

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	8
Number of Macrocells	32
Number of Gates	1000
Number of I/O	32
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/isplsi-2032ve-180lt48

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ispLSI® 2032VE Device Datasheet

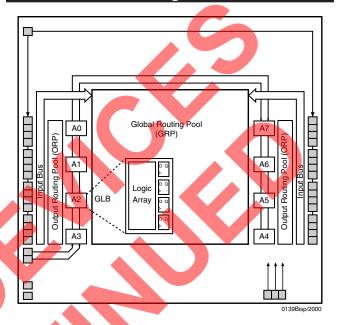
June 2010

Select Devices Discontinued!

Product Change Notification (PCN) #09-10 has been issued to discontinue select devices in this data sheet.

The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status.

Product Line	Ordering Part Number	Product Status	Reference PCN
	ispLSI 2032VE-110LJ44		
	ispLSI 2032VE-135LJ44		
	ispLSI 2032VE-180LJ44		
	ispLSI 2032VE-225LJ44		
	ispLSI 2032VE-110LT44		
	ispLSI 2032VE-135LT44		
	ispLSI 2032VE-180LT44		
	ispLSI 2032VE-225LT44	Active / Orderable	
	ispLSI 2032VE-300LT44		
	ispLSI 2032VE-180LT44I		
	ispLSI 2032VE-110LT48		
	ispLSI 2032VE-135LT48		
	ispLSI 2032VE-180LT48		
	ispLSI 2032VE-225LT48		
ispLSI 2032VE	ispLSI 2032VE-300LT48		
	ispLSI 2032VE-110LB49		
	ispLSI 2032VE-135LB49		
	ispLSI 2032VE-180LB49	Discontinued	PCN#09-10
	ispLSI 2032VE-225LB49		
	ispLSI 2032VE-300LB49		
	ispLSI 2032VE-110LTN44		
	ispLSI 2032VE-135LTN44		
	ispLSI 2032VE-180LTN44		
	ispLSI 2032VE-300LTN44		
	ispLSI 2032VE-180LTN44I	Active / Orderable	
	ispLSI 2032VE-110LTN48		
	ispLSI 2032VE-135LTN48		
	ispLSI 2032VE-180LTN48		
	ispLSI 2032VE-300LTN48		


ispLSI® 2032VE

3.3V In-System Programmable High Density SuperFAST™ PLD

Features

- SuperFAST HIGH DENSITY IN-SYSTEM PROGRAMMABLE LOGIC
- 1000 PLD Gates
- 32 I/O Pins, Two Dedicated Inputs
- 32 Registers
- High Speed Global Interconnect
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- 100% Functional, JEDEC and Pinout Compatible with ispLSI 2032V Devices
- 3.3V LOW VOLTAGE 2032 ARCHITECTURE
- Interfaces With Standard 5V TTL Devices
- HIGH PERFORMANCE E²CMOS[®] TECHNOLOGY
- fmax = 300 MHz Maximum Operating Frequency
- tpd = 3.0 ns Propagation Delay
- Electrically Erasable and Reprogrammable
- Non-Volatile
- 100% Tested at Time of Manufacture
- Unused Product Term Shutdown Saves Power
- IN-SYSTEM PROGRAMMABLE
 - 3.3V In-System Programmability Using Boundary Scan Test Access Port (TAP)
 - Open-Drain Output Option for Flexible Bus Interface Capability, Allowing Easy Implementation of Wired-OR or Bus Arbitration Logic
 - Increased Manufacturing Yields, Reduced Time-to-Market and Improved Product Quality
 - Reprogram Soldered Devices for Faster Prototyping
- 100% IEEE 1149.1 BOUNDARY SCAN TESTABLE
- THE EASE OF USE AND FAST SYSTEM SPEED OF PLDS WITH THE DENSITY AND FLEXIBILITY OF FPGAS
 - Enhanced Pin Locking Capability
 - Three Dedicated Clock Input Pins
- Synchronous and Asynchronous Clocks
- Programmable Output Slew Rate Control
- Flexible Pin Placement
- Optimized Global Routing Pool Provides Global Interconnectivity
- Lead-Free Package Options

Functional Block Diagram

Description


The ispLSI 2032VE is a High Density Programmable Logic Device that can be used in both 3.3V and 5V systems. The device contains 32 Registers, 32 Universal I/O pins, two Dedicated Input Pins, three Dedicated Clock Input Pins, one dedicated Global OE input pin and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 2032VE features in-system programmability through the Boundary Scan Test Access Port (TAP) and is 100% IEEE 1149.1 Boundary Scan Testable. The ispLSI 2032VE offers non-volatile reprogrammability of the logic, as well as the interconnect to provide truly reconfigurable systems.

