STMicroelectronics - STM32F048C6U6 Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

ARM® Cortex®-M0

32-Bit Single-Core

48MHz

CANbus, HDMI-CEC, I2C, IrDA, LINbus, SPI, UART/USART, USB
DMA, I2S, POR, PWM, WDT
38

32KB (32K x 8)

FLASH

6K x 8

1.65V ~ 1.95V

A/D 13x12b

Internal

-40°C ~ 85°C (TA)
Surface Mount

48-UFQFN Exposed Pad
48-UFQFPN (7x7)

https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f048c6u6

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32f048c6u6-4404828
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PM0215 Contents
44.5 SysTick design hintsand tips. i, 88
4.4.6 SysTickregistermapot 89
5 Revision historyttt it 920
'S7] Doc ID 022979 Rev 1 5/91

PM0215

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

STMB32 Cortex-MO implementation. i 9
Processor Core registers. e 12
APSR, IPSR and EPSR bitassignments 13
PRIMASK register bit assignments. 15
CONTROL registerbitassignments i e 16
MmO Y A . . . et 18
Little-endian example e 21
Vectortable. e 24
Cortex-MO stack frame layout. e e 26
A RS 37
] 2 37
] 38
ROR #3. o 38
IPR register mappingo e 73

Doc ID 022979 Rev 1 7/91

The STM32 Cortex-M0 processor

PM0215

2.2

18/91

Memory model

This section describes the processor memory map, and the behavior of memory accesses.
The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 6.

Memory map

Device 511MB

Private peripheral bus 1MB

External device 1.0GB

External RAM 1.0GB

Peripheral 0.5GB

SRAM 0.5GB

Code 0.5GB

OXFFFFFFFF

0xE0100000
OXEOOFFFFF

0xE0000000
OXDFFFFFFF

0xA0000000
OX9FFFFFFF

0x60000000
OXS5FFFFFFF

0x40000000
OX3FFFFFFF

0x20000000
OX1FFFFFFF

0x00000000

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see Section 4.1: About the STM32 Cortex-MO0 core peripherals on

page 69.

Doc ID 022979 Rev 1

4

The STM32 Cortex-M0 processor PM0215

2.3

2.3.1

2.3.2

22/91

Exception model

This section describes the exception model.

Exception states

Each exception is in one of the following states:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor. An interrupt
request from a peripheral or from software can change the state of the
corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not
completed.

Note: An exception handler can interrupt the execution of another exception
handler. In this case both exceptions are in the active state.

Active and pending The exception is being serviced by the processor and there is a
pending exception from the same source.

Exception types

The exception types are:

Reset Reset is invoked on power up or warm reset. The exception model
treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts in Thread
mode from the address provided by the reset entry in the vector table.

NMI A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMls
cannot be:

® Masked or prevented from activation by any other exception
® Preempted by any exception other than Reset.

Hard fault A hard fault is an exception that occurs because of an error during
normal exception processing. Hard faults have a fixed priority of -1,
meaning they have higher priority than any exception with configurable
priority.

SVCall A supervisor call (SVC) is an exception that is triggered by the SVC
instruction. In an OS environment, applications can use SVC
instructions to access OS kernel functions and device drivers.

PendSV PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other
exception is active.

SysTick A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In an
OS environment, the processor can use this exception as system tick.

Doc ID 022979 Rev 1 IYI

PM0215

The STM32 Cortex-M0 processor

2.5.1

2.5.2

Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep
mode.

The system can generate spurious wakeup events, for example a debug operation wakes up
the processor. Therefore software must be able to put the processor back into sleep mode
after such an event. A program might have an idle loop to put the processor back to sleep
mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode (unless the
wake-up condition is true, see Wakeup from WFI or sleep-on-exit on page 29). When the
processor executes a WFI instruction it stops executing instructions and enters sleep mode.
See WFI on page 68 for more information.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value of
a one-bit event register. When the processor executes a WFE instruction, it checks the value
of the event register:

® 0: the processor stops executing instructions and enters sleep mode

® 1:the processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See WFE on page 67 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on
execution of a WFE instruction. Typically, this is because an external event signal is
asserted, or a processor in the system has executed an SEV instruction, see SEV on
page 66. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution
of an exception handler it returns to Thread mode and immediately enters sleep mode. Use
this mechanism in applications that only require the processor to run when an exception
occurs.

Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit
to 1. If an interrupt arrives that is enabled and has a higher priority than current exception
priority, the processor wakes up but does not execute the interrupt handler until the
processor sets PRIMASK to zero. For more information about PRIMASK see Exception
mask registers on page 15.

