

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f914-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O	Pin	A/D	LCD	Comparators	Timers	CCP	AUSART	SSP	Interrupt	Pull-Up	Basic
RA0	2	AN0	SEG12	C1-	_	_	_	_	_	_	—
RA1	3	AN1	SEG7	C2-		_	_	_	_	_	_
RA2	4	AN2/VREF-	COM2	C2+	-	_	_	_	—	_	—
RA3	5	AN3/VREF+	SEG15/ COM3	C1+	_	—	-	_	—	—	_
RA4	6	_	SEG4	C1OUT	T0CKI	_	_	_	_	_	_
RA5	7	_	SEG5	C2OUT	_	_	-	SS	_	_	—
RA6	10	_	_	_	T10S0	_	_	_	_	_	OSC2/CLKOUT
RA7	9	_	_	—	T10SI	_	_	_	_	_	OSC1/CLKIN
RB0	21	_	SEG0	—	_	_	_	_	INT	Y	_
RB1	22	_	SEG1	—	_	_	-	-	_	Y	—
RB2	23	_	SEG2	—	_	_	_	_	_	Y	—
RB3	24	_	SEG3	—	_	_	-	-	_	Y	—
RB4	25	_	COM0	—	_	_	_	_	IOC	Y	—
RB5	26	_	COM1	—	_	_	-	-	IOC	Y	—
RB6	27	_	SEG14	—	_	_	_	_	IOC	Y	ICSPCLK/ICDCK
RB7	28	_	SEG13	—	_	_	-	-	IOC	Y	ICSPDAT/ICDDAT
RC0	11	_	VLCD1	—	_	_	_	_	_	_	—
RC1	12	_	VLCD2	—	_	_	-	-	_	_	—
RC2	13	_	VLCD3	—	_	_	_	_	_	_	—
RC3	14	_	SEG6	—	_	_	-	-	_	_	—
RC4	15	_	SEG11	—	T1G	_	_	SDO	_	_	—
RC5	16	_	SEG10	—	T1CKI	CCP1	-	-	_	_	—
RC6	17	_	SEG9	—	_	_	TX/CK	SCK/SCL	_	_	_
RC7	18	_	SEG8	—	_	_	RX/DT	SDI/SDA	_	_	—
RE3	1	—	—	—	—	—	—	—	—	Y ⁽¹⁾	MCLR/VPP
_	20	-	—	—	—	_	_	—	—	_	Vdd
_	8	—	—	—	_		_	—	—		Vss
_	19	_	_	—	_	_	_	_	_	_	Vss

TABLE 2:	PIC16F913/916 28-PIN ((PDIP, SOIC, SSOP) SUMMARY
	•		/

Note 1: Pull-up enabled only with external MCLR configuration.

TABLE 1-1: PIC16F91X/946 PINOUT DESCRIPTIONS (CONTINUED)

Name		Function	Input Type	Output Type	Description
Vss		Vss	Р	—	Ground reference for microcontroller.
Legend:	AN = Analog input TTL = TTL compatib HV = High Voltage	or output ble input	CMOS = ST = XTAL =	CMOS o Schmitt Crystal	compatible input or output OD = Open Drain Trigger input with CMOS levels P = Power
Note 1	COM2 is subjects on	DA2 for the		012/016	nd on DD0 for the DIC16E014/017 and DIC16E046

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.

2: Pins available on PIC16F914/917 and PIC16F946 only.

3: Pins available on PIC16F946 only.

4: I²C Schmitt trigger inputs have special input levels.

2.2.2.5 PIE2 Register

The PIE2 register contains the interrupt enable bits, as shown in Register 2-5.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-5: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
OSFIE	C2IE	C1IE	LCDIE	—	LVDIE	—	CCP2IE ⁽¹⁾
bit 7							bit 0

Legend:								
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	OSFIE:	Oscillator Fail Interrupt Enable	bit					
	1 = Ena	bles oscillator fail interrupt						
	0 = Dist	ables oscillator fail interrupt						
bit 6	C2IE : C	omparator C2 Interrupt Enable	bit					
	1 = Ena	ables Comparator C2 interrupt						
L:1 F			L.14					
DIT 5	CILE: C	omparator C1 Interrupt Enable	DI					
	1 = Ena 0 = Disc	ables Comparator C1 Interrupt						
bit 4	LCDIE:	LCD Module Interrupt Enable I	bit					
	1 = Ena	ables LCD interrupt						
	0 = Disa	ables LCD interrupt						
bit 3	Unimple	emented: Read as '0'						
bit 2	LVDIE:	Low Voltage Detect Interrupt E	nable bit					
	1 = Ena	ables LVD Interrupt						
	0 = Dis	ables LVD Interrupt						
bit 1	Unimple	emented: Read as '0'						
bit 0	CCP2IE	: CCP2 Interrupt Enable bit ⁽¹⁾						
	1 = Ena	ables the CCP2 interrupt						
	0 = Disa	ables the CCP2 interrupt						
N								

