

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	352 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f917-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16F91X/946 devices are covered by this data sheet. They are available in 28/40/44/64-pin packages. Figure 1-1 shows a block diagram of the PIC16F913/916 device, Figure 1-2 shows a block diagram of the PIC16F914/917 device, and Figure 1-3 shows a block diagram of the PIC16F946 device. Table 1-1 shows the pinout descriptions.

Name	Function	Input Type	Output Type	Description
RE4/SEG24 ⁽³⁾	RE4	ST	CMOS	General purpose I/O.
	SEG24		AN	LCD analog output.
RE5/SEG25 ⁽³⁾	RE5	ST	CMOS	General purpose I/O.
	SEG25		AN	LCD analog output.
RE6/SEG26 ⁽³⁾	RE6	ST	CMOS	General purpose I/O.
	SEG26		AN	LCD analog output.
RE7/SEG27 ⁽³⁾	RE7	ST	CMOS	General purpose I/O.
	SEG27		AN	LCD analog output.
RF0/SEG32 ⁽³⁾	RF0	ST	CMOS	General purpose I/O.
	SEG32		AN	LCD analog output.
RF1/SEG33 ⁽³⁾	RF1	ST	CMOS	General purpose I/O.
	SEG33		AN	LCD analog output.
RF2/SEG34 ⁽³⁾	RF2	ST	CMOS	General purpose I/O.
	SEG34	_	AN	LCD analog output.
RF3/SEG35 ⁽³⁾	RF3	ST	CMOS	General purpose I/O.
	SEG35	_	AN	LCD analog output.
RF4/SEG28 ⁽³⁾	RF4	ST	CMOS	General purpose I/O.
	SEG28	_	AN	LCD analog output.
RF5/SEG29 ⁽³⁾	RF5	ST	CMOS	General purpose I/O.
	SEG29	—	AN	LCD analog output.
RF6/SEG30 ⁽³⁾	RF6	ST	CMOS	General purpose I/O.
	SEG30	_	AN	LCD analog output.
RF7/SEG31 ⁽³⁾	RF7	ST	CMOS	General purpose I/O.
	SEG31	—	AN	LCD analog output.
RG0/SEG36 ⁽³⁾	RG0	ST	CMOS	General purpose I/O.
	SEG36	_	AN	LCD analog output.
RG1/SEG37 ⁽³⁾	RG1	ST	CMOS	General purpose I/O.
	SEG37	_	AN	LCD analog output.
RG2/SEG38 ⁽³⁾	RG2	ST	CMOS	General purpose I/O.
	SEG38	_	AN	LCD analog output.
RG3/SEG39 ⁽³⁾	RG3	ST	CMOS	General purpose I/O.
	SEG39	_	AN	LCD analog output.
RG4/SEG40 ⁽³⁾	RG4	ST	CMOS	General purpose I/O.
	SEG10	_	AN	LCD analog output.
RG5/SEG41 ⁽³⁾	RG5	ST	CMOS	General purpose I/O.
	SEG41		AN	LCD analog output.
AVDD ⁽³⁾	AVDD	Р		Analog power supply for microcontroller.
AVss ⁽³⁾	AVss	Р	_	Analog ground reference for microcontroller.
Vdd	VDD	Р	_	Power supply for microcontroller.
Legend: AN = Analog in	put or output	CMOS=	CMOS	compatible input or output OD = Open Drain
TTL = TTL comp	batible input	ST =	Schmitt	Trigger input with CMOS levels P = Power

	DIC16E01V/046 DINOUT DESCRIPTIONS	
IABLE 1-1:	PIC10F91X/940 PINOUT DESCRIPTIONS	(CONTINUED)

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917 and PIC16F946.

XTAL = Crystal

2: Pins available on PIC16F914/917 and PIC16F946 only.

3: Pins available on PIC16F946 only.

HV = High Voltage

4: I²C Schmitt trigger inputs have special input levels.

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). Bits RP0 and RP1 are bank select bits.

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected
1	1	\rightarrow	Bank 3 is selected

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 256 x 8 bits in the PIC16F913/914, 352 x 8 bits in the PIC16F916/917 and 336 x 8 bits in the PIC16F946. Each register is accessed either directly or indirectly through the File Select Register (FSR) (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Tables 2-1, 2-2, 2-3 and 2-4). These registers are static RAM.

