVDS	PLVDS PLVD Settling time			50 25	_		μs	VDD = 5.0V VDD = 3.0V		

TABLE 19-13: PIC16F913/914/916/917/946 PLVD CHARACTERISTICS:

* These parameters are characterized but not tested

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-26: Vol vs. IoL OVER TEMPERATURE (VDD = 5.0V)

FIGURE 20-30: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X Temperature Range	/XX Package	XXX Pattern	Exa a)	amples: PIC16F913-E/SP 301 = Extended Temp., skinny PDIP package, 20 MHz, QTP pattern
Device:	PIC16F913, PIC PIC16F914, PIC PIC16F916, PIC PIC16F917, PIC PIC16F946, PIC	216F913T ⁽¹⁾ 216F914T ⁽¹⁾ 216F916T ⁽¹⁾ 216F916T ⁽¹⁾ 216F946T ⁽¹⁾		b)	#301 PIC16F913-I/SO = Industrial Temp., SOIC package, 20 MHz
Temperature Range:	I = -40°C E = -40°C	to +85°C to +125°C			
Package:	ML = Micro P = Plast PT = TQFf SO = SOIC SP = Skinr SS = SSOI) Lead Frame (ic DIP 2 (Thin Quad F ; y Plastic DIP	QFN) Flatpack)	Not	te 1: T = In tape and reel.
Pattern:	3-Digit Pattern (Code for QTP (blank otherwise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.