Note 1: PIC16F914/PIC16F917/PIC16F946 only.

6.10 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 6-1: T1CON: TIMER 1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
T1GINV ⁽¹⁾) TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	
bit 7				· · · · · · · · · · · · · · · · · · ·			bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 7	T1GINV: Time 1 = Timer1 ga 0 = Timer1 ga	er1 Gate Invert te is active-hig te is active-low	bit ⁽¹⁾ h (Timer1 cou / (Timer1 coun	nts when gate i ts when gate is	s high) ; low)			
bit 6	TMR1GE: Tim If TMR1ON = This bit is igno If TMR1ON = 1 = Timer1 co 0 = Timer1 is a	ner1 Gate Enal <u>0:</u> ored <u>1:</u> unting is contro always countin	ble bit ⁽²⁾ blled by the Tir	mer1 Gate func	tion			
bit 5-4	T1CKPS<1:0: 11 = 1:8 Press 10 = 1:4 Press 01 = 1:2 Press 00 = 1:1 Press	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value						
bit 3	T1OSCEN: LF	Oscillator En	able Control bi	it				
	<u>If INTOSC wit</u> 1 = LP oscillat 0 = LP oscillat <u>Else:</u> This bit is igno	hout CLKOUT for is enabled f for is off pred. LP oscilla	oscillator is ac for Timer1 cloc tor is disabled	<u>xtive:</u> k				
bit 2	TISYNC: Timer1 External Clock Input Synchronization Control bit <u>TMR1CS = 1:</u> 1 = Do not synchronize external clock input 0 = Synchronize external clock input <u>TMR1CS = 0:</u>							
bit 1	TMR1CS: Tim 1 = External c 0 = Internal cl	TMR1CS: Timer1 Clock Source Select bit 1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock (Eosc/4)						
bit 0	TMR1ON: Tim 1 = Enables T 0 = Stops Tim	ner1 On bit imer1 er1						
Note 1: T 2: T	TIGINV bit inverts MRIGE bit must egister, as a Time	the Timer1 ga be set to use e r1 gate source	te logic, regard either T1G pin	dless of source or C2OUT, as s	selected by the	T1GSS bit of t	he CMCON1	

FIGURE 9-2: AUSART RECEIVE BLOCK DIAGRAM

The operation of the AUSART module is controlled through two registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)

These registers are detailed in Register 9-1 and Register 9-2 respectively.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 7	SPEN: Serial	Port Enable bit	t				
	1 = Serial po0 = Serial po	rt enabled (con rt disabled (hel	figures RX/D d in Reset)	T and TX/CK p	oins as serial po	ort pins)	
bit 6	RX9: 9-bit Re	eceive Enable b	it				
	1 = Selects $90 = $ Selects 8	bit receptionbit reception					
bit 5	SREN: Single	e Receive Enab	le bit				
	Asynchronou	<u>s mode</u> :					
	Don't care						
	Synchronous	<u>mode – Master</u>	<u>r</u> :				
	1 = Enables 0 = Disables	single receive					
	This bit is clea	ared after recep	otion is compl	ete.			
	<u>Synchronous</u>	mode – Slave					
	Don't care						
bit 4	CREN: Contin	nuous Receive	Enable bit				
	Asynchronou	<u>s mode</u> :					
	1 = Enables 0 = Disables	receiver					
	Synchronous	mode:					
	1 = Enables	continuous rece	eive until ena	ble bit CREN is	s cleared (CRE	N overrides SRE	EN)
	0 = Disables	continuous rec	eive				
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronou	<u>s mode 9-bit (R</u>	<u>X9 = 1)</u> :		10	"	
	1 = Enables 0 = Disables	address detecti address detect	ion, enable in tion, all bytes	are received a	and the receive b and ninth bit car	uffer when RSR t be used as par	<8> is set ity bit
	Asynchronou	<u>s mode 8-bit (R</u>	<u>X9 = 0)</u> :				
	Don't care	modo					
	<u>Synchronous</u> Must be set to	<u>111000e</u> .					
bit 2	FFRR: Frami	na Error bit					
Sit 2	1 = Framing	error (can be u	pdated by rea	adina RCREG	register and reg	ceive next valid t	ovte)
	0 = No frami	ng error			-9		-])
bit 1	OERR: Overr	run Error bit					
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	aring bit CREN)		
bit 0	RX9D: Ninth	bit of Received	Data				
	This can be a	ddress/data bit	or a parity bi	t and must be	calculated by u	ser firmware.	