The Special Function Registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0											
00h	INDF	Addressin	g this locatio	n uses conte	nts of FSR to	address dat	a memory (I	not a physica	l register)	xxxx xxxx	41,226
01h	TMR0	Timer0 Mo	dule Registe	er						XXXX XXXX	99,226
02h	PCL	Program C	Counter's (PC	C) Least Sign	ificant Byte					0000 0000	40,226
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	32,226
04h	FSR	Indirect Da	ata Memory A	Address Poin	ter					xxxx xxxx	41,226
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	44,226
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	54,226
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	62,226
08h	PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	71,226
09h	PORTE	RE7 ⁽³⁾	RE6 ⁽³⁾	RE5 ⁽³⁾	RE4 ⁽³⁾	RE3	RE2 ⁽²⁾	RE1 ⁽²⁾	RE0 ⁽²⁾	xxxx xxxx	76,226
0Ah	PCLATH	—	—	—	Write Buffer	for upper 5	bits of Progr	am Counter		0 0000	40,226
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	34,226
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	37,226
0Dh	PIR2	OSFIF	DSFIF C2IF C1IF LCDIF — LVDIF — CCP2IF ⁽²						CCP2IF ⁽²⁾	0000 -0-0	38,226
0Eh	TMR1L	Holding Re	lolding Register for the Least Significant Byte of the 16-bit TMR1							xxxx xxxx	102,226
0Fh	TMR1H	Holding Re	egister for the	e Most Signif	icant Byte of	the 16-bit TM	/IR1			xxxx xxxx	102,226
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	105,226
11h	TMR2	Timer2 Mo	odule Registe	er						0000 0000	107,226
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	108,226
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transmi	t Register				xxxx xxxx	196,226
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	195,226
15h	CCPR1L	Capture/C	ompare/PWM	A Register 1	(LSB)					XXXX XXXX	213,226
16h	CCPR1H	Capture/C	ompare/PWN	/I Register 1	(MSB)					xxxx xxxx	213,226
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	212,226
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	131,226
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	130,226
1Ah	RCREG	USART R	eceive Data I	Register						0000 0000	128,227
1Bh ⁽²⁾	CCPR2L	Capture/C	ompare/PWM	A Register 2	(LSB)					XXXX XXXX	213,227
1Ch ⁽²⁾	CCPR2H	Capture/C	ompare/PWN	A Register 2	(MSB)					xxxx xxxx	213,227
1Dh ⁽²⁾	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	212,227
1Eh	ADRESH	A/D Resul	t Register Hig	gh Byte						xxxx xxxx	182,227
1Fh	ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	180,227

TABLE 2-1: PIC16F91X/946 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: PIC16F914/917 and PIC16F946 only, forced '0' on PIC16F913/916.

3: PIC16F946 only, forced to '0' on PIC16F91X.

3.2.1.6 RA5/AN4/C2OUT/SS/SEG5

Figure 3-6 shows the diagram for this pin. The RA5 pin is configurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator C2
- · a slave select input
- an analog output for the LCD
- · an analog input for the ADC

3.2.1.7 RA6/OSC2/CLKOUT/T1OSO

Figure 3-7 shows the diagram for this pin. The RA6 pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock output
- a Timer1 oscillator connection

3.5 PORTC and TRISC Registers

PORTC is an 8-bit bidirectional port. PORTC is multiplexed with several peripheral functions. PORTC pins have Schmitt Trigger input buffers.

All PORTC pins have latch bits (PORTC register). They will modify the contents of the PORTC latch (when written); thus, modifying the value driven out on a pin if the corresponding TRISC bit is configured for output.

EXAMPLE 3-3:

INITIALIZING PORTC

BANKSEL	PORTC	;
CLRF	PORTC	;Init PORTC
BANKSEL	TRISC	;
MOVLW	OFFh	;Set RC<7:0> as inputs
MOVWF	TRISC	;
BANKSEL	LCDCON	;
CLRF	LCDCON	;Disable VLCD<3:1>
		;inputs on RC<2:0>

REGISTER 3-8: PORTC: PORTC REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 RC<7:0>: PORTC I/O Pin bits

Lawards

1 = Port pin is >VIH min.

0 = Port pin is <VIL max.</p>

REGISTER 3-9: TRISC: PORTC TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

3.7.1 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTE pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the Comparator or the ADC, refer to the appropriate section in this data sheet.

3.7.1.1 RE0/AN5/SEG21⁽¹⁾

Figure 3-26 shows the diagram for this pin. The RE0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · an analog output for the LCD

3.7.1.2 RE1/AN6/SEG22⁽¹⁾

Figure 3-26 shows the diagram for this pin. The RE1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- an analog output for the LCD

3.7.1.3 RE2/AN7/SEG23⁽¹⁾

Figure 3-26 shows the diagram for this pin. The RE2 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog input for the ADC
- an analog output for the LCD

3.7.1.4 RE3/MCLR/VPP

Figure 3-27 shows the diagram for this pin. The RE3 pin is configurable to function as one of the following:

- · a digital input only
- as Master Clear Reset with weak pull-up
- · a programming voltage reference input

3.7.1.5 RE4/SEG24⁽²⁾

Figure 3-28 shows the diagram for this pin. The RE4/SEG24 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.7.1.6 RE5/SEG25⁽²⁾

Figure 3-28 shows the diagram for this pin. The RE5/SEG25 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.7.1.7 RE6/SEG26⁽²⁾

Figure 3-28 shows the diagram for this pin. The RE6/SEG26 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.7.1.8 RE7/SEG27⁽²⁾

Figure 3-28 shows the diagram for this pin. The RE7/SEG27 pin is configurable to function as one of the following:

- a general purpose I/O
- · an analog output for the LCD

Note 1: Pin is available on the PIC16F914/917 and PIC16F946 only.

