

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f916-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-16: **BLOCK DIAGRAM OF RC2**

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCP2CON ⁽¹⁾	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE2 ⁽¹⁾	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	uuuu uuuu
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD⁽¹⁾

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

Note 1: PIC16F914/917 and PIC16F946 only.

5.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the Option register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed.

EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BANKSEL	TMR0	i
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		;prescaler
BANKSEL	OPTION_REG	;
BSF	OPTION_REG, PSA	;Select WDT
CLRWDT		i
		;
MOVLW	b'11111000'	;Mask prescaler
ANDWF	OPTION_REG,W	;bits
IORLW	b'00000101'	;Set WDT prescaler
MOVWF	OPTION_REG	;to 1:32

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2).

EXAMPLE 5-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BANKSEL	OPTION_REG	;
MOVLW	b'11110000'	;Mask TMR0 select and
ANDWF	OPTION_REG,W	;prescaler bits
IORLW	b'00000011'	;Set prescale to 1:16
MOVWF	OPTION_REG	;

5.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in Section 19.0 "Electrical Specifications"

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	TOUTPS<3:0	>: Timer2 Outp	out Postscaler	Select bits			
	0000 = 1:1 P	ostscaler					
	0001 = 1:2 Po	ostscaler					
	0010 = 1:3 P	ostscaler					
	0011 = 1:4 P(ostscaler					
	0100 = 1.5 Pc	ostscaler					
	0110 = 1:7 P	ostscaler					
	0111 = 1:8 P	ostscaler					
	1000 = 1:9 P	ostscaler					
	1001 = 1:10 F	Postscaler					
	1010 = 1:11 F	Postscaler					
	1011 = 1:12						
	1100 = 1.13						
	11101 = 1.141	Postscaler					
	1111 = 1:16 F	Postscaler					
bit 2	TMR2ON: Tin	mer2 On bit					
	1 = Timer2 is	on					
	0 = Timer2 is	off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits			
	00 = Prescale	er is 1					
	01 = Prescale	er is 4					
	1x = Prescale	er is 16					
TABLE 7-1:	SUMMAR				H TIMER2		

REGISTER 7-1: T2CON: TIMER 2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 N	Iodule Period	Register						1111 1111	1111 1111
TMR2	Holding F	Register for th	e 8-bit TMR2	Register					0000 0000	0000 0000
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

8.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Dual comparators
- Multiple comparator configurations
- Comparator outputs are available internally/externally
- Programmable output polarity
- · Interrupt-on-change
- · Wake-up from Sleep
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference

8.1 Comparator Overview

A comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

This device contains two comparators as shown in Figure 8-2 and Figure 8-3. The comparators are not independently configurable.

8.1.1 ANALOG INPUT CONNECTION CONSIDERATIONS

A simplified circuit for an analog input is shown in Figure 8-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 8-4: ANALOG INPUT MODEL

						SYNC = 0,	BRGH = :	1				
BAUD	Fos	c = 4.00	0 MHz	Foso	= 3.686	4 MHz	Fos	c = 2.00	0 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)									
300	_			_	_		_			300	0.16	207
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	—	_	_
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5
19.2k	19.23k	0.16	12	19.2k	0.00	11	—	_	_	—	_	_
57.6k	—	_	_	57.60k	0.00	3	—	_	_	—	_	_
115.2k	—	_	_	115.2k	0.00	1	_	_	_	_	_	_

TABLE 9-5: BAUD RATES FOR ASYNCHRONOUS MODES

9.3.2.3 AUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 9.3.1.4 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE interrupt enable bit of the PIE1 register is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 9.3.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 3. If 9-bit reception is desired, set the RX9 bit.
- 4. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 5. Set the CREN bit to enable reception.
- The RCIF bit of the PIR1 register will be set when reception is complete. An interrupt will be generated if the RCIE bit of the PIE1 register was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the 8 Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART	Receive Da	ita Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	X000 000X	0000 000X
SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 9-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

