

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f916-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.2.2.7 PIR2 Register

The PIR2 register contains the interrupt flag bits, as shown in Register 2-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	—	CCP2IF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSFIF: Oscillator Fail Interrupt Flag bit
	 1 = System oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = System clock operating
bit 6	C2IF: Comparator C2 Interrupt Flag bit
	 1 = Comparator output (C2OUT bit) has changed (must be cleared in software) 0 = Comparator output (C2OUT bit) has not changed
bit 5	C1IF: Comparator C1 Interrupt Flag bit
	 1 = Comparator output (C1OUT bit) has changed (must be cleared in software) 0 = Comparator output (C1OUT bit) has not changed
bit 4	LCDIF: LCD Module Interrupt bit
	1 = LCD has generated an interrupt
	0 = LCD has not generated an interrupt
bit 3	Unimplemented: Read as '0'
bit 2	LVDIF: Low Voltage Detect Interrupt Flag bit
	1 = LVD has generated an interrupt
	0 = LVD has not generated an interrupt
bit 1	Unimplemented: Read as '0'
bit 0	CCP2IF: CCP2 Interrupt Flag bit ⁽¹⁾
	Capture Mode:
	 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred
	Compare Mode:
	 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred
	PWM mode:
	Unused in this mode
Note 1:	PIC16F914/PIC16F917/PIC16F946 only.

3.6 **PORTD and TRISD Registers**

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configured as an input or output. PORTD is only available on the PIC16F914/917 and PIC16F946.

EXAMPLE 3-4: INITIALIZING PORTD

BANKSEL PORTD	;
CLRF PORTD	;Init PORTD
BANKSEL TRISD	;
MOVLW OFF	;Set RD<7:0> as inputs
MOVWF TRISD	;

REGISTER 3-10: PORTD: PORTD REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 RD<7:0>: PORTD I/O Pin bits

1 = Port pin is >VIH min.

0 = Port pin is <VIL max.

REGISTER 3-11: TRISD: PORTD TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISD<7:0>: PORTD Tri-State Control bits

1 = PORTD pin configured as an input (tri-stated)

0 = PORTD pin configured as an output

3.6.1 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTD pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the Comparator or the ADC, refer to the appropriate section in this data sheet.

3.6.1.1 RD0/COM3

Figure 3-22 shows the diagram for this pin. The RD0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.6.1.2 RD1

Figure 3-23 shows the diagram for this pin. The RD1 pin is configurable to function as one of the following:

a general purpose I/O

3.6.1.3 RD2/CCP2

Figure 3-24 shows the diagram for this pin. The RD2 pin is configurable to function as one of the following:

- a general purpose I/O
- a Capture input, Compare output or PWM output

3.6.1.4 RD3/SEG16

Figure 3-25 shows the diagram for this pin. The RD3 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.6.1.5 RD4/SEG17

Figure 3-25 shows the diagram for this pin. The RD4 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog output for the LCD

3.6.1.6 RD5/SEG18

Figure 3-25 shows the diagram for this pin. The RD5 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

3.6.1.7 RD6/SEG19

Figure 3-25 shows the diagram for this pin. The RD6 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.6.1.8 RD7/SEG20

Figure 3-25 shows the diagram for this pin. The RD7 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

4.5.2.1 OSCTUNE Register

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 4-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

REGISTER 4-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:					
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7-5	Unimple	mented: Read as '0'			
bit 4-0	TUN<4:0>: Frequency Tuning bits				
	01111 =	Maximum frequency			
	01110 =				
	•				
	•				
	•				
	00001 =				
	00000 =	Oscillator module is running	at the factory-calibrated frequ	ency.	
	11111 =				
	•				

•

10000 = Minimum frequency

10.4 LCD Multiplex Types

The LCD driver module can be configured into one of four multiplex types:

- Static (only COM0 is used)
- 1/2 multiplex (COM<1:0> are used)
- 1/3 multiplex (COM<2:0> are used)
- 1/4 multiplex (COM<3:0> are used)

The LMUX<1:0> bit setting of the LCDCON register decides the function of RB5, RA2 or either RA3 or RD0 pins (see Table 10-2 for details).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, then the TRIS setting of that pin is overridden.

Note:	On a Power-on Reset, the LMUX<1:0>
	bits of the LCDCON register are '11'.

