

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f917-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Program Memory	Data N	lemory	10	10-bit A/D	LCD	CCP	Timers
	Flash (words/bytes)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	drivers)	CCP	8/16-bit
PIC16F913	4K/7K	256	256	24	5	16 ⁽¹⁾	1	2/1
PIC16F914	4K/7K	256	256	35	8	24	2	2/1
PIC16F916	8K/14K	352	256	24	5	16 ⁽¹⁾	1	2/1
PIC16F917	8K/14K	352	256	35	8	24	2	2/1
PIC16F946	8K/14K	336	256	53	8	42	2	2/1

Note 1: COM3 and SEG15 share the same physical pin on the PIC16F913/916, therefore SEG15 is not available when using 1/4 multiplex displays.

Pin Diagrams – PIC16F914/917, 40-Pin

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-4.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EEIE	ADIE RCIE TXIE		SSPIE	CCP1IE	TMR2IE	TMR1IE	
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	EEIE: EE Wr	ite Complete Interrupt Enable	e bit	
	1 = Enables t	the EE write complete interru	ıpt	
	0 = Disables	the EE write complete interru	tqu	
bit 6	ADIE: A/D Co	onverter (ADC) Interrupt Ena	ble bit	
	1 = Enables t	the ADC interrupt		
1.1. E				
DIT 5	RCIE: USAR	I Receive Interrupt Enable t	DIT	
	1 = Enables i 0 = Disables	the USART receive interrupt		
hit 4		T Transmit Interrunt Enable k	nit	
Dit 4	1 = Enables f	the USART transmit interrunt		
	0 = Disables	the USART transmit interrup	t	
bit 3	SSPIE: Sync	hronous Serial Port (SSP) In	terrupt Enable bit	
	1 = Enables t	the SSP interrupt		
	0 = Disables	the SSP interrupt		
bit 2	CCP1IE: CC	P1 Interrupt Enable bit		
	1 = Enables t	the CCP1 interrupt		
	0 = Disables	the CCP1 interrupt		
bit 1	TMR2IE: TM	R2 to PR2 Match Interrupt E	nable bit	
	1 = Enables t	the Timer2 to PR2 match interest to PR2 matc	errupt	
h it 0				
DILU		ier i Overnow interrupt Enablight	e bit	
	$\perp = Enables I$ 0 = Disables	the Timer 1 overflow interrupt	t	
		and finite i overhead interrup		

3.6 **PORTD and TRISD Registers**

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configured as an input or output. PORTD is only available on the PIC16F914/917 and PIC16F946.

EXAMPLE 3-4: INITIALIZING PORTD

BANKSEL P	ORTD	;
CLRF P	ORTD	;Init PORTD
BANKSEL T	RISD	;
MOVLW 0	FF	;Set RD<7:0> as inputs
MOVWF T	RISD	;

REGISTER 3-10: PORTD: PORTD REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 RD<7:0>: PORTD I/O Pin bits

1 = Port pin is >VIH min.

0 = Port pin is <VIL max.

REGISTER 3-11: TRISD: PORTD TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISD<7:0>: PORTD Tri-State Control bits

1 = PORTD pin configured as an input (tri-stated)

0 = PORTD pin configured as an output

9.1.1.4 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

9.1.1.5 Transmitting 9-Bit Characters

The AUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set the AUSART will shift 9 bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the 8 Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See Section 9.1.2.7 "Address Detection" for more information on the Address mode.

9.1.1.6 Asynchronous Transmission Set-up:

- Initialize the SPBRG register and the BRGH bit to 1 achieve the desired baud rate (see Section 9.2 "AUSART Baud Rate Generator (BRG)").
- Enable the asynchronous serial port by clearing 2 the SYNC bit and setting the SPEN bit.
- If 9-bit transmission is desired, set the TX9 con-3. trol bit. A set ninth data bit will indicate that the 8 Least Significant data bits are an address when the receiver is set for address detection.
- 4 Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt 5. enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- If 9-bit transmission is selected, the ninth bit 6 should be loaded into the TX9D data bit.
- 7 Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 9-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

ASYNCHRONOUS TRANSMISSION

FIGURE 9-3:

9.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (see Section 9.2 "AUSART Baud Rate Generator (BRG)").
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit of the PIR1 register will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE bit of the PIE1 register was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

9.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (see Section 9.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit of the PIR1 register will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 9-5: ASYNCHRONOUS RECEPTION

					SYNC = 0, BRGH = 0							
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_			_		_	_	_	_	_		
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	_	_	
57.6k	—	_	_	57.60k	0.00	7	57.60k	0.00	2	—	—	—
115.2k	—	—	_	—	—	_	_	_	_	_	—	