The basic unit of logic on the ispLSI 2032VE device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1 .. A7 (see Figure 1). There are a total of eight GLBs in the ispLSI 2032VE device. Each GLB is made up of four macrocells. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any GLB on the device.

Functional Block Diagram

Figure 1. ispLSI 2032VE Functional Block Diagram

The device also has 32 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, output or bidirectional I/O pin with 3-state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise. Device pins can be safely driven to 5 Volt signal levels to support mixed-voltage systems.

Eight GLBs, 32 I/O cells, two dedicated inputs and two ORPs are connected together to make a Megablock (see Figure 1). The outputs of the eight GLBs are connected to a set of 32 universal I/O cells by the ORPs. Each ispLSI 2032VE device contains one Megablock.

The GRP has as its inputs the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew.

Clocks in the ispLSI 2032VE device are selected using the dedicated clock pins. Three dedicated clock pins (Y0, Y1, Y2) or an asynchronous clock can be selected on a GLB basis. The asynchronous or Product Term clock can be generated in any GLB for its own clock.

Programmable Open-Drain Outputs

In addition to the standard output configuration, the outputs of the ispLSI 2032VE are individually programmable, either as a standard totem-pole output or an open-drain output. The totem-pole output drives the specified Voh and Vol levels, whereas the open-drain output drives only the specified Vol. The Voh level on the open-drain output depends on the external loading and pull-up. This output configuration is controlled by a programmable fuse. The default configuration when the device is in bulk erased state is the totem-pole configuration. The open-drain/totem-pole option is selectable through the Lattice design tools.

Absolute Maximum Ratings 1

Supply Voltage V_{cc} -0.5 to +5.4V

Input Voltage Applied -0.5 to +5.6V

Off-State Output Voltage Applied -0.5 to +5.6V

Storage Temperature -65 to +150°C

Case Temp. with Power Applied -55 to 125°C

Max. Junction Temp. (T_{-I}) with Power Applied ... 150°C

DC Recommended Operating Condition

SYMBOL		PARAMETER			MIN.	MAX.	UNITS
Vcc	Cupply Voltage	Commercial	$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$		3.0	3.6	V
VCC	Supply Voltage	Industrial	$T_A = -40^{\circ}C \text{ to } + 85^{\circ}$	°C	3.0	3.6	V
V IL	Input Low Voltage				V _{SS} - 0.5	0.8	V
V IH	Input High Voltage				2.0	5.25	V

Table 2-0005/2032VE

Capacitance (T_A=25°C, f=1.0 MHz)

SYMBOL		3		TYPICAL	UNITS	TEST CONDITIONS		
C ₁	Dedicated	Input Capacit	ance			8	pf	$V_{CC} = 3.3V, V_{IN} = 0.0V$
C ₂	I/O Capaci	tance				6	pf	$V_{CC} = 3.3V, V_{I/O} = 0.0V$
C ₃	Clock Cap	acitance				10	pf	$V_{CC} = 3.3V, V_{Y} = 0.0V$

Table 2-0006/2032VE

Erase Reprogram Specifications

	PARA	/ET	ER	MINIMUM	MAXIMUM	UNITS
Erase/Re	program Cycles			10,000	_	Cycles

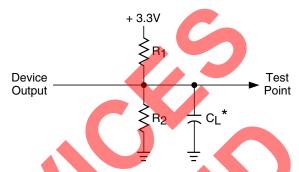
Table 2-0008A/2032VE

^{1.} Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Switching Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Time 10% to 90%	≤ 1.5 ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
Output Load	See Figure 2

3-state levels are measured 0.5V from steady-state active level.


Table 2-0003/2032VE

Output Load Conditions (see Figure 2)

	TEST CONDITION	R1	R2	CL
Α		316Ω	348Ω	35pF
В	Active High	8	348Ω	35pF
В	Active Low	316Ω	348Ω	35pF
	Active High to Z at V _{OH} -0.5V	∞	348Ω	5pF
С	Active Low to Z at V _{OL} +0.5V	316Ω	348Ω	5pF

Table 2-0004A/2032V

Figure 2. Test Load

*CL includes Test Fixture and Probe Capacitance.