TABLE 10-2: RA3/RD0, RA2, RB5 FUNCTION

Multiplex	LMUX <1:0>	RA3/RD0 ⁽¹⁾	RA2	RB5	
Static	00	Digital I/O	Digital I/O	Digital I/O	
1/2	01	Digital I/O	Digital I/O	COM1 Driver	
1/3	10	Digital I/O	COM2 Driver	COM1 Driver	
1/4	11	COM3 Driver	COM2 Driver	COM1 Driver	
Note 1	RA3 for P	IC16E913/916	RD0 for PIC16	F914/917 and	

Note 1: RA3 for PIC16F913/916, RD0 for PIC16F914/917 and PIC16F946

10.5 Segment Enables

The LCDSEn registers are used to select the pin function for each segment pin. The selection allows each pin to operate as either an LCD segment driver or as one of the pin's alternate functions. To configure the pin as a segment pin, the corresponding bits in the LCDSEn registers must be set to '1'.

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSEn registers overrides any bit settings in the corresponding TRIS register.

Note:	On a Power-on Reset, these pins are	
	configured as digital I/O.	

10.6 Pixel Control

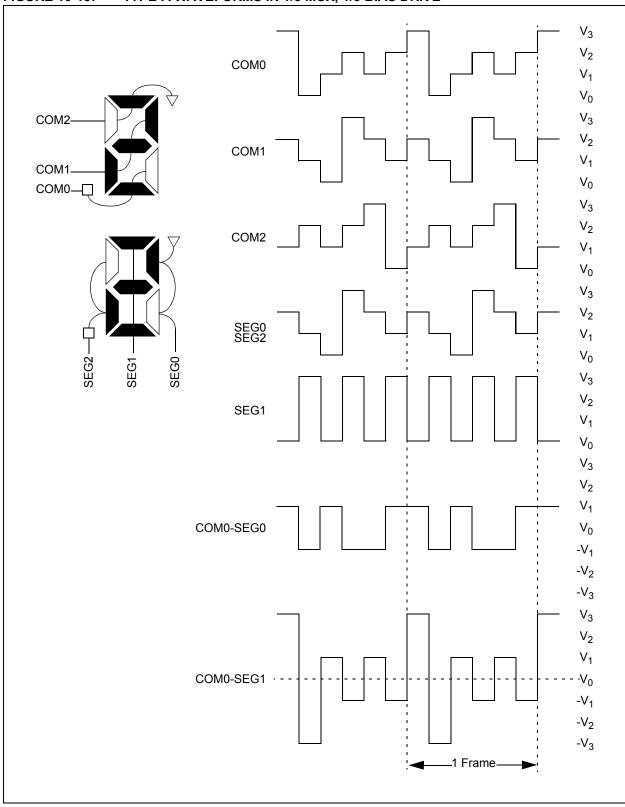
The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Register 10-4 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

10.7 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.


TABLE 10-3: FRAME FREQUENCY FORMULAS

Multiplex	Frame Frequency =
Static	Clock source/(4 x 1 x (LP<3:0> + 1))
1/2	Clock source/(2 x 2 x (LP<3:0> + 1))
1/3	Clock source/(1 x 3 x (LP<3:0> + 1))
1/4	Clock source/(1 x 4 x (LP<3:0> + 1))
NL C	