Doc ID 022979 Rev 1 29/91

The STM32 Cortex-M0 processor PM0215

2.5.3

2.5.4

30/91

Wakeup from WFE

The processor wakes up if:
@ it detects an exception with sufficient priority to cause exception entry
@ it detects an external event signal, see Section 2.5.3: The external event input

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient
priority to cause exception entry. For more information about the SCR see System control
register (SCR) on page 81.

The external event input

The processor provides an external event input signal. This signal can be generated by up
to 16 external input lines and other internal asynchronous events, configured through the
extended interrupt and event controller (EXTI).

This signal can wakeup the processor from WFE, or set the internal WFE event register to
one to indicate that the processor must not enter sleep mode on a later WFE instruction, see
Wait for event on page 29. Fore more details please refer to the STM32 reference manual,
section 4.3 Low power modes.

Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE or SEV instructions. The CMSIS provides
the following functions for these instructions:

void _ _WFE(void) // Wait for Event
void _ _WFI(void) // Wait for Interrupt
void _ SEV(void) // Send Event

4

Doc ID 022979 Rev 1

PM0215

The STM32 Cortex-MO0 instruction set

3

3.1

The STM32 Cortex-MO0 instruction set

This chapter is the reference material for the Cortex-MO0 instruction set description in a User
Guide. The following sections give general information:

Section 3.1: Instruction set summary on page 31
Section 3.2: CMSIS intrinsic functions on page 35
Section 3.3: About the instruction descriptions on page 36

Each of the following sections describes a functional group of Cortex-MO instructions.
Together they describe all the instructions supported by the Cortex-MO processor:

Section 3.4: Memory access instructions on page 41
Section 3.5: General data processing instructions on page 48
Section 3.6: Branch and control instructions on page 59

Section 3.7: Miscellaneous instructions on page 61

Instruction set summary

The processor implements a version of the thumb instruction set. Table 14 lists the
supported instructions.

In Table 14:

® Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant
Most instructions can use an optional condition code suffix

For more information on the instructions and operands, see the instruction descriptions.

Table 14. Cortex-MO instructions

Mnemonic Operands Brief description Flags Page
ADCS {Rd,} Rn, Rm Add with carry Nzcy |22 Ton
page 49

ADD{S} |{Rd,} Rn, <Rml#imm> | Add Nzcy |25 Ton
page 49

ADR Rd, label PC-relative address to register - 3.4.1.0n
page 42

ANDS {Rd,} Rn, Rm Bitwise AND N,Z 3.5.2.0n
page 51

ASRS {Rd,} Rm, <Rsl#imm> | Arithmetic shift right Nzc |353on
page 52

- 3.6.10n

B{cc} label Branch {conditionally} - page 59

Doc ID 022979 Rev 1 31/91

The STM32 Cortex-MO0 instruction set

PM0215

34/91

Table 14. Cortex-MO0 instructions

Mnemonic Operands Brief description Flags Page
SUB(S} |{Rd,} Rn, <Rml#imm> | Subtract Nzcy |2oTon
page 49

SVC #imm Supervisor call - 3.7.10 on
page 67
; 3.5.80n
SXTB Rd, Rm Sign extend byte - page 57
SXTH Rd, Rm Sign extend halfword - 3.5.8 on
page 57
TST Rn, Rm Logical AND based test N,Z 3.5.9.on
page 58
UXTB Rd, Rm Zero extend a byte - 3.5.80n
page 57
UXTH Rd, Rm Zero extend a halfword - 3.5.80n
page 57

WFE - Wait for event - 3.7.11 on
page 67

. . 3.7.120n
WFI - Wait for interrupt - page 68

Doc ID 022979 Rev 1 1S7]

The STM32 Cortex-MO0 instruction set PMO0215

3.3

3.3.1

3.3.2

3.3.3

36/91

About the instruction descriptions

The following sections give more information about using the instructions:
Operands on page 36

Restrictions when using PC or SP on page 36

Shift operations on page 36

Address alignment on page 39

PC-relative expressions on page 39

Conditional execution on page 39

Operands

An instruction operand can be:

® an ARM register,

® a constant,

® or another instruction-specific parameter.

Instructions act on the operands and often store the result in a destination register.

When there is a destination register in the instruction, it is usually specified before the
operands. Operands in some instructions are flexible in that they can either be a register or
a constant (see Shift operations).

Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the program counter (PC) or
stack pointer (SP) for the operands or destination register. See instruction descriptions for
more information.