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER	CONDITION		MIN.	TYP. ³	MAX.	UNITS
V OL	Output Low Voltage	I _{OL} = 8 mA		1	_	0.4	V
V OH	Output High Voltage	I _{OH} = -4 mA		2.4	-	-	٧
lı.	Input or I/O Low Leakage Current	$0V \le V_{IN} \le V_{IL}(Max.)$		_	_	-10	μΑ
IIH	Input or I/O High Leakage Current	$(V_{CC} - 0.2)V \le V_{IN} \le V_{CC}$		_	_	10	μΑ
		$V_{CC} \le V_{IN} \le 5.25V$		-	_	10	μΑ
IIL-isp	BSCAN Input Low Leakage Current	$0V \leq V_{IN} \leq V_{IL}$		-	-	-150	μΑ
IIL-PU	I/O Active Pull-Up Current	$0V \leq V_{IN} \leq V_{IL}$		_	-	-150	μΑ
los ¹	Output Short Circuit Current	$V_{CC} = 3.3V, V_{OUT} = 0.5V$		_	-	-100	mA
ICC ^{2, 4, 5}	Operating Power Supply Current	$V_{IL} = 0.0V, V_{IH} = 3.0V$ -3	300/-225	_	80	_	mA
		f _{CLOCK} = 1MHz	thers	_	65	_	mA

- 1. One output at a time for a maximum duration of one second. V_{OUT} = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested.
- 2. Measured using two 16-bit counters.
- 3. Typical values are at V_{CC} = 3.3V and T_A = 25°C.
- Maximum I_{CC} varies widely with specific device configuration and operating frequency. Refer to Power Consumption section
 of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate
 maximum I_{CC}.
- 5. Unused inputs at $V_{IL} = 0V$.

External Timing Parameters

Over Recommended Operating Conditions

PARAMETER	TEST ³	#	DESCRIPTION ¹	-3	00	-2	25	UNITS
PARAMETER	COND.	#	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	UNITS
t pd1	Α	1	Data Propagation Delay, 4PT Bypass, ORP Bypass	-	3.0	-	4.0	ns
t pd2	Α	2	Data Propagation Delay		4.5	-	6.0	ns
f max	Α	3	Clock Frequency with Internal Feedback ²	300	-4	225	_	MHz
f max (Ext.)	_	4	Clock Frequency with External Feedback $(\frac{1}{tsu^2 + tco1})$	208		154	-	MHz
f max (Tog.)	_	5	Clock Frequency, Max. Toggle	333	/-	250		MHz
t su1	_	6	GLB Reg. Setup Time before Clock, 4 PT Bypass	2.0	_	2.5		ns
t co1	Α	7	GLB Reg. Clock to Output Delay, ORP Bypass	/ –	2.0	1-6	3.0	ns
t h1	_	8	GLB Reg. Hold Time after Clock, 4 PT Bypass	0.0	7	0.0		ns
t su2	_	9	GLB Reg. Setup Time before Clock	2.8	_	3.5		ns
t co2	Α	10	GLB Reg. Clock to Output Delay	-	2.5		4.0	ns
t h2	_	11	GLB Reg. Hold Time after Clock	0.0	-	0.0	1	ns
t r1	Α	12	Ext. Reset Pin to Output Delay, ORP Bypass	-	4.5	4	5.0	ns
trw1	_	13	Ext. Reset Pulse Duration	3.0)	3.5	Ш	ns
t ptoeen	В	14	Input to Output Enable		5.0	1	7.0	ns
t ptoedis	С	15	Input to Output Disable	-	5.0	3	7.0	ns
t goeen	В	16	Global OE Output Enable	-	3.0	Ŋ	3.5	ns
t goedis	С	17	Global OE Output Disable	_	3.0	-	3.5	ns
t wh	_	18	External Synchronous Clock Pulse Duration, High	1.5	_	2.0	_	ns
twl	_	19	External Synchronous Clock Pulse Duration, Low	1.5	_	2.0	_	ns