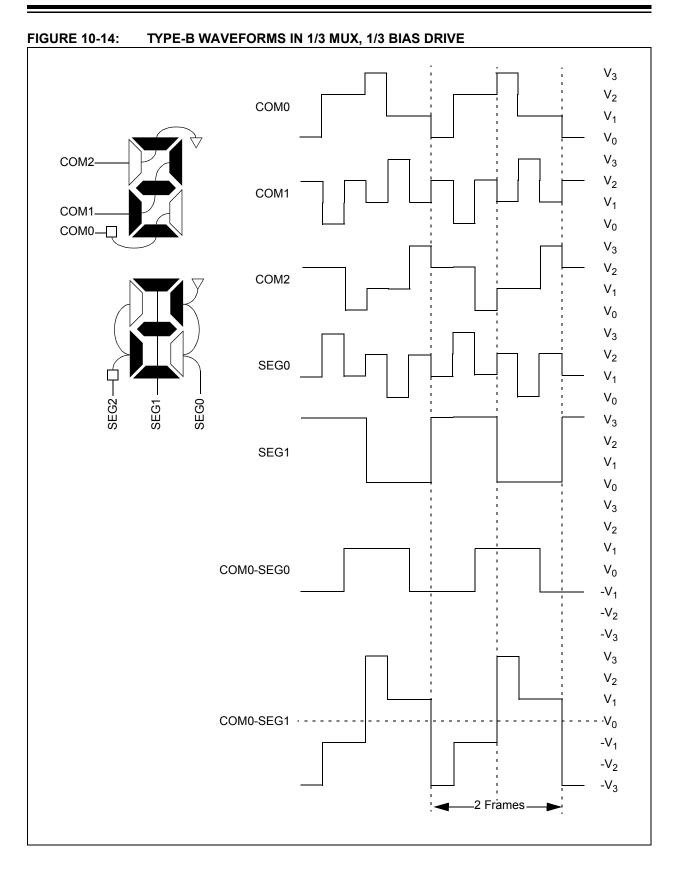

Note: Clock source is Fosc/8192, T1OSC/32 or LFINTOSC/32.

TABLE 10-4:APPROXIMATE FRAME
FREQUENCY (IN Hz) USING
Fosc @ 8 MHz, TIMER1 @
32.768 kHz OR LFINTOSC

LP<3:0>	Static	1/2	1/3	1/4
2	85	85	114	85
3	64	64	85	64
4	51	51	68	51
5	43	43	57	43
6	37	37	49	37
7	32	32	43	32

FIGURE 10-13: TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

© 2007 Microchip Technology Inc.

12.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - · Disable pin output driver (See TRIS register)
 - · Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - · Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: See Section 12.3 "A/D Acquisition Requirements".

EXAMPLE 12-1: A/D CONVERSION

;This code block configures the ADC ;for polling, Vdd reference, Frc clock ;and ANO input. ;

;Conversion start & polling for completion ; are included.

;		
BANKSEL	ADCON1	;
MOVLW	B'01110000'	;ADC Frc clock
MOVWF	ADCON1	;
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RA0 to input
BANKSEL	ANSEL	;
BSF	ANSEL,0	;Set RA0 to analog
BANKSEL	ADCON0	;
MOVLW	B'10000001'	;Right justify,
MOVWF	ADCON0	;Vdd Vref, ANO, On
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRESH	;
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	;store in GPR space
BANKSEL	ADRESL	;
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	;Store in GPR space

12.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	ADCS2	ADCS1	ADCS0	_			_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
	-						
bit 6-4	ADCS<2:0>:	A/D Conversio	n Clock Select	t bits			
	000 = Fosc/2	2					
	001 = Fosc/8	3					
	010 = Fosc/3	32					
	x11 = FRC (c)	ock derived fro	m a dedicated	l internal oscilla	ator = 500 kHz i	max.)	
	100 = Fosc/4					- /	
	101 = Fosc/1	6					
	110 = Fosc/6						
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 12-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 14-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7	-						bit 0
Legend:	a:#	M - Mritabla bit			antad hit raad aa	·0'	
R = Readable I		W = Writable bit		•	ented bit, read as		
-n = Value at P	UR	'1' = Bit is set		'0' = Bit is clea	ieu	x = Bit is unkno	JWII
bit 7	SPI Master mo 1 = Input data s 0 = Input data s SPI Slave mod SMP must be o I^2C^{TM} mode:	sampled at end of sampled at middle	data output ti of data outpu is used in Slav	t time (Microwire)		
bit 6	CKE: SPI Cloc SPI mode. CKI 1 = Data stable 0 = Data stable SPI mode. CKI 1 = Data stable 0 = Data stable I ² C mode: This bit must b	k Edge Select bit $\frac{D}{2} = 0$: e on rising edge of e on falling edge of $\frac{D}{2} = 1$: e on falling edge of e on rising edge of e maintained clea	SCK (Microw f SCK f SCK (Microw SCK				
bit 5	1 = Indicates th	DRESS bit (I ² C m nat the last byte re nat the last byte re	ceived or tran				
bit 4	SSPEN is clea 1 = Indicates th	ed when the SSP	been detected	·		cted last.	
bit 3	SSPEN is clea 1 = Indicates th	ed when the SSP	been detected			cted last.	
bit 2	This bit holds th	RITE bit Information ne R/W bit information rt bit, Stop bit or A	tion following t		natch. This bit is o	nly valid from the	e address match
bit 1	1 = Indicates th	ldress bit (10-bit l ² nat the user needs bes not need to be	to update the		SPADD register		
bit O	1 = Receive co 0 = Receive no <u>Transmit (l^2C r</u> 1 = Transmit in	ind I ² C modes): omplete, SSPBUF ot complete, SSPE	UF is empty JF is full				