Bit[0] of any address written to the PC with a BX, BLX or POP instruction must be 1 for
correct execution, because this bit indicates the required instruction set, and the Cortex-M0
processor only supports thumb instructions. When a BL or BLX instruction writes the value
of bit[0] into the LR it is automatically assigned the value 1.

Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed directly by the instructions ASR, LSR, LSL
and ROR. The result is written to a destination register.

The permitted shift lengths depend on the shift type and the instruction (see the individual
instruction description).

o If the shift length is 0, no shift occurs.

o Reqgister shift operations update the carry flag except when the shift length is 0.

The following sub-sections describe the various shift operations and how they affect the

carry flag. In these descriptions, Rmis the register containing the value to be shifted, and nis
the shift length.

4

Doc ID 022979 Rev 1

PM0215

The STM32 Cortex-MO0 instruction set

Note: 1
2
Note: 1
2

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Am, to the right by
n places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the
register into the left-hand n bits of the result (see Figure 10: ASR#3).

You can use the ASR operation to divide the signed value in the register Rm by 2", with the
result being rounded towards negative-infinity.

When the instruction is ASRS, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

If nis 32 or more, all the bits in the result are set to the value of bit[31] of Rm.
If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 10. ASR#3

' YY VY Flag

31 543210|:|
A

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Am, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result
to O (see Figure 11).

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is
regarded as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

If n is 32 or more, then all the bits in the result are cleared to 0.
If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 11. LSR#3

(I) (I) (I) Carry
YV ¥ Flag
31 5/4[3(2(1|0 |:|
| A 4 f | A! A f f
:________J
Doc ID 022979 Rev 1 37/91

The STM32 Cortex-MO0 instruction set PMO0215

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result
to O (see Figure 12: LSL#3 on page 38).

You can use the LSL #n operation to multiply the value in the register Rm by 2", if the value
is regarded as an unsigned integer or a two’s complement signed integer. Overflow can
occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag
is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not
affect the carry flag when used with LSL #0.

Note: 1 Ifnis 32 or more, then all the bits in the result are cleared to 0.

2 Ifnis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12. LSL#3

N |oo—
o |[e+o—
O [eo—

T FTL

t

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. It also moves the right-hand n bits of the register
into the left-hand n bits of the result (see Figure 13).

When the instruction is RORS, the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

Note: 1 Ifnis 32, then the value of the result is same as the value in BRm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

2 ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 13. ROR #3

Carry
YVY Flag
31 5143210 |:|
A A ? | A E A ? ?
[H
38/91 Doc ID 022979 Rev 1 Ly

PMO0215 The STM32 Cortex-MO0 instruction set

3.4 Memory access instructions

Table 18 shows the memory access instructions:

Table 18. Memory access instructions

Mnemonic Brief description See
ADR Load PC-relative address ADR on page 42
LDM Load multiple registers LDM and STM on page 46
LDR{type} Load register using immediate offset LDR and STR, immediate offset on page 43
LDR({type} Load register using register offset LDR and STR, register offset on page 44
LDR Load register using PC-relative address | LDR, PC-relative on page 45
LDRD Load register dual LDR and STR, immediate offset on page 43
POP Pop registers from stack PUSH and POP on page 47
PUSH Push registers onto stack PUSH and POP on page 47
STM Store multiple registers LDM and STM on page 46

STR{type} Store register using immediate offset LDR and STR, immediate offset on page 43

STR{type} Store register using register offset LDR and STR, register offset on page 44

KYI Doc ID 022979 Rev 1 41/91

PM0215

The STM32 Cortex-MO0 instruction set

3.4.4

LDR, PC-relative

Load register (literal) from memory.

Syntax
LDR Rt, label

where:
® ‘Rf is the register to load or store
® ‘labefl is a PC-relative expression (see PC-relative expressions on page 39)

Operation

Loads the register specified by Rt from the word in memory specified by label.

Restrictions

In these instructions:In these instructions, label must be within 1020 bytes of the current PC
and word aligned.

Condition flags

These instructions do not change the flags.

