
STMicroelectronics - STM32F048C6U6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M0

Core Size 32-Bit Single-Core

Speed 48MHz

Connectivity CANbus, HDMI-CEC, I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals DMA, I²S, POR, PWM, WDT

Number of I/O 38

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 6K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 1.95V

Data Converters A/D 13x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-UFQFN Exposed Pad

Supplier Device Package 48-UFQFPN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f048c6u6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32f048c6u6-4404828
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PM0215 Contents

Doc ID 022979 Rev 1 5/91

4.4.5 SysTick design hints and tips . 88

4.4.6 SysTick register map . 89

5 Revision history . 90

PM0215 List of figures

Doc ID 022979 Rev 1 7/91

List of figures

Figure 1. STM32 Cortex-M0 implementation . 9
Figure 2. Processor core registers . 12
Figure 3. APSR, IPSR and EPSR bit assignments . 13
Figure 4. PRIMASK register bit assignments. 15
Figure 5. CONTROL register bit assignments . 16
Figure 6. Memory map. 18
Figure 7. Little-endian example . 21
Figure 8. Vector table. 24
Figure 9. Cortex-M0 stack frame layout . 26
Figure 10. ASR#3 . 37
Figure 11. LSR#3. 37
Figure 12. LSL#3 . 38
Figure 13. ROR #3. 38
Figure 14. IPR register mapping . 73

The STM32 Cortex-M0 processor PM0215

18/91 Doc ID 022979 Rev 1

2.2 Memory model
This section describes the processor memory map, and the behavior of memory accesses.
The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 6. Memory map

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see Section 4.1: About the STM32 Cortex-M0 core peripherals on
page 69.

12�
���)�0
/�'

12�
���)��,"

�
��*!
��)

��,"

	�0

����������

���/��
�*
��*!
��)�3
�
����������
����������

����������
����������

��	�������
��
�������

����������
����������

����������
��
�������

����������

�5�(6

�5�(6

�5�(6

�5�(6

�5�(6

����������
�����������"6

���"67
/�'

The STM32 Cortex-M0 processor PM0215

22/91 Doc ID 022979 Rev 1

2.3 Exception model
This section describes the exception model.

2.3.1 Exception states

Each exception is in one of the following states:

2.3.2 Exception types

The exception types are:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor. An interrupt
request from a peripheral or from software can change the state of the
corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not
completed.
Note: An exception handler can interrupt the execution of another exception

handler. In this case both exceptions are in the active state.

Active and pending The exception is being serviced by the processor and there is a
pending exception from the same source.

Reset Reset is invoked on power up or warm reset. The exception model
treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts in Thread
mode from the address provided by the reset entry in the vector table.

NMI A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMIs
cannot be:

● Masked or prevented from activation by any other exception

● Preempted by any exception other than Reset.

Hard fault A hard fault is an exception that occurs because of an error during
normal exception processing. Hard faults have a fixed priority of -1,
meaning they have higher priority than any exception with configurable
priority.

SVCall A supervisor call (SVC) is an exception that is triggered by the SVC
instruction. In an OS environment, applications can use SVC
instructions to access OS kernel functions and device drivers.

PendSV PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other
exception is active.

SysTick A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In an
OS environment, the processor can use this exception as system tick.

PM0215 The STM32 Cortex-M0 processor

Doc ID 022979 Rev 1 29/91

2.5.1 Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep
mode.

The system can generate spurious wakeup events, for example a debug operation wakes up
the processor. Therefore software must be able to put the processor back into sleep mode
after such an event. A program might have an idle loop to put the processor back to sleep
mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode (unless the
wake-up condition is true, see Wakeup from WFI or sleep-on-exit on page 29). When the
processor executes a WFI instruction it stops executing instructions and enters sleep mode.
See WFI on page 68 for more information.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value of
a one-bit event register. When the processor executes a WFE instruction, it checks the value
of the event register:

● 0: the processor stops executing instructions and enters sleep mode

● 1: the processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See WFE on page 67 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on
execution of a WFE instruction. Typically, this is because an external event signal is
asserted, or a processor in the system has executed an SEV instruction, see SEV on
page 66. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution
of an exception handler it returns to Thread mode and immediately enters sleep mode. Use
this mechanism in applications that only require the processor to run when an exception
occurs.