1. Unless noted otherwise, all parameters use a GRP load of 4, 20 PTXOR path, ORP and Y0 clock.

Table 2-0030A/2032VE

2. Standard 16-bit counter using GRP feedback.

3. Reference Switching Test Conditions section.

External Timing Parameters

Over Recommended Operating Conditions

DADAMETED	TEST ³	ш	DESCRIPTION ¹	-1	80	-13	35	-1	10	UNITS
PARAMETER	COND.	#	DESCRIPTION ¹	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
t pd1	Α	1	Data Propagation Delay, 4PT Bypass, ORP Bypass	_	5.0	-	7.5		10.0	ns
t pd2	Α	2	Data Propagation Delay	_	7.5	1	10.0		13.0	ns
f max	Α	3	Clock Frequency with Internal Feedback ²	180	-	135	_	111	_	MHz
f max (Ext.)	_	4	Clock Frequency with External Feedback $\left(\frac{1}{tsu2 + tco1}\right)$	118	-	100		77.0	_	MHz
f max (Tog.)	_	5	Clock Frequency, Max. Toggle	200	_	167	_	125	_	MHz
t su1	_	6	GLB Reg. Setup Time before Clock, 4 PT Bypass	3.0	-	4.0	_	5.5		ns
t co1	Α	7	GLB Reg. Clock to Output Delay, ORP Bypass		4.0	_	4.5	_	5.0	ns
t h1	_	8	GLB Reg. Hold Time after Clock, 4 PT Bypass	0.0		0.0	7	0.0	-	ns
t su2	_	9	GLB Reg. Setup Time before Clock	4.0	-	5.5		7.5		ns
t co2	Α	10	GLB Reg. Clock to Output Delay	_	5.0	1	5.5	-/	6.5	ns
t h2	_	11	GLB Reg. Hold Time after Clock	0.0	_	0.0	-	0.0	_	ns
t r1	Α	12	Ext. Reset Pin to Output Delay, ORP Bypass	_	6.0	-	9.0	_	12.5	ns
t rw1	_	13	Ext. Reset Pulse Duration	4.0	_	5.0	7	6.5	_	ns
t ptoeen	В	14	Input to Output Enable	-	10.0		12.0	_	14.5	ns
t ptoedis	С	15	Input to Output Disable	-	10.0	1	12.0	_	14.5	ns
t goeen	В	16	Global OE Output Enable	-	5.0	_	6.0	_	7.0	ns
t goedis	С	17	Global OE Output Disable	-	5.0	_	6.0	_	7.0	ns
t wh	_	18	External Synchronous Clock Pulse Duration, High	2.5	_	3.0	_	4.0	_	ns
twl	_	19	External Synchronous Clock Pulse Duration, Low	2.5	_	3.0	_	4.0	_	ns

1. Unless noted otherwise, all parameters use a GRP load of 4, 20 PTXOR path, ORP and Y0 clock.

Table 2-0030B/2032VE

2. Standard 16-bit counter using GRP feedback.

3. Reference Switching Test Conditions section.

Internal Timing Parameters¹

Over Recommended Operating Conditions

	# ²	DECORIDE	-3	00	-2	25	
PARAMETER	#-	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	UNITS
Inputs							
t io	20	Input Buffer Delay		0.4		0.6	ns
t din	21	Dedicated Input Delay	-/	1.0		1.3	ns
GRP			Y		•		
t grp	22	GRP Delay	_	0.6	_	0.7	ns
GLB							
t 4ptbpc	23	4 Product Term Bypass Path Delay (Combinatorial)	_	0.9	_	1.2	ns
t 4ptbpr	24	4 Product Term Bypass Path Delay (Registered)	_	1.1	1	1.2	ns
t 1ptxor	25	1 Product Term/XOR Path Delay	-	1.9		2.2	ns
t 20ptxor	26	20 Product Term/XOR Path Delay		1.9		2.2	ns
t xoradj	27	XOR Adjacent Path Delay ³	_	1.9		2.2	ns
t gbp	28	GLB Register Bypass Delay	-	0.0	_	0.0	ns
t gsu	29	GLB Register Setup Time before Clock	0.5	7	0.8	. M	ns
t gh	30	GLB Register Hold Time after Clock	1.5	_	1.7	F	ns
t gco	31	GLB Register Clock to Output Delay	_	0.3	- '	0.7	ns
t gro	32	GLB Register Reset to Output Delay	_	1.3		1.3	ns
t ptre	33	GLB Product Term Reset to Register Delay	_	2.5	-	3.2	ns
t ptoe	34	GLB Product Term Output Enable to I/O Cell Delay	_	3.0	-	4.2	ns
t ptck	35	GLB Product Term Clock Delay	0.4	2.3	0.5	2.8	ns
ORP					G	2	
t orp	36	ORP Delay	_	0.6	-11	1.3	ns
t orpbp	37	ORP Bypass Delay	_	0.1	-	0.3	ns
Outputs					0		
t ob	38	Output Buffer Delay	_	1.0	_3	1.2	ns
tsl	39	Output Slew Limited Delay Adder	_	2.0	2	2.0	ns
t oen	40	I/O Cell OE to Output Enabled	_	1.0	tu	1.5	ns
todis	41	I/O Cell OE to Output Disabled	_	1.0	5	1.5	ns
t goe	42	Global Output Enable	_	2.0	3	2.0	ns
Clocks							
t gy0	43	Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)	0.6	0.6	0.8	0.8	ns
t gy1/2	44	Clock Delay, Y1 or Y2 to Global GLB Clock Line	0.8	0.8	1.0	1.0	ns
Global Reset							
t gr	45	Global Reset to GLB	_	2.1	_	2.2	ns
						able 2-00	

