

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f917-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-6 shows the two situations for the loading of the PC. The upper example in Figure 2-6 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-6 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-6: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PIC16F91X/946 family has an 8-level x 13-bit wide hardware stack (see Figures 2-1 and 2-2). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth PUSH overwrites the value that was stored from the first PUSH. The tenth PUSH overwrites the second PUSH (and so on).

- Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Program Memory Paging

All PIC16F91X/946 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is POPed off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH register are
	unchanged after a RETURN or RETFIE
	instruction is executed. The user must
	rewrite the contents of the PCLATH regis-
	ter for any subsequent subroutine calls or
	GOTO instructions.

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG 500h BCF PCLATH,4	
	BSF PCLATH,3	;Select page 1 ;(800h-FFFh)
	CALL SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	ORG 900h	;page 1 (800h-FFFh)
SUB1_P1	:	;called subroutine ;page 1 (800h-FFFh)
	:	
	RETURN	;return to ;Call subroutine ;in page 0 ;(000h-7FFh)

NOTES:

3.2.1.2 RA1/AN1/C2-/SEG7

Figure 3-2 shows the diagram for this pin. The RA1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- an analog input for Comparator C2
- · an analog output for the LCD

3.2.1.4 RA3/AN3/C1+/VREF+/COM3/SEG15

Figure 3-4 shows the diagram for this pin. The RA3 pin is configurable to function as one of the following:

- · a general purpose input
- an analog input for the ADC
- an analog input from Comparator C1
- a voltage reference input for the ADC
- · analog outputs for the LCD

FIGURE 3-4: BLOCK DIAGRAM OF RA3

For the PIC16F914/917 and PIC16F946, the LCDMODE EN = LCDEN and SE15.

3.8.1 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTF pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions, refer to the appropriate section in this data sheet.

3.8.1.1 RF0/SEG32

Figure 3-29 shows the diagram for this pin. The RF0 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog output for the LCD

3.8.1.2 RF1/SEG33

Figure 3-29 shows the diagram for this pin. The RF1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.8.1.3 RF2/SEG34

Figure 3-29 shows the diagram for this pin. The RF2 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

3.8.1.4 RF3/SEG35

Figure 3-29 shows the diagram for this pin. The RF3 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog output for the LCD

3.8.1.5 RF4/SEG28

Figure 3-29 shows the diagram for this pin. The RF4 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog output for the LCD

3.8.1.6 RF5/SEG29

Figure 3-29 shows the diagram for this pin. The RF5 pin is configurable to function as one of the following:

- · a general purpose I/O
- an analog output for the LCD

3.8.1.7 RF6/SEG30

Figure 3-29 shows the diagram for this pin. The RF6 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

3.8.1.8 RF7/SEG31

Figure 3-29 shows the diagram for this pin. The RF7 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

6.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- · Timer1 interrupt enable bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note:	The TMF	21H:	TMR1L	regis	ster pair a	and the
	TMR1IF	bit	should	be	cleared	before
	enabling	inte	rrupts.			

6.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set

The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

6.9 Clock Source for LCD Module

The Timer1 oscillator can be used to provide a clock for the LCD module. This clock may be configured to remain running during Sleep.

For more information, see Section 10.0 "Liquid Crystal Display (LCD) Driver Module".

© 2007 Microchip Technology Inc.

U-0	U-0	R-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_	_	IRVST ⁽¹⁾	LVDEN	—	LVDL2	LVDL1	LVDL0	
bit 7					•	•	bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-6	Unimplement	ted: Read as '	0'					
bit 5	IRVST: Interna	al Reference V	oltage Stable	Status Flag bit	(1)			
	1 = Indicates	that the PLVD	is stable and I	PLVD interrupt	is reliable			
	0 = Indicates	that the PLVD	is not stable a	ind PLVD inter	rupt must not be	e enabled		
bit 4	LVDEN: Low-	Voltage Detect	Module Enab	ole bit				
	1 = Enables F	LVD Module, I	powers up PL	VD circuit and	supporting refer	ence circuitry		
h # 0	0 = Disables PLVD Module, powers down PLVD circuit and supporting reference circuitry							
DIT 3	Unimplemen	Unimplemented: Read as '0'						
bit 2-0	LVDL<2:0>: Low-Voltage Detection Level bits (nominal values) ⁽³⁾							
	111 = 4.5V							
	110 = 4.2V							
	101 = 4.0V	ofoult)						
	100 = 2.3V (default)							
	011 - 2.2v 010 = 2.1V							
	$001 = 2.0 V^{(2)}$							
	000 = Reserv	ed						
Note 1: T	ote 1: The IRVST bit is usable only when the HFINTOSC is running.							

