

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f917-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

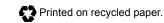
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

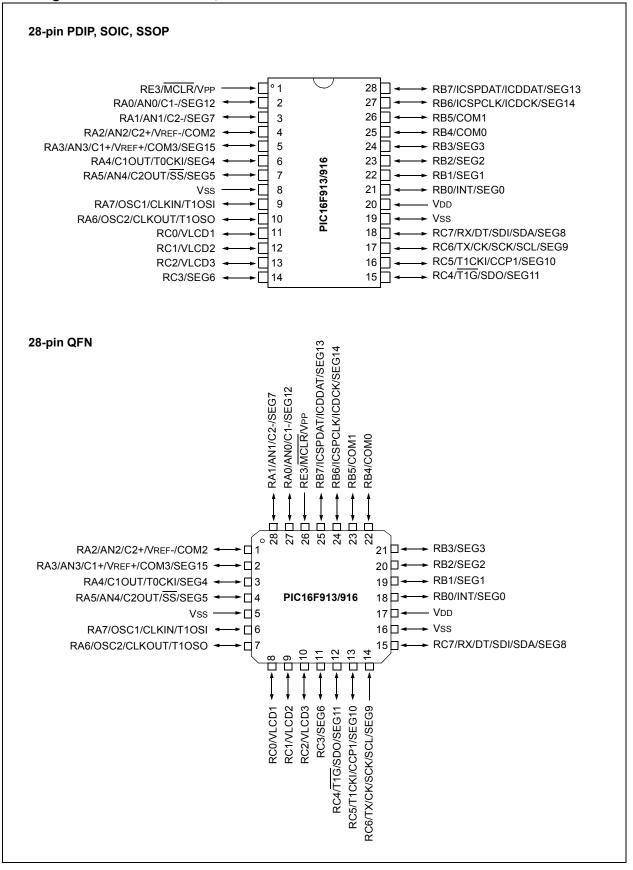
Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.


All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Diagrams - PIC16F913/916, 28-Pin

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page	
Bank	2											
100h	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (n	ot a physical	register)	xxxx xxxx	41,226	
101h	TMR0	Timer0 Mo	dule Registe	r						xxxx xxxx	99,226	
102h	PCL	Program C	ounter's (PC) Least Sign	ificant Byte					0000 0000	40,226	
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	32,226	
104h	FSR	Indirect Da	Indirect Data Memory Address Pointer									
105h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	235,227	
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	54,226	
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	145,227	
108h	LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	0000 0000	146,227	
109h	LVDCON	_	_	IRVST	LVDEN	—	LVDL2	LVDL1	LVDL0	00 -100	145,228	
10Ah	PCLATH	_	_	_	Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	40,226	
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	34,226	
10Ch	EEDATL	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDATL1	EEDATL0	0000 0000	188,228	
10Dh	EEADRL	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0	0000 0000	188,228	
10Eh	EEDATH	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	188,228	
10Fh	EEADRH	_	_	_	EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0 0000	188,228	
110h	LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	XXXX XXXX	147,228	
111h	LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	XXXX XXXX	147,228	
112h	LCDDATA2 ⁽²⁾	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	XXXX XXXX	147,228	
113h	LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	XXXX XXXX	147,228	
114h	LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	XXXX XXXX	147,228	
115h	LCDDATA5 ⁽²⁾	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	xxxx xxxx	147,228	
116h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	147,228	
117h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	147,228	
118h	LCDDATA8 ⁽²⁾	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	147,228	
119h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	147,228	
I1Ah	LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	147,228	
11Bh	LCDDATA11 ⁽²⁾	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	XXXX XXXX	147,228	
11Ch	LCDSE0 ⁽³⁾	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	147,228	
11Dh	LCDSE1 ⁽³⁾	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	147,228	
11Eh	LCDSE2(2,3)	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	147,228	
11Fh	—	Unimpleme	ented								_	

TABLE 2-3: PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: -= Unimplemented locations read as '<u>o</u>', <u>u</u> = unchanged, <u>x</u> = unknown, <u>q</u> = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: PIC16F914/917 and PIC16F946 only.

3: This register is only initialized by a POR or BOR reset and is unchanged by other Resets.

2.2.2.8 PCON Register

The Power Control (PCON) register contains flag bits (see Table 16-2) to differentiate between a:

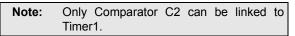
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the software enable of the BOR.

The PCON register bits are shown in Register 2-8.