1. Internal Timing Parameters are not tested and are for reference only.

2. Refer to Timing Model in this data sheet for further details.

3. The XOR adjacent path can only be used by hard macros.

Table 2-0036A/2032VE v.0.1

Internal Timing Parameters¹

Over Recommended Operating Conditions

	# ²	DECORIDEION	-1	80	-13	35	-11	10	UNITS
PARAMETER	#	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
Inputs									
t io	20	Input Buffer Delay	_	0.8		0.8		1.3	ns
t din	21	Dedicated Input Delay	_	1.5	-	1.7		2.5	ns
GRP					X				
t grp	22	GRP Delay	-	0.7	1	0.9	_	1.2	ns
GLB					1				
t 4ptbpc	23	4 Product Term Bypass Path Delay (Combinatorial)	-	1.8	/ -	3.9	<	4.8	ns
t 4ptbpr	24	4 Product Term Bypass Path Delay (Registered)	-	2.1	_	2.9	_	3.4	ns
t 1ptxor	25	1 Product Term/XOR Path Delay	_	3.1	-	4.4		5.4	ns
t 20ptxor	26	20 Product Term/XOR Path Delay	_	3.1	4	4.4		5.4	ns
t xoradj	27	XOR Adjacent Path Delay ³	_	3.1	1	4.4		5.4	ns
t gbp	28	GLB Register Bypass Delay	_	0.2	1	1.0	_	1.4	ns
t gsu	29	GLB Register Setup Time before Clock	0.9	-	1.1		1.4	_	ns
t gh	30	GLB Register Hold Time after Clock	2.1	1	2.9	ı	4.1	_	ns
t gco	31	GLB Register Clock to Output Delay	_	0.8	\	0.9	_	1.0	ns
t gro	32	GLB Register Reset to Output Delay	1	1.3	I	1.8	_	2.7	ns
t ptre	33	GLB Product Term Reset to Register Delay	_	4.0	I	6.1	_	7.1	ns
t ptoe	34	GLB Product Term Output Enable to I/O Cell Delay	_	5.7	-	6.9	_	8.6	ns
t ptck	35	GLB Product Term Clock Delay	1.4	3.6	1.7	4.1	2.5	4.4	ns
ORP									
t orp	36	ORP Delay	_	1.4	ı	1.5	_	1.9	ns
t orpbp	37	ORP Bypass Delay	_	0.4	ı	0.5	_	0.9	ns
Outputs									
t ob	38	Output Buffer Delay	_	1.3	-	1.4	_	1.8	ns
tsl	39	Output Slew Limited Delay Adder	_	2.0	-	2.0	_	2.0	ns
t oen	40	I/O Cell OE to Output Enabled	_	2.8	I	3.4	_	3.4	ns
todis	41	I/O Cell OE to Output Disabled	_	2.8	_	3.4	_	3.4	ns
t goe	42	Global Output Enable	_	2.2	_	2.6	_	3.6	ns
Clocks									
t gy0	43	Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)	1.5	1.5	1.7	1.7	1.8	1.8	ns
t gy1/2	44	Clock Delay, Y1 or Y2 to Global GLB Clock Line	1.7	1.7	1.9	1.9	2.0	2.0	ns
Global Reset									
t gr	45	Global Reset to GLB	_	3.0	_	5.3	_	7.1	ns

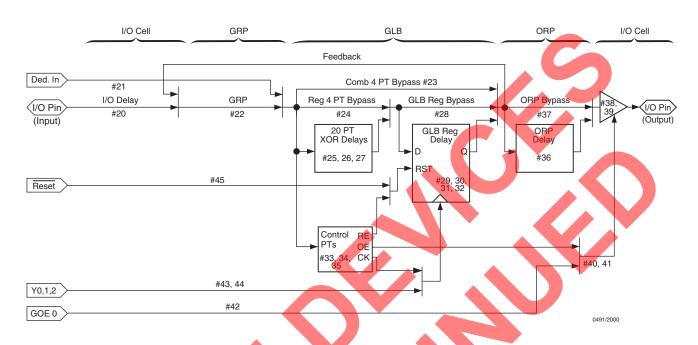

^{1.} Internal Timing Parameters are not tested and are for reference only.