2.5.2 Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit
to 1. If an interrupt arrives that is enabled and has a higher priority than current exception
priority, the processor wakes up but does not execute the interrupt handler until the
processor sets PRIMASK to zero. For more information about PRIMASK see Exception
mask registers on page 15.

The STM32 Cortex-M0 processor PM0215

30/91 Doc ID 022979 Rev 1

Wakeup from WFE

The processor wakes up if:

● it detects an exception with sufficient priority to cause exception entry

● it detects an external event signal, see Section 2.5.3: The external event input

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient
priority to cause exception entry. For more information about the SCR see System control
register (SCR) on page 81.

2.5.3 The external event input

The processor provides an external event input signal. This signal can be generated by up
to 16 external input lines and other internal asynchronous events, configured through the
extended interrupt and event controller (EXTI).

This signal can wakeup the processor from WFE, or set the internal WFE event register to
one to indicate that the processor must not enter sleep mode on a later WFE instruction, see
Wait for event on page 29. Fore more details please refer to the STM32 reference manual,
section 4.3 Low power modes.

2.5.4 Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE or SEV instructions. The CMSIS provides
the following functions for these instructions:

void __WFE(void) // Wait for Event

void __WFI(void) // Wait for Interrupt

void __SEV(void) // Send Event

PM0215 The STM32 Cortex-M0 instruction set

Doc ID 022979 Rev 1 31/91

3 The STM32 Cortex-M0 instruction set

This chapter is the reference material for the Cortex-M0 instruction set description in a User
Guide. The following sections give general information:

Section 3.1: Instruction set summary on page 31

Section 3.2: CMSIS intrinsic functions on page 35

Section 3.3: About the instruction descriptions on page 36

Each of the following sections describes a functional group of Cortex-M0 instructions.
Together they describe all the instructions supported by the Cortex-M0 processor:

Section 3.4: Memory access instructions on page 41

Section 3.5: General data processing instructions on page 48

Section 3.6: Branch and control instructions on page 59

Section 3.7: Miscellaneous instructions on page 61

3.1 Instruction set summary
The processor implements a version of the thumb instruction set. Table 14 lists the
supported instructions.

 In Table 14:

● Angle brackets, <>, enclose alternative forms of the operand

● Braces, {}, enclose optional operands

● The operands column is not exhaustive

● Op2 is a flexible second operand that can be either a register or a constant

● Most instructions can use an optional condition code suffix

For more information on the instructions and operands, see the instruction descriptions.

Table 14. Cortex-M0 instructions

Mnemonic Operands Brief description Flags Page

ADCS {Rd,} Rn, Rm Add with carry N,Z,C,V
3.5.1 on
page 49

ADD{S} {Rd,} Rn, <Rm|#imm> Add N,Z,C,V
3.5.1 on
page 49

ADR Rd, label PC-relative address to register -
3.4.1 on
page 42

ANDS {Rd,} Rn, Rm Bitwise AND N,Z
3.5.2 on
page 51

ASRS {Rd,} Rm, <Rs|#imm> Arithmetic shift right N,Z,C
3.5.3 on
page 52

B{cc} label Branch {conditionally} -
3.6.1 on
page 59

The STM32 Cortex-M0 instruction set PM0215

34/91 Doc ID 022979 Rev 1

SUB{S} {Rd,} Rn, <Rm|#imm> Subtract N,Z,C,V
3.5.1 on
page 49

SVC #imm Supervisor call -
3.7.10 on
page 67

SXTB Rd, Rm Sign extend byte -
3.5.8 on
page 57

SXTH Rd, Rm Sign extend halfword -
3.5.8 on
page 57

TST Rn, Rm Logical AND based test N,Z
3.5.9 on
page 58

UXTB Rd, Rm Zero extend a byte -
3.5.8 on
page 57

UXTH Rd, Rm Zero extend a halfword -
3.5.8 on
page 57

WFE - Wait for event -
3.7.11 on
page 67

WFI - Wait for interrupt -
3.7.12 on
page 68

Table 14. Cortex-M0 instructions

Mnemonic Operands Brief description Flags Page

The STM32 Cortex-M0 instruction set PM0215

36/91 Doc ID 022979 Rev 1

3.3 About the instruction descriptions
The following sections give more information about using the instructions:

● Operands on page 36

● Restrictions when using PC or SP on page 36

● Shift operations on page 36

● Address alignment on page 39

● PC-relative expressions on page 39

● Conditional execution on page 39

3.3.1 Operands

An instruction operand can be:

● an ARM register,

● a constant,

● or another instruction-specific parameter.