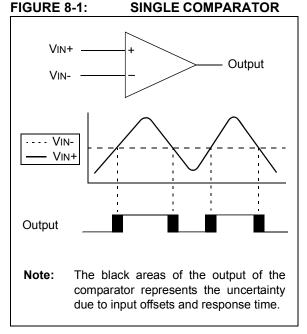
REGISTER 2-8: PCON: POWER CONTROL REGISTER

U-0	U-0	U-0	R/W-1	U-0	U-0	R/W-0	R/W-x
—	—	_	SBOREN	_	—	POR	BOR
bit 7							bit 0


r										
Legend:										
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'						
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7-5	Unimplem	ented: Read as 'o'								
	Unimplemented: Read as '0'									
bit 4	bit 4 SBOREN: Software BOR Enable bit ⁽¹⁾									
	1 = BOR enabled									
	0 = BOR di	sabled								
bit 3-2	Unimplem	ented: Read as '0'								
bit 1	POR: Powe	er-on Reset Status bit								
	1 = No Pov	ver-on Reset occurred								
	0 = A Powe	er-on Reset occurred (mus	t be set in software after a Po	wer-on Reset occurs)						
bit 0	BOR: Brow	n-out Reset Status bit								
	1 = No Bro	wn-out Reset occurred								
	0 = A Brow	n-out Reset occurred (mus	st be set in software after a Po	ower-on Reset or Brown-out Reset						
	occurs									
		,								

Note 1: Set BOREN<1:0> = 01 in the Configuration Word register for this bit to control the $\overline{\text{BOR}}$.

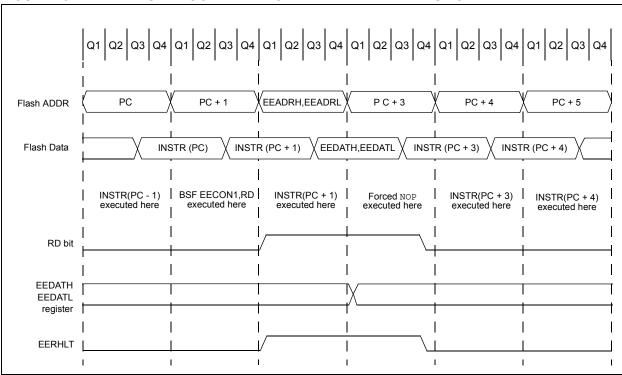
8.0 COMPARATOR MODULE


Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The Analog Comparator module includes the following features:

- Dual comparators
- Multiple comparator configurations
- Comparator outputs are available internally/externally
- Programmable output polarity
- · Interrupt-on-change
- · Wake-up from Sleep
- Timer1 gate (count enable)
- Output synchronization to Timer1 clock input
- Programmable voltage reference

8.1 Comparator Overview

A comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.



This device contains two comparators as shown in Figure 8-2 and Figure 8-3. The comparators are not independently configurable.