Table 2-0036A/2032VE

^{2.} Refer to Timing Model in this data sheet for further details.

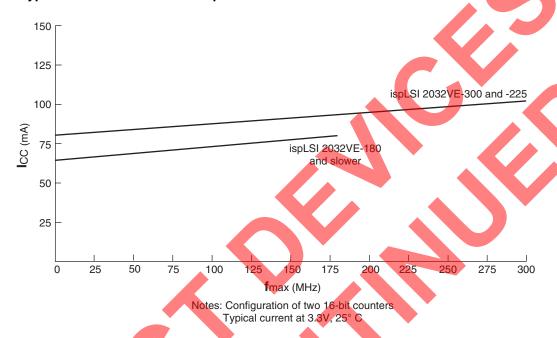
^{3.} The XOR adjacent path can only be used by hard macros.

ispLSI 2032VE Timing Model

Derivations of tsu, th and tco from the Product Term Clock

```
\begin{array}{lll} \textbf{tsu} & = \  \, \text{Logic} + \text{Reg su} - \text{Clock (min)} \\ & = \  \, (\textbf{tio} + \textbf{tgrp} + \textbf{t}20\textbf{ptxor}) + (\textbf{tgsu}) - (\textbf{tio} + \textbf{tgrp} + \textbf{tptck}(\textbf{min)}) \\ & = \  \, (\#20 + \#22 + \#26) + (\#29) - (\#20 + \#22 + \#35) \\ \textbf{2.0ns} & = \  \, (0.4 + 0.6 + 1.9) + (0.5) - (0.4 + 0.6 + 0.4) \\ \textbf{th} & = \  \, \text{Clock (max)} + \text{Reg h - Logic} \\ & = \  \, (\textbf{tio} + \textbf{tgrp} + \textbf{tptck}(\textbf{max})) + (\textbf{tgh}) - (\textbf{tio} + \textbf{tgrp} + \textbf{t}20\textbf{ptxor}) \\ & = \  \, (\#20 + \#22 + \#35) + (\#30) - (\#20 + \#22 + \#26) \\ \textbf{1.9ns} & = \  \, (0.4 + 0.6 + 2.3) + (1.5) - (0.4 + 0.6 + 1.9) \\ \textbf{tco} & = \  \, \text{Clock (max)} + \text{Reg co} + \text{Output} \\ & = \  \, (\textbf{tio} + \textbf{tgrp} + \textbf{tptck}(\textbf{max})) + (\textbf{tgco}) + (\textbf{torp} + \textbf{tob}) \\ & = \  \, (\#20 + \#22 + \#35) + (\#31) + (\#36 + \#38) \\ \textbf{5.2ns} & = \  \, (0.4 + 0.6 + 2.3) + (0.3) + (0.6 + 1.0) \\ \end{array}
```

Note: Calculations are based on timing specifications for the ispLSI 2032VE-300L.


Table 2-0042/2032VE

Power Consumption

Power consumption in the ispLSI 2032VE device depends on two primary factors: the speed at which the device is operating and the number of product terms

used. Figure 3 shows the relationship between power and operating speed.

Figure 3. Typical Device Power Consumption vs fmax

ICC can be estimated for the ispLSI 2032VE using the following equation:

For ispLSI 2032VE-300 and -225: $I_{CC}(mA) = 4.5 + (\# \text{ of PTs} * 1.29) + (\# \text{ of nets} * Fmax * 0.0068)$

For ispLSI 2032VE-180 and slower: ICC(mA) = 4.5 + (# of PTs * 1.05) + (# of nets * Fmax * 0.0068)

Where

of PTs = Number of product terms used in design

of nets = Number of signals used in device

Max freq = Highest clock frequency to the device (in MHz)

The ICC estimate is based on typical conditions (VCC = 3.3V, room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified.