REGISTER 9-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	—	ADCS2	ADCS1	ADCS0	—	—	_	—	-000	-000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ADRESH	A/D Result	Register Higl	h Byte						xxxx xxxx	uuuu uuuu
ADRESL	A/D Result	Register Low	/ Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	0000 0000
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
LCDSE2 ⁽¹⁾	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	uuuu uuuu
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx xxxx	uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111	1111
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	1111 1111	1111 1111

 TABLE 12-2:
 SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

13.1.2 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD control bit, and then set control bit RD of the EECON1 register. The data is available in the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1:	DATA EEPROM READ

BANKSEL	EEADRL	;
MOVF	DATA_EE_ADDR,W	;Data Memory
MOVWF	EEADRL	;Address to read
BANKSEL	EECON1	i
BCF	EECON1, EEPGD	;Point to Data
		;memory
BSF	EECON1,RD	;EE Read
BANKSEL	EEDATL	i
MOVF	EEDATL,W	;W = EEPROM Data

13.1.3 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the sequence described below is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software. The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADRL. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATL register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 13-2: DATA EEPROM WRITE

		BANKSEL	EECON1	;
		BTFSC	EECON1,WR	;Wait for write
		GOTO	\$-1	;to complete
		BANKSEL	EEADRL	;
		MOVF	DATA_EE_ADDR,W	;Data Memory
		MOVWF	EEADRL	;Address to write
		MOVF	DATA_EE_DATA,W	;Data Memory Value
		MOVWF	EEDATL	;to write
		BANKSEL	EECON1	;
		BCF	EECON1, EEPGD	;Point to DATA
				;memory
		BSF	EECON1,WREN	;Enable writes
		BCF	INTCON,GIE	;Disable INTs.
		MOVLW	55h	;
ð	Ge	MOVWF	EECON2	;Write 55h
uire	Per	MOVLW	AAh	;
Seq	ē	MOVWF	EECON2	;Write AAh
ш	0)	BSF	EECON1,WR	;Set WR bit to
				;begin write
		BSF	INTCON, GIE	;Enable INTs.
		BCF	EECON1,WREN	;Disable writes

13.1.4 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must write two bytes of the address to the EEADRL and EEADRH registers, set the EEPGD control bit, and then set control bit RD of the EECON1 register. Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATL and EEDATH registers; therefore, it can be read as two bytes in the following instructions. EEDATL and EEDATH registers will hold this value until another read or until it is written to by the user (during a write operation).

- Note 1: The two instructions following a program memory read are required to be NOP's. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - If the WR bit is set when EEPGD = 1, the WR bit will be immediately reset to '0' and no operation will take place.

EXAMPLE 13-3: FLASH PROGRAM READ

```
BANKSEL EEADRL
       MOVLW MS PROG EE ADDR;
             EEADRH
       MOVWE
                      ;MS Byte of Program Address to read
       MOVLW LS PROG EE ADDR;
                         ;LS Byte of Program Address to read
       MOVWF EEADRL
       BANKSEL EECON1
                             ;
       BSF EECON1, EEPGD ; Point to PROGRAM memory
               EECON1, RD
                             ;EE Read
       BSF
Required
       NOP
       NOP
                              ;Any instructions here are ignored as program
                              ;memory is read in second cycle after BSF
       BANKSEL EEDATL
                              ;
       MOVF
               EEDATL, W
                             ;W = LS Byte of EEPROM Data program
       MOVWF
               DATAL
                             ;
       MOVE
               EEDATH, W
                              ;W = MS Byte of EEPROM Data program
       MOVWF
               DATAH
                              ;
```

14.2 Operation

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- · Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Status bit BF of the SSPSTAT register, and the interrupt flag bit SSPIF, are set. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit BF of the SSPSTAT register indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the SSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 14-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSP STATUS register (SSPSTAT) indicates the various status conditions.