TABLE 9-5: BAUD RATES FOR ASYNCHRONOUS MODES

					2 GH = 0							
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	_	_	—
9600	_	_	_	9600	0.00	5	—	_	—	_	_	—
10417	10417	0.00	5	—	_	_	10417	0.00	2	—	_	_
19.2k	_	_	_	19.20k	0.00	2	—	_	_	_	_	_
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	_	—
115.2k	—	—	_	—	_	—	—	_	_	—	_	_

						SYNC = 0,	BRGH = :	1				
BAUD	Fosc	= 20.00	0 MHz	Fosc = 18.432 MHz		Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	—	—	—		—	—		—	—
1200	—	_	—	—	—	—	—	—	—	—	—	—
2400	—	_	_	_	_	_	_	_	_	2404	0.16	207
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	_	_

FIGURE 9-8:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin	
SREN bit	·0 [,]
RCIF bit (Interrupt)	
Read RXREG Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 9-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART I	Receive Da	ita Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	X000 000X	X000 000X
SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

REGISTER 10-3: L	CDSEn: LCD SEGMENT	ENABLE REGISTERS
------------------	--------------------	------------------

Legend:							
bit 7							bit 0
SEn	SEn	SEn	SEn	SEn	SEn	SEn	SEn
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SEn: Segment Enable bits

1 = Segment function of the pin is enabled

0 = I/O function of the pin is enabled

REGISTER 10-4: LCDDATAX: LCD DATA REGISTERS

| R/W-x |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SEGx-COMy |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SEGx-COMy: Pixel On bits

1 = Pixel on (dark)

0 = Pixel off (clear)

REGISTER 12-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES9 | ADRES8 | ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 12-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES1	ADRES0	—	—	—	—	_	_
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 7-6	ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result
bit 5-0	Reserved: Do not use.

REGISTER 12-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x	R/W-x						
—	—	—	—	—	—	ADRES9	ADRES8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	; 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result

REGISTER 12-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
ADCON1	—	ADCS2	ADCS1	ADCS0	—	—	_	—	-000	-000
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
ADRESH	A/D Result	Register Higl	h Byte						xxxx xxxx	uuuu uuuu
ADRESL	A/D Result	Register Low	/ Byte						xxxx xxxx	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	0000 0000
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
LCDSE2 ⁽¹⁾	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	uuuu uuuu
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx xxxx	uuuu uuuu
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111	1111
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	1111 1111	1111 1111

 TABLE 12-2:
 SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

15.1 Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an event occurs on pin CCPx. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value (see Figure 15-1).

15.1.1 CCPx PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCPx pin is configured as an output,			
	a write to the port can cause a capture condition.			

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in operating mode.

15.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler (see Example 15-1).

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \overline{TO}, \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ensuremath{\left[0,1\right]} \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ensuremath{\left[0,1\right]} \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Decrement f

DECF

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

19.2 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial) PIC16F913/914/916/917/946-E (Extended)

DC CH	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +8 \\ -40^\circ C \leq TA \leq +1 \end{array}$					o therwise stated) 5°C for industrial 25°C for extended
Param	Device Characteristics	Min	Turnt	Мах	Unito		Conditions
No.	Device Characteristics	win.	турт	wax.	Units	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)	—	13	19	μA	2.0	Fosc = 32 kHz
			22	30	μA	3.0	LP Oscillator mode
		—	33	60	μA	5.0	
D011*		-	180	250	μA	2.0	Fosc = 1 MHz
		—	290	400	μA	3.0	XT Oscillator mode
		—	490	650	μA	5.0	
D012		-	280	380	μA	2.0	Fosc = 4 MHz
		—	480	670	μA	3.0	XT Oscillator mode
		—	0.9	1.4	mA	5.0	
D013*		—	170	295	μA	2.0	Fosc = 1 MHz
		_	280	480	μA	3.0	EC Oscillator mode
		—	470	690	μA	5.0	
D014		—	290	450	μA	2.0	Fosc = 4 MHz
		_	490	720	μA	3.0	EC Oscillator mode
		—	0.85	1.3	mA	5.0	
D015		—	8	20	μA	2.0	Fosc = 31 kHz
		—	16	40	μA	3.0	LFINTOSC mode
		—	31	65	μA	5.0	
D016*		—	416	520	μA	2.0	Fosc = 4 MHz
		_	640	840	μA	3.0	HFINTOSC mode
		—	1.13	1.6	mA	5.0	
D017		_	0.65	0.9	mA	2.0	Fosc = 8 MHz
			1.01	1.3	mA	3.0	HFINTOSC mode
		—	1.86	2.3	mA	5.0	
D018		_	340	580	μA	2.0	Fosc = 4 MHz
		_	550	900	μA	3.0	EXTRC mode ^(*)
		—	0.92	1.4	mA	5.0	
D019		_	3.8	4.7	mA	4.5	Fosc = 20 MHz
		_	4.0	4.8	mA	5.0	HS Oscillator mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