0127A/2032VE

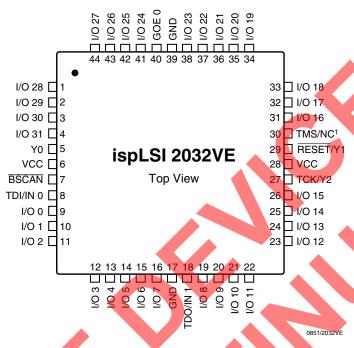
Signal Descriptions

Signal Name	Description
GOE 0	Global Output Enable input pin
Y0	Dedicated Clock input. This clock input is connected to one of the clock inputs of all the GLBs in the device.
RESET/Y1	This pin performs two functions: (1) Active Low (0) Reset pin which resets all of the registers in the device. (2) Dedicated Clock input.
BSCAN	Input – Dedicated in-system programming Boundary Scan enable input pin. This pin is brought low to enable the programming mode. The TMS, TDI, TDO and TCK controls become active.
TDI/IN 0	Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as a serial data input pin to load programming data into the device. (2) When BSCAN is high, it functions as a dedicated input pin.
TMS/NC ¹	Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as a mode control pin for the Boundary Scan state machine. (2) When BSCAN is high, this pin is not to be connected to any active signals, VCC or GND.
TDO/IN 1	Output/Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as an output pin to read serial shift register data. (2) When BSCAN is high, it functions as a dedicated input pin.
TCK/Y2	Input – This pin performs two functions. (1) When BSCAN is logic low, it functions as a clock pin for the Boundary Scan state machine. (2) When BSCAN is high, it functions as a Dedicated Clock input.
GND	Ground (GND)
VCC	Vcc
NC¹	No Connect
I/O	Input/Output pins – These are the general purpose I/O pins used by the logic array.

Signal Locations

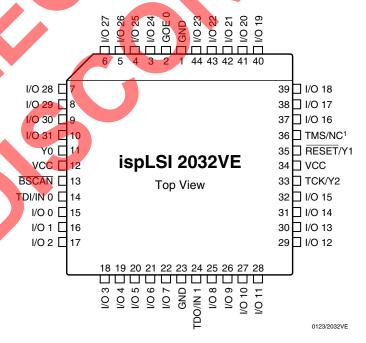
Signal	44-Pin TQFP	44-Pin PLCC	48-Pin TQFP	49-Ball caBGA
GOE 0	40	2	43	A4
Y0	5	11	5	C1
RESET/Y1	29	35	31	D7
BSCAN	7	13	7	D1
TDI/IN 0	8	14	8	E2
TMS/NC1	30	36	32	C6
TDO/IN 1	18	24	19	G4
TCK/Y2	27	33	29	E7
GND	17, 39	1, 23	18, 42	C4, E4
VCC	6, 28	12, 34	6, 30	D3, D5
NC ¹		_	12, 24, 36, 48	A1, A7, D4, G1, G7

I/O Locations


Signal	al 44-Pin TQFP 44-Pin PLCC		48-Pin TQFP	49-Ball caBGA	
I/O 0 - I/O 6	9, 10, 11, 12, 13, 14, 15	15, 16, 17, 18, 19, 20, 21	9, 10, 11, 13, 14, 15, 16	E1, F2, F1, E3, F3, G2, F4	
I/O 7 - I/O 13	16, 19, 20, 21, 22, 23, 24	22, 25, 26, 27, 28, 29, 30	17, 20, 21, 22, 23, 25, 26	G3, F5, G5, F6, G6, E5, E6	
I/O 14 - I/O 20	25, 26, 31, 32, 33, 34, 35	31, 32, 37, 38, 39, 40, 41	27, 28, 33, 34, 35, 37, 38	F7, D6, C7, B6, B7, C5, B5	
I/O 21 - I/O 27	36, 37, 38, 41, 42, 43, 44	42, 43, 44, 3, 4, 5, 6	39, 40, 41, 44, 45, 46, 47	A6, B4, A5, B3, A3, B2, A2	
I/O 28 - I/O 31	1, 2, 3, 4	7, 8, 9, 10	1, 2, 3, 4	C3, C2, B1, D2	

^{1.} NC pins are not to be connected to any active signals, VCC or GND.

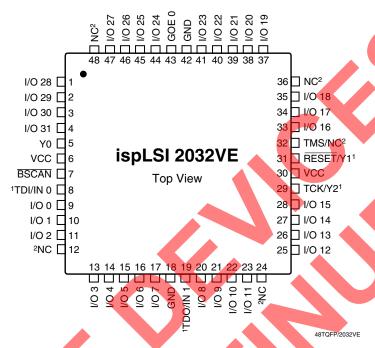
Pin Configuration


ispLSI 2032VE 44-Pin TQFP Pinout Diagram (0.8mm Lead Pitch/10.0 x 10.0mm Body Size)

1. NC pins are not to be connected to any active signals, VCC or GND.

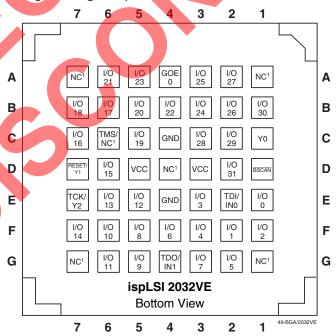
Pin Configuration

ispLSI 2032VE 44-Pin PLCC Pinout Diagram (0.5in Lead Pitch/0.65 x 0.65in Body Size)