Examples
LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable.
LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).
Doc ID 022979 Rev 1 45/91

The STM32 Cortex-MO0 instruction set

PM0215

3.5 General data processing instructions
Table 19 shows the data processing instructions.
Table 19. Data processing instructions
Mnemonic Brief description See
ADCS Add with carry ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49
ADD(S) Add ADD({S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49
ANDS Logical AND ANDS, ORRS, EORS and BICS on page 51
ASRS Arithmetic shift right ASRS, LSLS, LSRS and RORS on page 52
BICS Bit clear ANDS, ORRS, EORS and BICS on page 51
CMN Compare negative CMP and CMN on page 53
CMP Compare CMP and CMN on page 53
EORS Exclusive OR ANDS, ORRS, EORS and BICS on page 51
LSLS Logical shift left ASRS, LSLS, LSRS and RORS on page 52
LSRS Logical shift right ASRS, LSLS, LSRS and RORS on page 52
MOV(S) Move MOV, MOVS and MVNS on page 54
MULS Multiply MULS on page 55
MVNS Move NOT MOV, MOVS and MVNS on page 54
ORRS Logical OR ANDS, ORRS, EORS and BICS on page 51
REV Reverse byte order in a word REV, REV16, and REVSH on page 56
REV16 Reverse byte order in each halfword REV, REV16, and REVSH on page 56
REVSH Rever.se byte order in bottom halfword REV, REV16, and REVSH on page 56
and sign extend
RORS Rotate right ASRS, LSLS, LSRS and RORS on page 52
RSBS Reverse subtract ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49
SBCS Subtract with carry ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49
SUBS Subtract ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49
SUBW Subtract ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49
SXTB Sign extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57
SXTH Sign extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57
UXTB Zero extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57
UXTH Zero extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57
TST Test TST on page 58
48/91 Doc ID 022979 Rev 1 1S7]

The STM32 Cortex-MO0 instruction set PMO0215

50/91

Table 20. ADCS, ADD, RSBS, SBCS and SUB operand restrictions

Ins:,r:ctl Rd Rn Rm imm Restrictions
ADCS R0O-R7 |R0-R7 RO-R7 |- Rd and Rn must specify the same register.

Rd and Rn must specify the same register.

R0O-R15|R0-R15 |RO-PC |-
Rn and Rm must not both specify PC.

ADD RO-R7 |SPorPC |- 0-1020 | Immediate value must be an integer multiple of four.
SP SP - 0-508 | Immediate value must be an integer multiple of four.
RO-R7 |RO-R7 - 0-7 -

ADDS RO-R7 |RO-R7 - 0-255 | Rd and Rn must specify the same register.

RO-R7 |RO-R7 RO-R7 |- -

RSBS RO-R7 |RO-R7 - - -

SBCS R0O-R7 |R0-R7 RO-R7 |- Rd and Rn must specify the same register.

SUB SP SP - 0-508 |Immediate value must be an integer multiple of four.
RO-R7 |RO-R7 - 0-7 -

SUBS RO-R7 |RO-R7 - 0-255 |Rd and Rn must specify the same register.

RO-R7 |RO-R7 RO-R7 |- -

Examples

Multiword arithmetic examples

Specific example: 64-bit addition shows two instructions that add a 64-bit integer contained
in RO and R1 to another 64-bit integer contained in R2 and R3, and place the result in RO
and R1.

Specific example: 64-bit addition
ADDS RO, RO, R2 ; add the least significant words

ADCS R1, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. Specific example: 96-bit
subtraction shows instructions that subtract a 96-bit integer contained in R1, R2, and R3
from another contained in R4, R5, and R6. The example stores the result in R4, R5, and R6.

Specific example: 96-bit subtraction

SUBS R4, R4, R1 ; subtract the least significant words
SBCS R5, R5, R2 ; subtract the middle words with carry
SBCS R6, R6, R3 ; subtract the most significant words with carry

Specific example: Arithmetic negation shows the RSBS instruction used to perform a 1's
complement of a single register.

Specific example: Arithmetic negation

RSBS R7, R7, #0 ; subtract R7 from zero

4

Doc ID 022979 Rev 1

The STM32 Cortex-MO0 instruction set PMO0215

3.5.5

Note:

54/91

MOV, MOVS and MVNS

Move and move NOT.

Syntax

MOV{S} Rd, Rm
MOVS Rd, #imm
MVNS Rd, Rm
where:

® ‘S is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 39).

® ‘Rd is the destination register
® ‘Rm is aregister
® ‘imm is any value in the range 0-255

Operation

The MOV instruction copies the value of Rm into Rd.

The MOVS instruction performs the same operation as the MOV instruction, but also
updates the N and Z flags.

The MVNS instruction takes the value of Rm, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

Restrictions

In these instructions, Rd, and Rm must only specify RO-R7.