REGISTER 14-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾	
bit 7							bit (
Legend: R = Readable b	it	W = Writable bit		II = Unimplem	ented bit, read as	ʻ ∩ '		
-n = Value at PC		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno		
					leu			
bit 7		Collision Detect bit SUF register is writ		till transmitting th	e previous word (must be cleared i	n software)	
bit 6	In SPI mode: 1 = A new byt data in SS transmittin tion (and t 0 = No overflo In I ² C™ mode: 1 = A byte is b	received while the node. SSPOV mu	e the SSPBUI flow can only o etting overflow itiated by writi e SSPBUF reg	occur in Slave mode . In Master mode ng to the SSPBU gister is still hold	ode. The user mu e, the overflow bit F register. ing the previous	st read the SSPE is not set since e	3UF, even if only each new recep	
bit 5	SSPEN: Synchronous Serial Port Enable bit In SPI mode: 1 = Enables serial port and configures SCK, SDO and SDI as serial port pins 0 = Disables serial port and configures these pins as I/O port pins In I ² C mode: 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins							
bit 4	CKP : Clock Po In SPI mode: 1 = Idle state fo	or clock is a high le or clock is a low le ontrol	evel (Microwin	e default)		, output		
hit 2 0	0 = Holds clock	k low (clock stretcl ynchronous Seria	, ,		time.)			
bit 3-0	$\begin{array}{l} 0000 = {\rm SPI} \mbox{ Ma} \\ 0001 = {\rm SPI} \mbox{ Ma} \\ 0010 = {\rm SPI} \mbox{ Ma} \\ 0011 = {\rm SPI} \mbox{ Ma} \\ 0100 = {\rm SPI} \mbox{ SIa} \\ 0101 = {\rm SPI} \mbox{ SIa} \\ 0101 = {\rm I}^2 {\rm C} \mbox{ SIa} \\ 0111 = {\rm I}^2 {\rm C} \mbox{ SIa} \\ 1000 = {\rm Reserv} \\ 1001 = {\rm Reserv} \\ 1010 = {\rm Reserv} \\ 1011 = {\rm I}^2 {\rm C} \mbox{ Firm} \\ 1100 = {\rm Reserv} \\ 1101 = {\rm Reserv} \\ 1100 = {\rm SIa} \\ {\rm SIa} \mbox{ SIa} \mbox{ SIa} \mbox{ SIa} \mbox{ SIa} \\ {\rm SIa} \mbox{ SIa} S$	ster mode, clock aster mode, clock aster mode, clock aster mode, clock ave mode, clock = ave mode, clock = ve mode, 7-bit ad ve mode, 10-bit a ed ed ed mware Controlled ed	= Fosc/4 = Fosc/16 = Fosc/64 = TMR2 outpu SCK pin. <u>SS</u> SCK pin. <u>SS</u> dress ddress Master mode	tt/2 pin control enable pin control disabl (slave IDLE) rt and Stop bit in	ed. SS can be us terrupts enabled			

15.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 15-4.

EQUATION 15-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 15-3:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
-------------	---

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

15.3.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

15.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

15.3.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

15.3.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCPx) output drivers by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- 4. Set the PWM duty cycle by loading the CCPRxL register and CCPx bits of the CCPxCON register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.

TABLE 15-5: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCPxCON	—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	00 0000	00 0000
CCPRxL	Capture/Co	mpare/PWN	1 Register X	Low Byte					xxxx xxxx	uuuu uuuu
CCPRxH	Capture/Co	mpare/PWN	1 Register X	High Byte					xxxx xxxx	uuuu uuuu
CMCON1	—	—	—	—	—	—	T1GSS	C2SYNC	10	10
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	_	CCP2IE	0000 -0-0	0000 -0-0
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR2	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF	_	CCP2IF	0000 -0-0	0000 -0-0
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
TMR1L	Holding Reg	gister for the	Least Signi	ficant Byte c	of the 16-bit 1	MR1 Regis	ter		xxxx xxxx	uuuu uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	uuuu uuuu	
TMR2	Timer2 Module Register								0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM.