EXAMPLE 14-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BANKSEL	SSPSTAT	;
LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	GOTO	LOOP	;No
	BANKSEL	SSPBUF	;
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

14.13 Master Mode

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when the P bit is set or the bus is idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<7,6> bit(s). The output level is always low, irrespective of the value(s) in PORTC<7,6>. So when transmitting data, a '1' data bit must have the TRISC<6> bit set (input) and a '0' data bit must have the TRISC<7> bit cleared (output). The same scenario is true for the SCL line with the TRISC<6> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode idle (SSPM<3:0> = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

14.14 Multi-Master Mode

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions, allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<7,6>). There are two stages where this arbitration can be lost, these are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

14.14.1 CLOCK SYNCHRONIZATION AND THE CKP BIT

When the CKP bit is cleared, the SCL output is forced to '0'; however, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external l^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the l^2C bus have deasserted SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 14-12).

FIGURE 19-17: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 19-15: I ² C™ BU	S START/STOP BITS REQUIREMENTS
-----------------------------------	---------------------------------------

Param No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Conditions
90*	TSU:STA	Start condition Setup time	400 kHz mode	600		—	ns	Only relevant for Repeated Start condition
91*	THD:STA	Start condition Hold time	400 kHz mode	600	—	—	ns	After this period, the first clock pulse is generated
92*	Tsu:sto	Stop condition Setup time	400 kHz mode	600	—	-	ns	
93	THD:STO	Stop condition Hold time	400 kHz mode	600	—	—	ns	

* These parameters are characterized but not tested.

FIGURE 19-19: I²C[™] BUS DATA TIMING

FIGURE 20-6: MAXIMUM IDD vs. VDD OVER Fosc (XT MODE)

FIGURE 20-34: ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimens	Dimension Limits		NOM	MAX		
Number of Pins	Ν	44				
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		8.00 BSC			
Exposed Pad Width	E2	6.30	6.30 6.45			
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25	0.30	0.38		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad		0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν					
Pitch	е	0.65 BSC				
Overall Height	А	-		2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	—	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1		1.25 REF			
Lead Thickness	с	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

Registers	62
TRISC Register	62
TRISD	
Registers	71
TRISD Register	71
TRISE	
Registers	
TRISE Register	
TRISF	
Registers	
TRISF Register	
TRISG	
Registers	
TRISG Register	
Two-Speed Clock Start-up Mode	
TXREG	123
TXSTA Register	130
BRGH Bit	132

U

UA	
Synchronous Master Mode	
Requirements. Synchronous Receive	
Requirements, Synchronous Transmission 275	
Timing Diagram. Synchronous Receive	
Timing Diagram, Synchronous Transmission 275	
.,	

V

Voltage Reference. See Comparator	Voltage
Reference (CVREF)	
Voltage References	
Associated registers	119
VREF. SEE ADC Reference Voltage	

W

Wake-up Using Interrupts	
Watchdog Timer (WDT)	
Associated Registers	
Clock Source	
Modes	
Period	
Specifications	
WCOL bit	195
WDTCON Register	
WPUB Register	
Write Collision Detect bit (WCOL)	195
WWW Address	325
WWW, On-Line Support	13

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X Temperature Range	/XX Package	XXX Pattern	Exa a)	amples: PIC16F913-E/SP 301 = Extended Temp., skinny PDIP package, 20 MHz, QTP pattern
Device:	PIC16F913, PIC PIC16F914, PIC PIC16F916, PIC PIC16F917, PIC PIC16F946, PIC	216F913T ⁽¹⁾ 216F914T ⁽¹⁾ 216F916T ⁽¹⁾ 216F916T ⁽¹⁾ 216F946T ⁽¹⁾		b)	#301 PIC16F913-I/SO = Industrial Temp., SOIC package, 20 MHz
Temperature Range:	I = -40°C E = -40°C	to +85°C to +125°C			
Package:	ML = Micro P = Plast PT = TQFf SO = SOIC SP = Skinr SS = SSOI) Lead Frame (ic DIP 2 (Thin Quad F ; y Plastic DIP	QFN) Flatpack)	Not	te 1: T = In tape and reel.
Pattern:	3-Digit Pattern (Code for QTP (blank otherwise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.