	R/W-0	R/C-0	R/W-1	R/W-0	0 R/W-0	R/W-1	R/W-1
LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0
bit 7							bit
Legend:							
R = Readab		W = Writable b	it		nplemented bit, r		
C = Only cle		'1' = Bit is set		'0' = Bit i	s cleared	x = Bit is unkr	nown
-n = Value a	at POR						
			.,				
bit 7) Driver Enable b					
		er module is ena er module is disa					
bit 6		Driver Enable i		e bit			
		er module is disa	•				
		er module is ena					
L:4 F							
DIT 5	WERR: LOD	Write Failed Err	זומיזכ				
bit 5	1 = LCDDAT	Ax register writ		e WA bit o	of the LCDPS re	egister = 0 (must	be cleared i
DIT 5	1 = LCDDAT software	Ax register writ		e WA bit o	of the LCDPS re	egister = 0 (must	be cleared i
	1 = LCDDAT software 0 = No LCD v	Ax register writ) write error	en while the		of the LCDPS re	egister = 0 (must	be cleared i
	1 = LCDDAT software 0 = No LCD v VLCDEN: LC	Ax register writ) write error D Bias Voltage	en while the		of the LCDPS re	egister = 0 (must	be cleared i
	1 = LCDDAT software 0 = No LCD V VLCDEN: LC 1 = VLCD pir	Ax register writ) write error	en while the		of the LCDPS re	egister = 0 (must	be cleared i
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir	Ax register writ) write error D Bias Voltage I is are enabled	en while the		of the LCDPS re	egister = 0 (must	be cleared i
bit 4	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81	Ax register writ) write error D Bias Voltage I is are enabled is are disabled ock Source Selec 192	en while the		of the LCDPS re	egister = 0 (must	be cleared i
bit 4	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC	Ax register writ write error D Bias Voltage I as are enabled as are disabled ock Source Selec 192 (Timer1)/32	en while the		of the LCDPS re	egister = 0 (must	be cleared i
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC 1x = LFINTO	Ax register writ write error D Bias Voltage I as are enabled as are disabled bock Source Selec 192 (Timer1)/32 SC (31 kHz)/32	Pins Enable		of the LCDPS re	egister = 0 (must	be cleared i
bit 4	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC 1x = LFINTO	Ax register writ write error D Bias Voltage I as are enabled as are disabled ock Source Selec 192 (Timer1)/32	Pins Enable		of the LCDPS re	egister = 0 (must	be cleared i
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Ax register writ write error D Bias Voltage as are enabled as are disabled pock Source Selec (92 (Timer1)/32 SC (31 kHz)/32 Commons Sele	Pins Enable	bit	of the LCDPS re um Number of F		
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC 1x = LFINTO	Ax register writ write error D Bias Voltage I as are enabled as are disabled bock Source Selec 192 (Timer1)/32 SC (31 kHz)/32	Pins Enable	bit Maxim		Pixels	be cleared i Bias
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Ax register writ write error D Bias Voltage as are enabled as are disabled pock Source Selec (92 (Timer1)/32 SC (31 kHz)/32 Commons Sele	Pins Enable Ct bits	bit Maxim 913/916	um Number of F	Pixels	
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = FOSC/81 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Ax register write write error D Bias Voltage Ins are enabled as are disabled bock Source Select 192 (Timer1)/32 SC (31 kHz)/32 Commons Select Multiplex	Pins Enable Ct bits	Maxim 913/916 6	um Number of F PIC16F914/91	Pixels 7 PIC16F946	Bias
bit 4 bit 3-2	1 = LCDDAT software 0 = No LCD v VLCDEN: LC 1 = VLCD pir 0 = VLCD pir CS<1:0>: Clc 00 = Fosc/81 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00	Ax register writ write error D Bias Voltage I as are enabled as are disabled ock Source Selec (92 (Timer1)/32 SC (31 kHz)/32 Commons Sele Multiplex Static (COM0)	Pins Enable of bits PIC16FS	Maxim 913/916 6 2	um Number of F PIC16F914/917 24	Pixels 7 PIC16F946 42	Bias

REGISTER 10-1: LCDCON: LIQUID CRYSTAL DISPLAY CONTROL REGISTER

Note 1: On PIC16F913/916 devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

FIGURE 13-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

TABLE 13-1: SUMMARY OF ASSOCIATED REGISTERS WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
EEADRH	_	_	_	EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0 0000	0 0000
EEADRL	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0	0000 0000	0000 0000
EECON1	EEPGD	_	—		WRERR	WREN	WR	RD	0 x000	q000
EECON2	EEPROM C	ontrol Regist	er 2 (not a pł	nysical registe	er)					
EEDATH	_	-	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
EEDATL	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDATL1	EEDATL0	0000 0000	0000 0000

 $\label{eq:logarder} \begin{array}{ll} \mbox{Legend:} & x \mbox{=} unknown, \mbox{u} \mbox{=} unknown, \mbox{=} unknown, \mbox{=} unknown, \mbox{=} unknown, \mbox{=} unknown, \mbox{=} unknown, \mbox{$