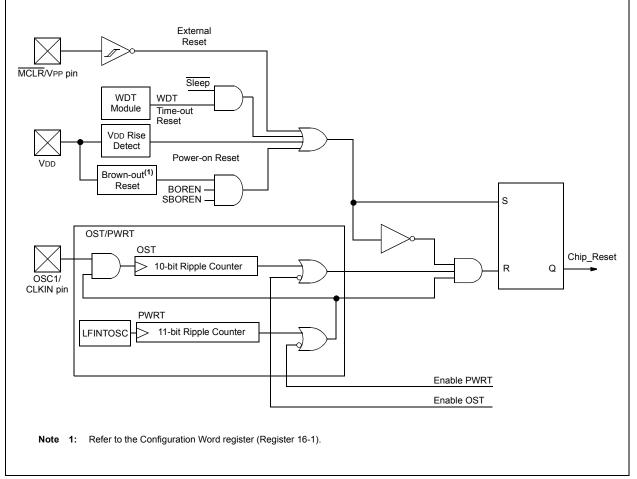
Note 1: PIC16F914/917 and PIC16F946 only.

16.2 Resets

The PIC16F91X/946 differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- · Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

They are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations, as indicated in Table 16-2. These bits are used in software to determine the nature of the Reset. See Table 16-5 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 16-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 19.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

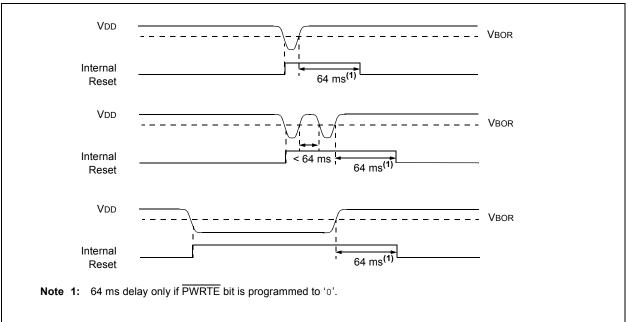
16.2.4 BROWN-OUT RESET (BOR)

The BOREN0 and BOREN1 bits in the Configuration Word register selects one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit of the PCON register enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 16-1 for the Configuration Word definition.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 19.0** "**Electrical Specifica-tions**"), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 16-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word.


FIGURE 16-3: BROWN-OUT SITUATIONS

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

16.2.5 BOR CALIBRATION

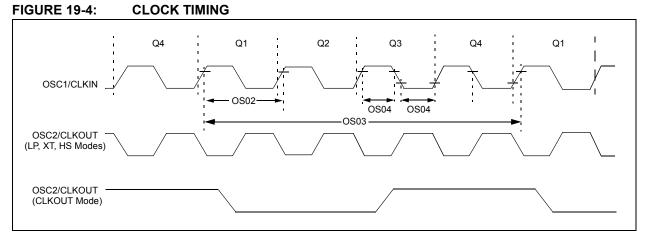
The PIC16F91X/946 stores the BOR calibration values in fuses located in the Calibration Word (2008h). The Calibration Word is not erased when using the specified bulk erase sequence in the "*PIC16F91X/946 Memory Programming Specification*" (DS41244) and thus, does not require reprogramming.

Address 2008h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See "*PIC16F91X/946 Memory Programming Specification*" (DS41244) for more information.

SUBWF	Subtract W from f			
Syntax:	[label] Sl	JBWF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.			
	C = 0	W > f		
	C = 1	$W \leq f$		

DC = 0

DC = 1

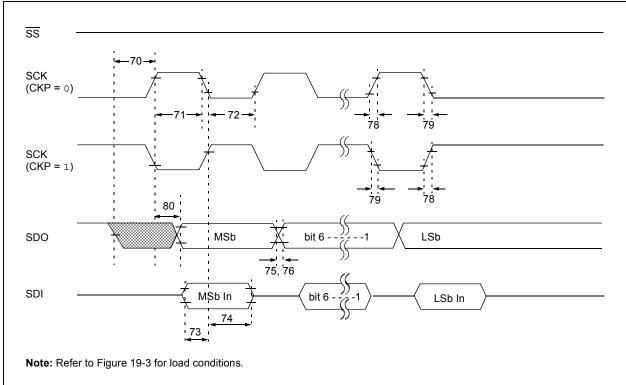

W<3:0> > f<3:0> W<3:0> ≤ f<3:0>

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

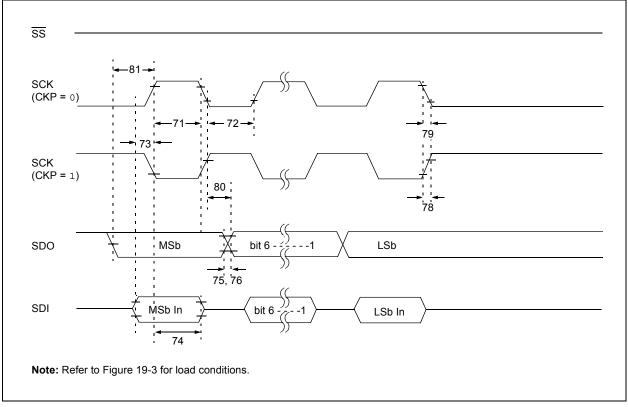
XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