1. NC pins are not to be connected to any active signals, VCC or GND.

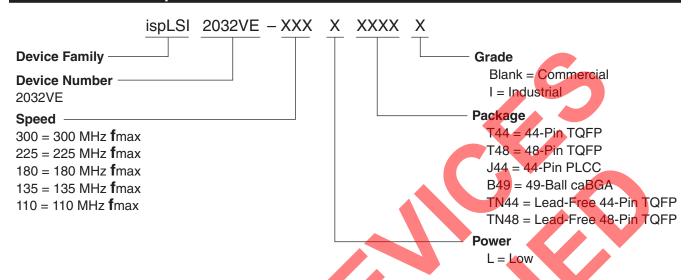
Pin Configuration


ispLSI 2032VE 48-Pin TQFP Pinout Diagram (0.5mm Lead Pitch/7.0 x 7.0mm Body Size)

- 1. Pins have dual function capability.
- 2. NC pins are not to be connected to any active signals, V_{CC} or GND.

Signal Configuration

ispLSI 2032VE 49-Ball caBGA Signal Diagram (0.8mm Lead Pitch/7.0 x 7.0mm Body Size)



1. NCs are not to be connected to any active signals, VCC or GND.

Note: Ball A1 indicator dot on top side of package.

Part Number Description

ispLSI 2032VE Ordering Information

Conventional Packaging

COMMERCIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
	300	3.0	ispLSI 2032VE-300LT44	44-Pin TQFP
	300	3.0	ispLSI 2032VE-300LT48	48-Pin TQFP
	300	3.0	ispLSI 2032VE-300LB49	49-Ball caBGA
	225	4.0	ispLSI 2032VE-225LT44*	44-Pin TQFP
	225	4.0	ispLSI 2032VE-225LT48*	48-Pin TQFP
	225	4.0	ispLSI 2032VE-225LJ44	44-Pin PLCC
	225	4.0	ispLSI 2032VE-225LB49*	49-Ball caBGA
	180	5.0	ispLSI 2032VE-180LT44	44-Pin TQFP
ispLSI	180	5.0	ispLSI 2032VE-180LT48	48-Pin TQFP
	180	5.0	ispLSI 2032VE-180LJ44	44-Pin PLCC
	180	5.0	ispLSI 2032VE-180LB49	49-Ball caBGA
	135	7.5	ispLSI 2032VE-135LT44	44-Pin TQFP
	135	7.5	ispLSI 2032VE-135LT48	48-Pin TQFP
	135	7.5	ispLSI 2032VE-135LJ44	44-Pin PLCC
	135	7.5	ispLSI 2032VE-135LB49	49-Ball caBGA
	110	10	ispLSI 2032VE-110LT44	44-Pin TQFP
	110	10	ispLSI 2032VE-110LT48	48-Pin TQFP
	110	10	ispLSI 2032VE-110LJ44	44-Pin PLCC
	110	10	ispLSI 2032VE-110LB49	49-Ball caBGA
U33//E-300 v	ecommended for	now designs		Table 2-0041A/2032

^{*2032}VE-300 recommended for new designs

Table 2-0041A/2032VE

INDUSTRIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	180	5.0	ispLSI 2032VE-180LT44I	44-Pin TQFP

Table 2-0041B/2032VE

ispLSI 2032VE Ordering Information (Cont.)

Lead-Free Packaging

COMMERCIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
	300	3.0	ispLSI 2032VE-300LTN44	Lead-Free 44-Pin TQFP
	300	3.0	ispLSI 2032VE-300LTN48	Lead-Free 48-Pin TQFP
	180	5.0	ispLSI 2032VE-180LTN44	Lead-Free 44-Pin TQFP
ispLSI	180	5.0	ispLSI 2032VE-180LTN48	Lead-Free 48-Pin TQFP
	135	7.5	ispLSI 2032VE-135LTN44	Lead-Free 44-Pin TQFP
	135	7.5	ispLSI 2032VE-135LTN48	Lead-Free 48-Pin TQFP
	110	10	ispLSI 2032VE-110LTN44	Lead-Free 44-Pin TQFP
	110	10	ispLSI 2032VE-110LTN48	Lead-Free 48-Pin TQFP

INDUSTRIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	180	5.0	ispLSI 2032VE-180LTN44I	Lead-Free 44-Pin TQFP

Revision History

Date	Version	Change Summary
_	10	Previous Lattice release.
August 2006	11	Updated for 48-pin TQFP lead-free package option.