REGISTER 14-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾	
bit 7							bit (
Logondy								
Legend: R = Readable b	it	W = Writable bit		U = Unimpleme	ented bit, read as	'0'		
-n = Value at PC		'1' = Bit is set		'0' = Bit is clear		x = Bit is unkno	wn	
bit 7		Collision Detect bit UF register is writ		till transmitting the	e previous word (I	nust be cleared i	n software)	
bit 6	In SPI mode: 1 = A new byt data in SS transmittin tion (and t 0 = No overflo In I ² C [™] mode: 1 = A byte is to Transmit r	received while the node. SSPOV mu	e the SSPBUI flow can only o etting overflow tiated by writin SSPBUF reg	occur in Slave mode . In Master mode ng to the SSPBU gister is still holdi	ode. The user mu e, the overflow bit F register. Ing the previous	st read the SSPE is not set since e	BUF, even if only each new recep	
bit 5	 0 = No overflow SSPEN: Synchronous Serial Port Enable bit <u>In SPI mode:</u> 1 = Enables serial port and configures SCK, SDO and SDI as serial port pins 0 = Disables serial port and configures these pins as I/O port pins <u>In I²C mode:</u> 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins 							
bit 4	CKP : Clock Po In SPI mode:	or clock is a high le or clock is a low le	evel (Microwire	e default)		, output		
	1 = Enable cloc) (Used to er	sure data setun	time)			
bit 3-0	$\begin{array}{l} \textbf{SSPM<3:0>: S} \\ 0000 = SPI Ma \\ 0001 = SPI Ma \\ 0010 = SPI Ma \\ 0011 = SPI Ma \\ 0100 = SPI Sla \\ 0101 = SPI Sla \\ 0101 = I^2 C Sla \\ 0111 = I^2 C Sla \\ 0001 = Reserv \\ 1001 = Reserv \\ 1010 = Reserv \\ 1011 = I^2 C Firr \\ 1000 = Reserv \\ 1011 = Reserv \\ 1011 = Reserv \\ 1101 = Re$	ynchronous Seria ister mode, clock ister mode, clock ister mode, clock ister mode, clock = ive mode, clock = ive mode, clock = ve mode, clock = ve mode, clock = ive mode, clo	Port Mode Si = Fosc/4 = Fosc/16 = Fosc/64 = TMR2 outpu SCK pin. <u>SS</u> SCK pin. <u>SS</u> dress ddress Master mode	elect bits t/2 pin control enable pin control disabl (slave IDLE) rt and Stop bit int	ed. ed. SS can be us terrupts enabled			

NOTES:

16.0 SPECIAL FEATURES OF THE CPU

The PIC16F91X/946 has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving features and offer code protection.

These features are:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Oscillator Selection
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™]

The PIC16F91X/946 has two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can use the Power-up Timer to provide at least a 64 ms Reset. With these three functions-on-chip, most applications need no external Reset circuitry.

The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through:

- · External Reset
- Watchdog Timer Wake-up
- An interrupt

Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost, while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 16-1).

TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)										
Register	Address	Power-on Reset	 MCLR Reset WDT Reset Brown-out Reset⁽¹⁾ 	 Wake-up from Sleep through interrupt Wake-up from Sleep through WDT time-out 						
LVDCON	109h	00 -100	00 -100	uu -uuu						
EEDATL	10Ch	0000 0000	0000 0000	uuuu uuuu						
EEADRL	10Dh	0000 0000	0000 0000	սսսս սսսս						
EEDATH	10Eh	00 0000	0000 0000	սսսս սսսս						
EEADRH	10Fh	0 0000	0000 0000	սսսս սսսս						
LCDDATA0	110h	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LCDDATA1	111h	xxxx xxxx	սսսս սսսս	սսսս սսսս						
LCDDATA2 ⁽⁶⁾	112h	xxxx xxxx	սսսս սսսս	uuuu uuuu						
LCDDATA3	113h	xxxx xxxx	սսսս սսսս	uuuu uuuu						
LCDDATA4	114h	xxxx xxxx	սսսս սսսս	uuuu uuuu						
LCDDATA5 ⁽⁶⁾	115h	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LCDDATA6	116h	xxxx xxxx	սսսս սսսս	սսսս սսսս						
LCDDATA7	117h	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LCDDATA8 ⁽⁶⁾	118h	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LCDDATA9	119h	xxxx xxxx	սսսս սսսս	սսսս սսսս						
LCDDATA10	11Ah	XXXX XXXX	սսսս սսսս	սսսս սսսս						
LCDDATA11 ⁽⁶⁾	11Bh	xxxx xxxx	սսսս սսսս	սսսս սսսս						
LCDSE0	11Ch	0000 0000	սսսս սսսս	uuuu uuuu						
LCDSE1	11Dh	0000 0000	սսսս սսսս	սսսս սսսս						
LCDSE2 ⁽⁶⁾	11Eh	0000 0000	սսսս սսսս	սսսս սսսս						
TRISF ⁽⁷⁾	185h	1111 1111	1111 1111	uuuu uuuu						
TRISG ⁽⁷⁾	187h	11 1111	11 1111	uu uuuu						
PORTF ⁽⁷⁾	188h	xxxx xxxx	0000 0000	uuuu uuuu						
PORTG ⁽⁷⁾	189h	xx xxxx	00 0000	uu uuuu						
LCDDATA12 ⁽⁷⁾	190h	xxxx xxxx	սսսս սսսս	uuuu uuuu						
LCDDATA13 ⁽⁷⁾	191h	xxxx xxxx	սսսս սսսս	սսսս սսսս						
LCDDATA14 ⁽⁷⁾	192h	xx	uu	uu						
LCDDATA15 ⁽⁷⁾	193h	xxxx xxxx	uuuu uuuu	uuuu uuuu						
LCDDATA16 ⁽⁷⁾	194h	xxxx xxxx	uuuu uuuu	uuuu uuuu						
LCDDATA17 ⁽⁷⁾	195h	xx	uu	uu						
LCDDATA18 ⁽⁷⁾	196h	xxxx xxxx	սսսս սսսս	uuuu uuuu						
LCDDATA19 ⁽⁷⁾	197h	xxxx xxxx	uuuu uuuu	uuuu uuuu						
LCDDATA20 ⁽⁷⁾	198h	xx	uu	uu						
LCDDATA21 ⁽⁷⁾	199h	xxxx xxxx	սսսս սսսս	uuuu uuuu						

TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

- 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).
- **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- 4: See Table 16-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

- **6:** PIC16F914/917 and PIC16F946 only.
- 7: PIC16F946 only.

16.9 In-Circuit Debugger

When the debug bit in the Configuration Word register is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. See Table 16-9 for more detail.

Note: The user's application must have the circuitry required to support ICD functionality. Once the ICD circuitry is enabled, normal device pin functions on RB6/ICSPCLK/ICDCK/SEG14 and RB7/ICSPDAT/ICDDAT/SEG13 will not be usable. The ICD circuitry uses these pins for communication with the ICD2 external debugger.

For more information, see "*Using MPLAB*[®] *ICD 2*" (DS51265), available on Microchip's web site (www.microchip.com).

16.9.1 ICD PINOUT

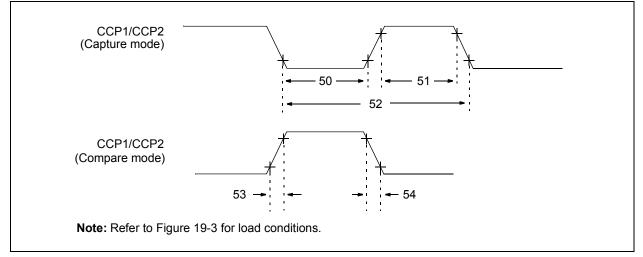
The devices in the PIC16F91X/946 family carry the circuitry for the In-Circuit Debugger on-chip and on existing device pins. This eliminates the need for a separate die or package for the ICD device. The pinout for the ICD device is the same as the devices (see **Section 1.0 "Device Overview"** for complete pinout and pin descriptions). Table 16-9 shows the location and function of the ICD related pins on the 28 and 40-pin devices.

TABLE 16-9:	PIC16F91X/946-ICD PIN DESCRIPTIONS

	Pin Numbers							
PDIP		TQFP	Name	Туре	Pull-up	Description		
PIC16F914/917	PIC16F913/916	PIC16F946						
40	28	24	ICDDATA	TTL	—	In Circuit Debugger Bidirectional data		
39	27	23	ICDCLK	ST	_	In Circuit Debugger Bidirectional clock		
1	1	36	MCLR/VPP	HV	_	Programming voltage		
11,32	20	10, 19, 38, 51	Vdd	Р	_	Power		
12,31	8,19	9, 20, 41, 56	Vss	Р	_	Ground		
_	—	26	AVdd	Р	_	Analog power		
_	_	25	AVss	Р	_	Analog ground		

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, P = Power, HV = High Voltage

TABLE 19-8: PIC16F913/914/916/917/946 A/D CONVERTER (ADC) CHARACTERISTICS


	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
AD01	NR	Resolution	_	—	10 bits	bit						
AD02	EIL	Integral Error	_	_	±1	LSb	VREF = 5.12V					
AD03	Edl	Differential Error	-	—	±1	LSb	No missing codes to 10 bits VREF = 5.12V					
AD04	EOFF	Offset Error	_	_	±1	LSb	VREF = 5.12V					
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V					
AD06 AD06A	Vref	Reference Voltage ⁽¹⁾	2.2 2.7	_	Vdd Vdd	V	Absolute minimum to ensure 1 LSb accuracy					
AD07	VAIN	Full-Scale Range	Vss		VREF	V						
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	_	10	kΩ						
AD09*	IREF	VREF Input Current ⁽¹⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.					
			—		50	μA	During A/D conversion cycle.					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.