19.8 AC Characteristics: PIC16F913/914/916/917/946 (Industrial, Extended)


TABLE 19-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standar Operatin	-	ting Conditions (unless otherw rature $-40^{\circ}C \le TA \le +125^{\circ}$		ed)			
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	37	kHz	LP Oscillator mode
			DC	_	4	MHz	XT Oscillator mode
			DC	_	20	MHz	HS Oscillator mode
			DC	_	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	20	MHz	HS Oscillator mode
			DC	—	4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	8	μs	LP Oscillator mode
			250	—	~	ns	XT Oscillator mode
			50	—	~	ns	HS Oscillator mode
			50	—	~	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾		30.5	_	μs	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	_	—	μs	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	8	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	~	ns	XT oscillator
			0	—	~	ns	HS oscillator

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 19-14: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

Associated Registers

INDEX

Α

A/D
Specifications
Absolute Maximum Ratings
AC Characteristics
Industrial and Extended
Load Conditions
ACK pulse
ADC
Associated registers
Block Diagram
Calculating Acquisition Time
Channel Selection 176
Configuration176
Configuring Interrupt
Conversion Clock
Conversion Procedure179 Internal Sampling Switch (Rss) Impedance
Interrupts
Operation
Operation During Sleep
Port Configuration
Reference Voltage (VREF)176
Result Formatting
Source Impedance
Special Event Trigger 178
Starting an A/D Conversion178
ADCON0 Register
ADCON1 Register
Addressable Universal Synchronous
Asynchronous Receiver Transmitter (AUSART) 121
ADRESH Register (ADFM = 0)
ADRESH Register (ADFM = 1)
ADRESL Register (ADFM = 0)
ADRESL Register (ADFM = 1)
Analog-to-Digital Converter. See ADC
ANSEL Register
Assembler
MPASM Assembler
AUSART
Associated Registers
Baud Rate Generator
Asynchronous Mode 123
Associated Registers
Receive
Transmit
Baud Rate Generator (BRG)
Receiver
Setting up 9-bit Mode with Address Detect 128
Transmitter
Baud Rate Error, Calculating
Baud Rates, Asynchronous Modes
Formulas
High Baud Rate Select (BRGH Bit)
Synchronous Master Mode
Associated Registers
Receive
Transmit136
Reception137
Transmission 135
Synchronous Slave Mode

Receive 1	40
Transmit1	39
Reception 1	40
Transmission 1	39
В	
-	
BF bit 1	
Block Diagram of RF	83
Block Diagrams	
(CCP) Capture Mode Operation 2	
ADC 1	
ADC Transfer Function 1	
Analog Input Model 111, 1	
AUSART Receive 1	
AUSART Transmit 1	
CCP PWM	
Clock Source	
Comparator 1 1	
Comparator 21	
Comparator Modes 1	
Compare2	
Crystal Operation	
External RC Mode	
Fail-Safe Clock Monitor (FSCM)	
In-Circuit Serial Programming Connections	
Interrupt Logic 2	
LCD Clock Generation 1	
LCD Driver Module 1	
LCD Resistor Ladder Connection 1	
MCLR Circuit 2	
On-Chip Reset Circuit	
PIC16F913/916	
PIC16F914/917	
PIC16F946	
RA0 Pin	
RA1 Pin	
RA2 Pin	
RA3 Pin	
RA4 Pin	
RA5 Pin	
RA6 Pin	
RA7 Pin	
RB Pins	
RB4 Pin	
RB5 Pin	
RB6 Pin	
RB7 Pin	
RC0 Pin	
RC1 Pin	
RC2 Pin	
RC3 Pin	
RC4 Pin	
RC5 Pin	
RC6 Pin	
RC7 Pin	
RD Pins	
RD0 Pin	
RD1 Pin	
RD2 Pin	
RE Pins	
RE Pins	
Resonator Operation	
RF Pins	83