Instructions act on the operands and often store the result in a destination register.

When there is a destination register in the instruction, it is usually specified before the
operands. Operands in some instructions are flexible in that they can either be a register or
a constant (see Shift operations).

3.3.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the program counter (PC) or
stack pointer (SP) for the operands or destination register. See instruction descriptions for
more information.

 Bit[0] of any address written to the PC with a BX, BLX or POP instruction must be 1 for
correct execution, because this bit indicates the required instruction set, and the Cortex-M0
processor only supports thumb instructions. When a BL or BLX instruction writes the value
of bit[0] into the LR it is automatically assigned the value 1.

3.3.3 Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed directly by the instructions ASR, LSR, LSL
and ROR. The result is written to a destination register.

The permitted shift lengths depend on the shift type and the instruction (see the individual
instruction description).

● If the shift length is 0, no shift occurs.

● Register shift operations update the carry flag except when the shift length is 0.

The following sub-sections describe the various shift operations and how they affect the
carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is
the shift length.

PM0215 The STM32 Cortex-M0 instruction set

Doc ID 022979 Rev 1 37/91

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by
n places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the
register into the left-hand n bits of the result (see Figure 10: ASR#3).

You can use the ASR operation to divide the signed value in the register Rm by 2n, with the
result being rounded towards negative-infinity.

When the instruction is ASRS, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note: 1 If n is 32 or more, all the bits in the result are set to the value of bit[31] of Rm.

2 If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 10. ASR#3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result
to 0 (see Figure 11).

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is
regarded as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note: 1 If n is 32 or more, then all the bits in the result are cleared to 0.

2 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 11. LSR#3

�� � �

	���8
=)��

555

����

�� � �

	���8
=)��

555

���

����

The STM32 Cortex-M0 instruction set PM0215

38/91 Doc ID 022979 Rev 1

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result
to 0 (see Figure 12: LSL#3 on page 38).

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value
is regarded as an unsigned integer or a two’s complement signed integer. Overflow can
occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag
is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not
affect the carry flag when used with LSL #0.

 Note: 1 If n is 32 or more, then all the bits in the result are cleared to 0.

2 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 12. LSL#3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. It also moves the right-hand n bits of the register
into the left-hand n bits of the result (see Figure 13).

When the instruction is RORS, the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

 Note: 1 If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

2 ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 13. ROR #3

�� � �

	���8
=)�� 555

���

����

�� � �

	���8
=)��

555

����

PM0215 The STM32 Cortex-M0 instruction set

Doc ID 022979 Rev 1 41/91

3.4 Memory access instructions
Table 18 shows the memory access instructions:

Table 18. Memory access instructions

Mnemonic Brief description See

ADR Load PC-relative address ADR on page 42

LDM Load multiple registers LDM and STM on page 46

LDR{type} Load register using immediate offset LDR and STR, immediate offset on page 43

LDR{type} Load register using register offset LDR and STR, register offset on page 44

LDR Load register using PC-relative address LDR, PC-relative on page 45

LDRD Load register dual LDR and STR, immediate offset on page 43

POP Pop registers from stack PUSH and POP on page 47

PUSH Push registers onto stack PUSH and POP on page 47

STM Store multiple registers LDM and STM on page 46

STR{type} Store register using immediate offset LDR and STR, immediate offset on page 43

STR{type} Store register using register offset LDR and STR, register offset on page 44

PM0215 The STM32 Cortex-M0 instruction set

Doc ID 022979 Rev 1 45/91

3.4.4 LDR, PC-relative

Load register (literal) from memory.

Syntax

LDR Rt, label

where:

● ‘Rt’ is the register to load or store

● ‘label’ is a PC-relative expression (see PC-relative expressions on page 39)

Operation

Loads the register specified by Rt from the word in memory specified by label.

Restrictions

In these instructions:In these instructions, label must be within 1020 bytes of the current PC
and word aligned.

Condition flags

These instructions do not change the flags.