FIGURE 19-13: CAPTURE/COMPARE/PWM TIMINGS

TABLE 19-12: CAPTURE/COMPARE/PWM (CCP) REQUIREMENTS

Param. No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions	
50*	TccL	CCPx	CCPx No Prescaler		0.5Tcy + 5	—	—	ns	
	in	input low time	With Prescaler	3.0-5.5V	10	—	—	ns	
				2.0-5.5V	20	—		ns	
51*	51* TCCH CCPx		No Prescaler	0.5Tcy + 5	—	_	ns		
	input high time	input high time	With Prescaler	3.0-5.5V	10	-	—	ns	
				2.0-5.5V	20	—	_	ns	
52*	TCCP	CCPx input period	bd		<u>3Tcy + 40</u> N	_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCPx output fall	time	3.0-5.5V	—	10	25	ns	
				2.0-5.5V	—	25	50	ns	
54*	TccF	CCPx output fall time		3.0-5.5V	_	10	25	ns	
				2.0-5.5V	_	25	45	ns	

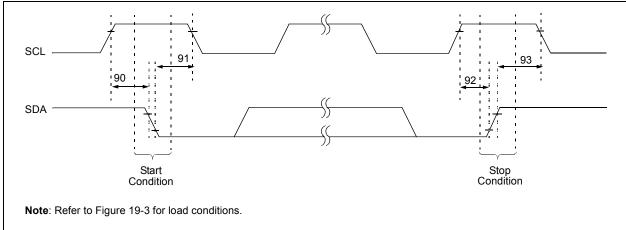
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V						
Sym.	Characteristic		Min.	Тур†	Max. (85°C)	Max. (125°C)	Units	Conditions	
Vplvd	PLVD	LVDL<2:0> = 001	1.900	2.0	2.100	2.125	V		
	Voltage	LVDL<2:0> = 010	2.000	2.1	2.200	2.225	V		
		LVDL<2:0> = 011	2.100	2.2	2.300	2.325	V		
		LVDL<2:0> = 100	2.200	2.3	2.400	2.425	V		
		LVDL<2:0> = 101	3.825	4.0	4.175	4.200	V		
		LVDL<2:0> = 110	4.025	4.2	4.375	4.400	V		
		LVDL<2:0> = 111	4.425	4.5	4.675	4.700	V		
*TPLVDS	B PLVD Settling time		—	50 25			μs	VDD = 5.0V VDD = 3.0V	

TABLE 19-13: PIC16F913/914/916/917/946 PLVD CHARACTERISTICS:

* These parameters are characterized but not tested


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

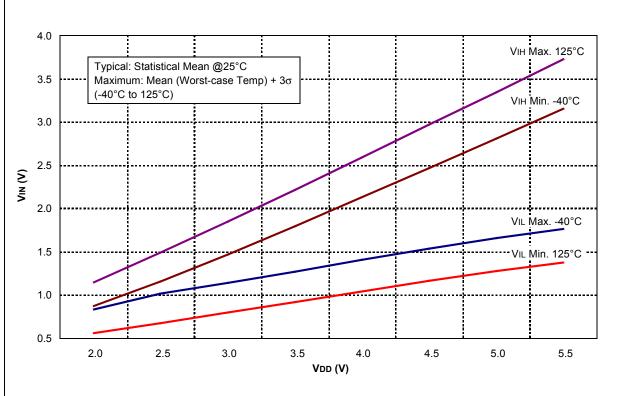

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	_	—	ns	
71*	TscH	SCK input high time (Slave mode	e)	Tcy + 20	_	—	ns	
72*	TscL	SCK input low time (Slave mode	Tcy + 20		—	ns		
73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge		100	—	—	ns	
74*	TscH2diL, TscL2diL	old time of SDI data input to SCK edge		100	_	—	ns	
75* TDO	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			2.0-5.5V	_	25	50	ns	
76*	TDOF	SDO data output fall time		—	10	25	ns	
77*	TssH2doZ	SS [↑] to SDO output high-impedance		10	_	50	ns	
78*	TscR	SCK output rise time (Master mode)	3.0-5.5V	—	10	25	ns	
			2.0-5.5V	_	25	50	ns	
79*	TscF	SCK output fall time (Master mo	de)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	3.0-5.5V	—	_	50	ns	
·			2.0-5.5V	—	_	145	ns	
81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge		Тсу	_	_	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	-	ns	