When Rd is the PC in a MOV instruction:

@ Dbit[0] of the result is ignored

® A branch occurs to the address created by forcing bit[0] of that value to 0. The T-bit
remains unmodified.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use
of a BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition flags

If S is specified, these instructions:
® Update the N and Z flags according to the result
® Do not affect the C or V flag

Example

MOVS RO, #0x000B ; Write value of 0x000B to RO, flags get updated
MOVS R1, #0x0 ; Write value of zero to R1l, flags are updated
MOV R10, R12 ; Write value in R12 to R10, flags are not updated
MOVS R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to RS8

MVNS R2, RO ; Write inverse of RO to the R2 and update flags

Doc ID 022979 Rev 1 KYI

The STM32 Cortex-MO0 instruction set PMO0215

3.7.2

62/91

CPSID CPSIE
Change processor state.

Syntax

CPSID 1
CPSIE 1

Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled
by setting PRIMASK. CPSIE cause interrupts to be enabled by clearing PRIMASK. See
Exception mask registers on page 15 for more information about these registers.

Restrictions

None

Condition flags

This instruction does not change the condition flags.

Examples

CPSID i ; Disable all interrupts except NMI (set PRIMASK)
CPSIE i ; Enable interrupts (clear PRIMASK)

4

Doc ID 022979 Rev 1

PM0215

Core peripherals

4

4.1

Core peripherals

About the STM32 Cortex-MO0 core peripherals

The address map of the Private peripheral bus (PPB) is:

Table 24. STM32 core peripheral register regions

Address

Core peripheral

Description

O0xEOOOE008-0xEOOOEOOF

System control block (SCB)

Table 32 on page 84

OxEOOOE010-0xEOOOEO1F

SysTick timer (STK)

Table 34 on page 89

OxEOOOE100-0xEOOOE4EF

Nested vectored interrupt controller
(NVIC)

Table 29 on page 76

OxEOOOEDO00-0xEOOOED3F

System control block (SCB)

Table 32 on page 84

OxEOOOEF00-0xEOOOEF03

Nested vectored interrupt controller
(NVIC)

Table 29 on page 76

In register descriptions, register type is described as follows:

® RW: Read and write.

e RO: Read-only.
® WO: Write-only.

Doc ID 022979 Rev 1

69/91

PM0215 Core peripherals

4.2.2 Interrupt set-enable register (ISER)

Address offset: 0x00
Reset value: 0x0000 0000
The ISER register enables interrupts, and shows which interrupts are enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SETENA[31:16]
rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SETENA[15:0]
rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs

Bits 31:0 SETENA: Interrupt set-enable bits.
Write:

0: No effect
1: Enable interrupt

Read:

0: Interrupt disabled

1: Interrupt enabled.
If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending,
but the NVIC never activates the interrupt, regardless of its priority.

4.2.3 Interrupt clear-enable register (ICER)

Address offset: 0x080
Reset value: 0x0000 0000
The ICER register disables interrupts, and shows which interrupts are enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CLRENA[31:16]

rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi | rc_wi

15 14 13 12 11 10 9 8 7 6 5
CLRENA[15:0]

rc_w1 | rc_wi | rc_w1 | rc_w1 | rc_wi | rc_w1 | rc_w1 | rc_w1 | rc_w1 | rc_wi | rc_wi | rc_w1 | rc_wi | rc_wi | rc_wi | rc_w1

Bits 31:0 CLRENA: Interrupt clear-enable bits.
Write:

0: No effect
1: Disable interrupt

Read:

0: Interrupt disabled
1: Interrupt enabled.

KYI Doc ID 022979 Rev 1 71/91

PM0215

Core peripherals

4.2.8

NVIC design hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the

supported access sizes.

An interrupt can enter pending state even it is disabled. Disabling an interrupt only prevents

the processor from taking that interrupt.

NVIC programming hints

Software uses the CPSIE | and CPSID I instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void _ disable_irg(void) // Disable Interrupts

void __enable_irg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 28. CMSIS functions for NVIC control

CMSIS interrupt control function Description
void NVIC_EnablelRQ(IRQn_t IRQnN) Enable IRQn
void NVIC_DisableIRQ(IRQn_t IRQnN) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN)

Return true (1) if IRQn is pending

void NVIC_SetPendinglRQ (IRQn_t IRQN)

Set IRQnN pending

void NVIC_ClearPendingIRQ (IRQn_t IRQN)

Clear IRQn pending status

void NVIC_SetPriority (IRQn_t IRQnN, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

The input parameter IRQn is the IRQ number, see Table 12: Properties of the different

exception types on page 23. For more information about these functions see the CMSIS

documentation.

Doc ID 022979 Rev 1

75/91