REGISTER 11-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER

2: Not tested and below minimum operating conditions.

3: See Section 19.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
LVDCON	—		IRVST	LVDEN		LVDL2	LVDL1	LVDL0	00 -100	00 -100
PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	_	CCP2IE	0000 -0-0	0000 -0-0
PIR2	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF		CCP2IF	0000 -0-0	0000 -0-0

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the PLVD module.

FIGURE 14-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

TABLE 14-4:	SUMMARY OF REGISTERS	ASSOCIATED	WITH I ² C™	OPERATION
				••••••••

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the SSP module. **Note 1:** Maintain these bits clear.

RLF	Rotate	Left f th	roug	h Carry			
Syntax:	[label]	RLF	f,d				
Operands:	0 ≤ f ≤ d ∈ [0,	127 1]					
Operation:	See de	scription	belov	w			
Status Affected:	С						
Description:	The co rotated the Cau result is If 'd' is back in	ntents of one bit to rry flag. If s placed '1', the re register C	regis o the f 'd' is in the esult i 'f'. Regis	ter 'f' are left through s '0', the w W register. is stored			
Words:	1						
Cycles:	1						
Example:	RLF	REG1	,0				
	Before Instruction						
		REG1	=	1110 0110			
		С	=	0			
	After In	struction					
		REG1	=	1110 0110			
		W	=	1100 1100			
		C	-	1			

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from literal						
Syntax:	[<i>label</i>] SUBLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k - (W) \rightarrow (W)$						
Status Affected:	C, DC, Z						
Description:	cription: The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.						
	C = 0	W > k					
	C = 1	$W \leq k$					
	DC = 0	W<3:0> > k<3:0>					

DC = 0 DC = 1

W<3:0> ≤ k<3:0>

19.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40° to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +6.5V
Voltage on MCLR with respect to Vss	0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	95 mA
Maximum current into VDD pin	95 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sourced by all ports (combined)	
Maximum current sunk by all ports (combined)	

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - ∑ IOH} + ∑ {(VDD - VOH) x IOH} + ∑(VOL x IOL).
2: PORTD and PORTE are not implemented in PIC16F913/916 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 19-1: PIC16F913/914/916/917/946 VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq +125°C

TABLE 19-6: **COMPARATOR SPECIFICATIONS**

Standard	Operating	Conditions	(unless	otherwise stated)	
otuniaura	oporating	oonantiono	(annooo		

Operating Temperature	-40°C ≤ TA ≤ +125°C
-----------------------	---------------------

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Symbol	Characteristics		Min.	Тур†	Max.	Units	Comments
CM01	Vos	Input Offset Voltage		_	± 5.0	± 10	mV	(VDD - 1.5)/2
CM02	Vсм	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55			dB	
CM04*	Trt	Response Time	Falling		150	600	ns	(NOTE 1)
			Rising	—	200	1000	ns	
CM05*	Тмс2coV	Comparator Mode Change to Output Valid				10	μs	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 19-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Co	nditions (unless otherwise stated)
Operating temperature	-40°C < Ta < +125°C

Param No.	Symbol	Characteristics	Min.	Тур†)† Max. Unit		Comments		
CV01*	CLSB	Step Size ⁽²⁾	—	Vdd/24 Vdd/32		V V	Low Range (VRR = 1) High Range (VRR = 0)		
CV02*	CACC	Absolute Accuracy	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)		
CV03*	CR	Unit Resistor Value (R)	—	2k	-	Ω			
CV04*	CST	Settling Time ⁽¹⁾	_	_	10	μs			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 8.10 "Comparator Voltage Reference" for more information.

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V						
Sym.	Cł	Min.	Typ†	Max. (85°C)	Max. (125°C)	Units	Conditions	
VPLVD	PLVD	LVDL<2:0> = 001	1.900	2.0	2.100	2.125	V	
	Voltage	LVDL<2:0> = 010	2.000	2.1	2.200	2.225	V	
		LVDL<2:0> = 011	2.100	2.2	2.300	2.325	V	
		LVDL<2:0> = 100	2.200	2.3	2.400	2.425	V	
		LVDL<2:0> = 101	3.825	4.0	4.175	4.200	V	
		LVDL<2:0> = 110	4.025	4.2	4.375	4.400	V	
		LVDL<2:0> = 111	4.425	4.5	4.675	4.700	V	
*TPLVDS	S PLVD Settling time		_	50 25			μs	VDD = 5.0V VDD = 3.0V

TABLE 19-13: PIC16F913/914/916/917/946 PLVD CHARACTERISTICS:

* These parameters are characterized but not tested

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-19: WDT PERIOD vs. VDD OVER TEMPERATURE

FIGURE 20-21: CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com