TABLE 19-14: SPI MODE REQUIREMENTS

Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

FIGURE 19-18: I²C[™] BUS START/STOP BITS TIMING

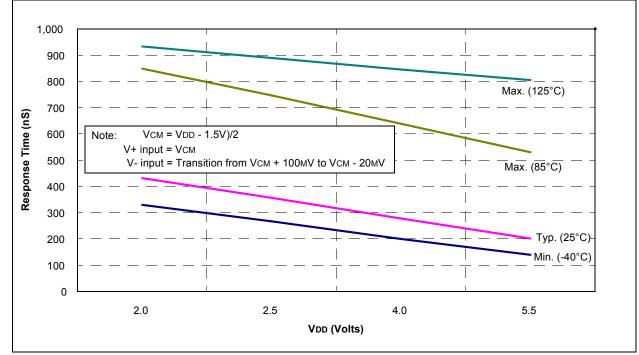
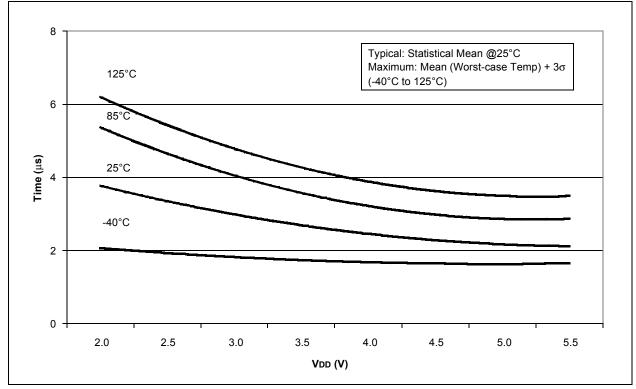
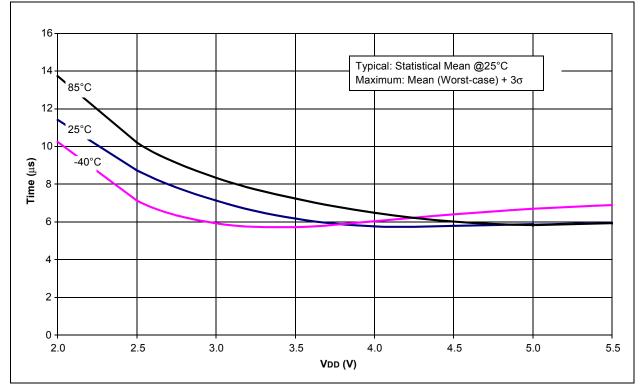
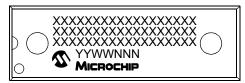




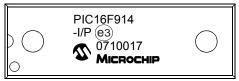
FIGURE 20-30: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

FIGURE 20-34: ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE


21.0 PACKAGING INFORMATION

21.1 Package Marking Information

28-Lead SPDIP


40-Lead PDIP

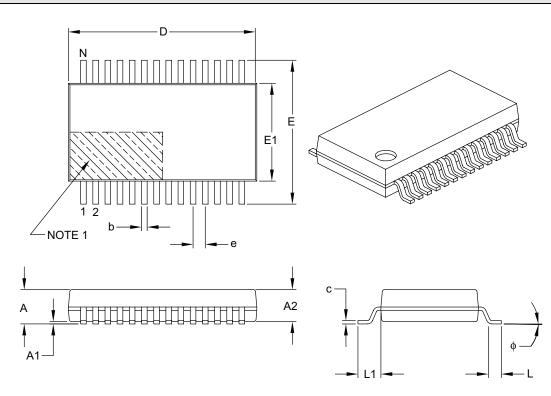
PIC16F913 -I/SP @3 0710017

Example

Example

28-Lead QFN

Example



Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.				
Note:	: In the event the full Microchip part number cannot be marked on one line, it be carried over to the next line, thus limiting the number of availa characters for customer-specific information.					

* Standard PIC[®] device marking consists of Microchip part number, year code, week code and traceability code. For PIC[®] device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	Dimension Limits			MAX			
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	_	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	Е	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B