19.5 DC Characteristics: PIC16F913/914/916/917/946-I (Industrial) PIC16F913/914/916/917/946-E (Extended)

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Sym.	Characteristic	Min. Typ† Max.		Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O Port:						
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \le VDD \le 5.5V$	
D030A			Vss	—	0.15 VDD	V	$2.0V \le VDD \le 4.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	$2.0V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	—	0.2 VDD	V		
D033		OSC1 (XT mode)	Vss	—	0.3	V		
D033A		OSC1 (HS mode)	Vss	—	0.3 VDD	V		
	Viн	Input High Voltage						
		I/O ports:		_				
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V	$2.0V \le VDD \le 5.5V$	
D042		MCLR	0.8 Vdd	_	Vdd	V		
D043		OSC1 (XT mode)	1.6	—	Vdd	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V		
D043B		OSC1 (RC mode)	0.9 Vdd		Vdd	V	(Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O ports	—	±0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μA	$VSS \leq VPIN \leq VDD$	
D063		OSC1	—	±0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration	
D070*	Ipur	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage ⁽⁵⁾						
D080		I/O ports	—		0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)	
	Vон	Output High Voltage ⁽⁵⁾						
D090		I/O ports	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V (Ind.)	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 13.0 "Data EEPROM and Flash Program Memory Control" for additional information.

5: Including OSC2 in CLKOUT mode.

19.6 Thermal Considerations

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Symbol	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance	60.0	°C/W	28-pin PDIP package			
		Junction to Ambient	80.0	°C/W	28-pin SOIC package			
			90.0	°C/W	28-pin SSOP package			
			27.5	°C/W	28-pin QFN 6x6 mm package			
			47.2	°C/W	40-pin PDIP package			
			46.0	°C/W	44-pin TQFP package			
			24.4	°C/W	44-pin QFN 8x8 mm package			
			77.0	°C/W	64-pin TQFP package			
TH02	θJC	Thermal Resistance	31.4	°C/W	28-pin PDIP package			
		Junction to Case	24.0	°C/W	28-pin SOIC package			
			24.0	°C/W	28-pin SSOP package			
			20.0	°C/W	28-pin QFN 6x6 mm package			
			24.7	°C/W	40-pin PDIP package			
			14.5	°C/W	44-pin TQFP package			
			20.0	°C/W	44-pin QFN 8x8 mm package			
			24.4	°C/W	64-pin TQFP package			
TH03	TJ	Junction Temperature	150	°C	For derated power calculations			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD (NOTE 1)			
TH06	PI/O	I/O Power Dissipation		W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	—	W	Pder = (Tj - Ta)/θja (NOTE 2, 3)			

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature.

3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power (PDER).

FIGURE 19-13: CAPTURE/COMPARE/PWM TIMINGS

TABLE 19-12: CAPTURE/COMPARE/PWM (CCP) REQUIREMENTS

Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
50*	TccL	CCPx	No Prescaler		0.5Tcy + 5	—	—	ns	
	input low time		With Prescaler	3.0-5.5V	10	—	—	ns	
				2.0-5.5V	20	—		ns	
51*	51* TCCH CCPx		No Prescaler		0.5Tcy + 5	—	_	ns	
	input high time	With Prescaler	3.0-5.5V	10	—	_	ns		
				2.0-5.5V	20	—	_	ns	
52*	TCCP	CCPx input peri	CCPx input period			_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCPx output fall time		3.0-5.5V	—	10	25	ns	
				2.0-5.5V	_	25	50	ns	
54*	TccF	CCPx output fall time		3.0-5.5V	_	10	25	ns	
				2.0-5.5V	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
100*	Тнідн	Clock high time	400 kHz mode	0.6		μs	Device must operate at a
			SSP Module	1.5Tcy	—		minimum of 10 MHz
101*	TLOW	Clock low time	400 kHz mode	1.3	—	μs	Device must operate at a
			SSP Module	1.5Tcy	_		minimum of 10 MHz
102*	Tr	SDA and SCL rise time	400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
103*	Tf	SDA and SCL fall time	400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start condition setup time	400 kHz mode	1.3	—	μs	Only relevant for Repeated Start condition
91*	THD:STA	Start condition hold time	400 kHz mode	0.6	—	μs	After this period the first clock pulse is generated
106*	THD:DAT	Data input hold time	400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	400 kHz mode	100	_	ns	(Note 2)
92*	Tsu:sto	Stop condition setup time	400 kHz mode	0.6	-	μs	
109*	ΤΑΑ	Output valid from clock	400 kHz mode	—	-	ns	(Note 1)
110*	TBUF	Bus free time	400 kHz mode	1.3	_	μs	Time the bus must be free before a new transmission can start
	Св	Bus capacitive loading		_	400	pF	

TABLE 19-16: I²C[™] BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TSU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	28				
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	Е	6.00 BSC				
Exposed Pad Width	E2	3.65 3.70 4.20				
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.20		
Contact Width	b	0.23	0.30	0.35		
Contact Length	L	0.50	0.55	0.70		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B