R/W-0	R/W-0	R/C-0	R/W-1	R/W-	0 R/W-0	R/W-1	R/W-1
LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	:	U = Unii	mplemented bit, rea	d as '0'	
C = Only clear	able bit	'1' = Bit is set		'0' = Bit	is cleared	x = Bit is unkn	own
-n = Value at F	POR						
bit 7	LCDEN: LCD	Driver Enable bi	t				
	1 = LCD drive	er module is enab	led				
	0 = LCD drive	er module is disal	bled				
bit 6	SLPEN: LCD	Driver Enable in	Sleep mod	e bit			
	1 = LCD drive	er module is disal er module is enab	oled in Slee	p mode			
bit 5		Write Failed Erro	r hit	5 mode			
bit 5		Ax register writte	n while the	⊃ WA hit	of the LCDPS regi	ster = 0 (must l	ne cleared in
	software)		5 117 510			
	0 = No LCD \	write error					
bit 4	VLCDEN: LC	D Bias Voltage P	ins Enable	bit			
	1 = VLCD pir	is are enabled					
	0 = VLCD pir	is are disabled					
bit 3-2	CS<1:0>: Clo	ock Source Select	t bits				
	$00 = FOSC/8^{\circ}$ 01 = T1OSC	192 (Timer1)/32					
	1x = LFINTO	SC (31 kHz)/32					
bit 1-0	LMUX<1:0>:	Commons Selec	t bits				
				Maxim	um Number of Pix	els	
	LMUX<1:0>	Multiplex	PIC16F9	913/916	PIC16F914/917	PIC16F946	Bias
	0.0	Static (COM0)	10	6	24	42	Static
	01	1/2 (COM<1:0>)	3:	2	48	84	1/2 or 1/3
	10	1/3 (COM<2:0>)	48	8	72	126	1/2 or 1/3
	11	1/4 (COM<3:0>)	60	(1)	96	168	1/3
	L	· · · /	1			l	I]

REGISTER 10-1: LCDCON: LIQUID CRYSTAL DISPLAY CONTROL REGISTER

Note 1: On PIC16F913/916 devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

REGISTER 13-1: EEDATL: EEPROM/PROGRAM MEMORY DATA LOW BYTE REGISTEI

bit 7							bit 0
EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDATL1	EEDATL0
R/W-0							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	Legena:			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EEDATL<7:0>: Byte value to Write to or Read from data EEPROM bits or to Read from program memory

REGISTER 13-2: EEADRL: EEPROM/PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| EEADRL7 | EEADRL6 | EEADRL5 | EEADRL4 | EEADRL3 | EEADRL2 | EEADRL1 | EEADRL0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 EEADRL<7:0>: Specifies one of 256 locations for EEPROM Read/Write operation bits or low address byte for program memory reads

REGISTER 13-3: EEDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **EEDATH<5:0>**: Byte value to Read from program memory

REGISTER 13-4: EEADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **EEADRH<4:0>**: Specifies the high address byte for program memory reads

15.2 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCPx module may:

- Toggle the CCPx output.
- · Set the CCPx output.
- · Clear the CCPx output.
- Generate a Special Event Trigger.
- · Generate a Software Interrupt.

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register.

All Compare modes can generate an interrupt.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

- Clear TMR1H and TMR1L registers.
- NOT set interrupt flag bit TMR1IF of the PIR1 register.
- Set the GO/DONE bit to start the ADC conversion.

15.2.1 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force							
	the CCPx compare output latch to the							
	default low level. This is not the PORT I/O							
	data latch.							

15.2.2 TIMER1 MODE SELECTION

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

15.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

15.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

Resets Timer1

• Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode (see the CCPxCON register).

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

- Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMRxIF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

15.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 15-4.