2: Pin is available on the PIC16F946 only.

3.9 PORTG and TRISG Registers

PORTG is an 8-bit port with Schmitt Trigger input buffers. RG<5:0> are individually configured as inputs or outputs, depending on the state of the port direction. The port bits are also multiplexed with LCD segment functions. PORTG is available on the PIC16F946 only.

EXAMPLE 3-7: INITIALIZING PORTG

BANKSEL	PORTG	;
CLRF	PORTG	;Init PORTG
BANKSEL	TRISG	;
MOVLW	3Fh	;Set RG<5:0> as inputs
MOVWF	TRISG	;

REGISTER 3-16: PORTG: PORTG REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	RG5	RG4	RG3	RG2	RG1	RG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

on perienced. Read as 0

bit 5-0 **RG<5:0>**: PORTG I/O Pin bits 1 = Port pin is >VIH min. 0 = Port pin is <VIL max.

Note 1: PIC16F946 only.

REGISTER 3-17: TRISG: PORTG TRI-STATE REGISTER⁽¹⁾

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TRISG5	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TRISF<5:0>:** PORTG Tri-State Control bits 1 = PORTG pin configured as an input (tri-stated)

0 = PORTG pin configured as an output

Note 1: PIC16F946 only.

8.3 Comparator Control

The CMCON0 register (Register 8-1) provides access to the following comparator features:

- Mode selection
- · Output state
- · Output polarity
- Input switch

8.3.1 COMPARATOR OUTPUT STATE

Each comparator state can always be read internally via the associated CxOUT bit of the CMCON0 register. The comparator outputs are directed to the CxOUT pins when CM<2:0> = 110. When this mode is selected, the TRIS bits for the associated CxOUT pins must be cleared to enable the output drivers.

8.3.2 COMPARATOR OUTPUT POLARITY

Inverting the output of a comparator is functionally equivalent to swapping the comparator inputs. The polarity of a comparator output can be inverted by setting the CxINV bits of the CMCON0 register. Clearing CxINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 8-1.

TABLE 8-1: OUTPUT STATE VS. INPUT CONDITIONS

Input Conditions	CxINV	CxOUT
VIN- > VIN+	0	0
VIN- < VIN+	0	1
VIN- > VIN+	1	1
VIN- < VIN+	1	0

Note: CxOUT refers to both the register bit and output pin.

8.3.3 COMPARATOR INPUT SWITCH

The inverting input of the comparators may be switched between two analog pins or an analog input pin and and the fixed voltage reference in the following modes:

- CM<2:0> = 001 (Comparator C1 only)
- CM<2:0> = 010 (Comparators C1 and C2)
- CM<2:0> = 101 (Comparator C2 only)

In the above modes, both pins remain in Analog mode regardless of which pin is selected as the input. The CIS bit of the CMCON0 register controls the comparator input switch.

8.4 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 19.0 "Electrical Specifications"** for more details.

8.5 Comparator Interrupt Operation

The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusive-or gate (see Figure 8-2 and Figure 8-3). One latch is updated with the comparator output level when the CMCON0 register is read. This latch retains the value until the next read of the CMCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. The mismatch condition will persist, holding the CxIF bit of the PIR2 register true, until either the CMCON0 register is read or the comparator output returns to the previous state.

Note:	A write operation to the CMCON0 register							
	will also clear the mismatch condition							
	because all writes include a read							
	operation at the beginning of the write							
	cycle.							

Software will need to maintain information about the status of the comparator output to determine the actual change that has occurred.

The CxIF bit of the PIR2 register is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CxIE bit of the PIE2 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CxIF bit of the PIR2 register will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON0. This will end the mismatch condition. See Figures 8-6 and 8-7
- b) Clear the CxIF interrupt flag.

A persistent mismatch condition will preclude clearing the CxIF interrupt flag. Reading CMCON0 will end the mismatch condition and allow the CxIF bit to be cleared.

9.1.1.4 TSR Status

FIGURE 9-3:

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

9.1.1.5 Transmitting 9-Bit Characters

The AUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set the AUSART will shift 9 bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the 8 Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See Section 9.1.2.7 "Address Detection" for more information on the Address mode.