EQUATION 15-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 15-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MI

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

TABLE 19-6: **COMPARATOR SPECIFICATIONS**

Standard	Operating	Conditions	(unless	otherwise stated)	
otuniaura	oporating	oonantiono	(annooo		

Operating Temperature	-40°C ≤ TA ≤ +125°C
-----------------------	---------------------

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Symbol	Characteristics		Min.	Тур†	Max.	Units	Comments
CM01	Vos	Input Offset Voltage		_	± 5.0	± 10	mV	(VDD - 1.5)/2
CM02	Vсм	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55			dB	
CM04*	Trt	Response Time	Falling		150	600	ns	(NOTE 1)
			Rising	—	200	1000	ns	
CM05*	Тмс2coV	Comparator Mode Change to Output Valid				10	μs	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 19-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Co	nditions (unless otherwise stated)
Operating temperature	-40°C < Ta < +125°C

Param No.	Symbol	Characteristics	Min.	Тур†	Max.	Units	Comments
CV01*	CLSB	Step Size ⁽²⁾	—	Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)
CV02*	CACC	Absolute Accuracy	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
CV03*	CR	Unit Resistor Value (R)	—	2k	-	Ω	
CV04*	CST	Settling Time ⁽¹⁾	_	_	10	μs	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 8.10 "Comparator Voltage Reference" for more information.

TABLE 19-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic Min. Max. Units Condition					
120	TCKH2DT	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns	
	V	Clock high to data-out valid	2.0-5.5V	_	100	ns	
121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns	
		(Master mode)	2.0-5.5V	—	50	ns	
122	TDTRF	Data-out rise time and fall time	3.0-5.5V	_	45	ns	
			2.0-5.5V	—	50	ns	

FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions		
125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns			
126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns			

FIGURE 20-12: MAXIMUM IDD vs. Fosc OVER VDD (HFINTOSC MODE)

FIGURE 20-19: WDT PERIOD vs. VDD OVER TEMPERATURE

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Updated Peripheral Features. Page 2, Table: Corrected I/O numbers. Figure 8-3: Revised Comparator I/O operating modes. Register 9-1, Table: Corrected max. number of pixels.

Revision C

Correction to Pin Description Table. Correction to IPD base and T1OSC.

Revision D

Revised references 31.25 kHz to 31 kHz. Revised Standby Current to 100 nA. Revised 9.1: internal RC oscillator to internal LF oscillator.

Revision E

Removed "Advance Information" from Section 19.0 Electrical Specifications. Removed 28-Lead Plastic Quad Flat No Lead Package (ML) (QFN-S) package.

Revision F

Updates throughout document. Removed "Preliminary" from Data Sheet. Added Characterization Data chapter. Update Electrical Specifications chapter. Added PIC16F946 device.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{B}}$ devices to the PIC16F91X/946 family of devices.

B.1 PIC16F676 to PIC16F91X/946

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC16F91X/ 946	
Max. Operating Speed	20 MHz	20 MHz	
Max. Program Memory (Words)	1K	8K	
Max. SRAM (Bytes)	64	352	
A/D Resolution	10-bit	10-bit	
Data EEPROM (bytes)	128	256	
Timers (8/16-bit)	1/1	2/1	
Oscillator Modes	8	8	
Brown-out Reset	Y	Y	
Internal Pull-ups	RB0/1/2/4/5	RB<7:0>	
Interrupt-on-change	RB0/1/2/3 /4/5	RB<7:4>	
Comparator	1	2	
USART	N	Y	
Extended WDT	N	Y	
Software Control Option of WDT/BOR	Ν	Y	
INTOSC Frequencies	4 MHz	32 kHz - 8 MHz	
Clock Switching	Ν	Y	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X Temperature Range	/XX Package	XXX Pattern	Exa a)	amples: PIC16F913-E/SP 301 = Extended Temp., skinny PDIP package, 20 MHz, QTP pattern
Device:	PIC16F913, PIC PIC16F914, PIC PIC16F916, PIC PIC16F917, PIC PIC16F946, PIC	216F913T ⁽¹⁾ 216F914T ⁽¹⁾ 216F916T ⁽¹⁾ 216F916T ⁽¹⁾ 216F946T ⁽¹⁾		b)	#301 PIC16F913-I/SO = Industrial Temp., SOIC package, 20 MHz
Temperature Range:	I = -40°C E = -40°C	to +85°C to +125°C			
Package:	ML = Micro P = Plast PT = TQFf SO = SOIC SP = Skinr SS = SSOI) Lead Frame (ic DIP 2 (Thin Quad F ; y Plastic DIP	QFN) Flatpack)	Not	te 1: T = In tape and reel.
Pattern:	3-Digit Pattern (Code for QTP (blank otherwise)		

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.