9.1.1.6 Asynchronous Transmission Set-up:

- Initialize the SPBRG register and the BRGH bit to 1 achieve the desired baud rate (see Section 9.2 "AUSART Baud Rate Generator (BRG)").
- Enable the asynchronous serial port by clearing 2 the SYNC bit and setting the SPEN bit.
- If 9-bit transmission is desired, set the TX9 con-3. trol bit. A set ninth data bit will indicate that the 8 Least Significant data bits are an address when the receiver is set for address detection.
- 4 Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt 5. enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- If 9-bit transmission is selected, the ninth bit 6 should be loaded into the TX9D data bit.
- 7 Load 8-bit data into the TXREG register. This will start the transmission.

ASYNCHRONOUS TRANSMISSION

10.8 LCD Waveform Generation

LCD waveforms are generated so that the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. The net DC voltage across any pixel should be zero.

The COM signal represents the time slice for each common, while the SEG contains the pixel data.

The pixel signal (COM-SEG) will have no DC component and it can take only one of the two rms values. The higher rms value will create a dark pixel and a lower rms value will create a clear pixel.

As the number of commons increases, the delta between the two rms values decreases. The delta represents the maximum contrast that the display can have. The LCDs can be driven by two types of waveform: Type-A and Type-B. In Type-A waveform, the phase changes within each common type, whereas in Type-B waveform, the phase changes on each frame boundary. Thus, Type-A waveform maintains 0 VDc over a single frame, whereas Type-B waveform takes two frames.

- Note 1: If Sleep has to be executed with LCD Sleep disabled (LCDCON<SLPEN> is '1'), then care must be taken to execute Sleep only when VDc on all the pixels is '0'.
 - 2: When the LCD clock source is Fosc/8192, if Sleep is executed, irrespective of the LCDCON<SLPEN> setting, the LCD goes into Sleep. Thus, take care to see that VDC on all pixels is '0' when Sleep is executed.

Figure 10-6 through Figure 10-16 provide waveforms for static, half-multiplex, one-third-multiplex and quarter-multiplex drives for Type-A and Type-B waveforms.

TABLE 14-4:	SUMMARY OF REGISTERS	ASSOCIATED	WITH I ² C [™]	OPERATION
				•••••••••

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	0000 0000
PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IF	TMR1IF	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the SSP module. **Note 1:** Maintain these bits clear.

15.2 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCPx module may:

- Toggle the CCPx output.
- · Set the CCPx output.
- · Clear the CCPx output.
- Generate a Special Event Trigger.
- · Generate a Software Interrupt.

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register.

All Compare modes can generate an interrupt.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

- Clear TMR1H and TMR1L registers.
- NOT set interrupt flag bit TMR1IF of the PIR1 register.
- Set the GO/DONE bit to start the ADC conversion.

15.2.1 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force									
	the CCPx compare output latch to the									
	default low level. This is not the PORT I/O									
	data latch.									

15.2.2 TIMER1 MODE SELECTION

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

15.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

15.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

Resets Timer1

• Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode (see the CCPxCON register).

The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

- Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMRxIF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin. Since the CCPx pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCPx pin output driver.

Note:	Clearing	the	CCPxCON	register	will
	relinquish	CCP	x control of th	пе ССРх ј	oin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.3.7** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 15-2) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT

TABLE 19-8: PIC16F913/914/916/917/946 A/D CONVERTER (ADC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD01	NR	Resolution	—		10 bits	bit			
AD02	EIL	Integral Error	—		±1	LSb	VREF = 5.12V		
AD03	Edl	Differential Error			±1	LSb	No missing codes to 10 bits VREF = 5.12V		
AD04	EOFF	Offset Error		_	±1	LSb	VREF = 5.12V		
AD07	Egn	Gain Error		—	±1	LSb	VREF = 5.12V		
AD06 AD06A	Vref	Reference Voltage ⁽¹⁾	2.2 2.7	—	Vdd Vdd	V	Absolute minimum to ensure 1 LSb accuracy		
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V			
AD08	Zain	Recommended Impedance of Analog Voltage Source		_	10	kΩ			
AD09*	IREF	VREF Input Current ⁽¹⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.		
			—		50	μA	During A/D conversion cycle.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.

TABLE 19-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions					
120	ТскH2рт V	<u>SYNC XMIT (Master and Slave)</u> Clock high to data-out valid	3.0-5.5V	—	80	ns					
			2.0-5.5V	_	100	ns					
121	TCKRF	Clock out rise time and fall time (Master mode)	3.0-5.5V	—	45	ns					
			2.0-5.5V	—	50	ns					
122	TDTRF	Data-out rise time and fall time	3.0-5.5V	_	45	ns					
			2.0-5.5V	—	50	ns					

FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions					
125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns						
126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns						

FIGURE 20-10: IDD vs. VDD (LP MODE)

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B