Examples

LDR R0, LookUpTable ; Load R0 with a word of data from an address

; labelled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).

The STM32 Cortex-M0 instruction set PM0215

48/91 Doc ID 022979 Rev 1

3.5 General data processing instructions
Table 19 shows the data processing instructions.

Table 19. Data processing instructions

Mnemonic Brief description See

ADCS Add with carry
ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49

ADD(S) Add
ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49

ANDS Logical AND ANDS, ORRS, EORS and BICS on page 51

ASRS Arithmetic shift right ASRS, LSLS, LSRS and RORS on page 52

BICS Bit clear ANDS, ORRS, EORS and BICS on page 51

CMN Compare negative CMP and CMN on page 53

CMP Compare CMP and CMN on page 53

EORS Exclusive OR ANDS, ORRS, EORS and BICS on page 51

LSLS Logical shift left ASRS, LSLS, LSRS and RORS on page 52

LSRS Logical shift right ASRS, LSLS, LSRS and RORS on page 52

MOV(S) Move MOV, MOVS and MVNS on page 54

MULS Multiply MULS on page 55

MVNS Move NOT MOV, MOVS and MVNS on page 54

ORRS Logical OR ANDS, ORRS, EORS and BICS on page 51

REV Reverse byte order in a word REV, REV16, and REVSH on page 56

REV16 Reverse byte order in each halfword REV, REV16, and REVSH on page 56

REVSH
Reverse byte order in bottom halfword
and sign extend

REV, REV16, and REVSH on page 56

RORS Rotate right ASRS, LSLS, LSRS and RORS on page 52

RSBS Reverse subtract
ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49

SBCS Subtract with carry
ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49

SUBS Subtract
ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49

SUBW Subtract
ADD{S}, ADCS, SUB{S}, SBCS, and RSBS on
page 49

SXTB Sign extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57

SXTH Sign extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57

UXTB Zero extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57

UXTH Zero extends to 32 bits SXTB, SXTH, UXTB and UXTH on page 57

TST Test TST on page 58

The STM32 Cortex-M0 instruction set PM0215

50/91 Doc ID 022979 Rev 1

Examples

Multiword arithmetic examples

Specific example: 64-bit addition shows two instructions that add a 64-bit integer contained
in R0 and R1 to another 64-bit integer contained in R2 and R3, and place the result in R0
and R1.

Specific example: 64-bit addition

ADDS R0, R0, R2 ; add the least significant words

ADCS R1, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. Specific example: 96-bit
subtraction shows instructions that subtract a 96-bit integer contained in R1, R2, and R3
from another contained in R4, R5, and R6. The example stores the result in R4, R5, and R6.

Specific example: 96-bit subtraction

SUBS R4, R4, R1 ; subtract the least significant words

SBCS R5, R5, R2 ; subtract the middle words with carry

SBCS R6, R6, R3 ; subtract the most significant words with carry

Specific example: Arithmetic negation shows the RSBS instruction used to perform a 1's
complement of a single register.

Specific example: Arithmetic negation

RSBS R7, R7, #0 ; subtract R7 from zero

Table 20. ADCS, ADD, RSBS, SBCS and SUB operand restrictions

Instructi
on

Rd Rn Rm imm Restrictions

ADCS R0-R7 R0-R7 R0-R7 - Rd and Rn must specify the same register.

ADD

R0-R15 R0-R15 R0-PC -
Rd and Rn must specify the same register.
Rn and Rm must not both specify PC.

R0-R7 SP or PC - 0-1020 Immediate value must be an integer multiple of four.

SP SP - 0-508 Immediate value must be an integer multiple of four.

ADDS

R0-R7 R0-R7 - 0-7 -

R0-R7 R0-R7 - 0-255 Rd and Rn must specify the same register.

R0-R7 R0-R7 R0-R7 - -

RSBS R0-R7 R0-R7 - - -

SBCS R0-R7 R0-R7 R0-R7 - Rd and Rn must specify the same register.

SUB SP SP - 0-508 Immediate value must be an integer multiple of four.

SUBS

R0-R7 R0-R7 - 0-7 -

R0-R7 R0-R7 - 0-255 Rd and Rn must specify the same register.

R0-R7 R0-R7 R0-R7 - -

The STM32 Cortex-M0 instruction set PM0215

54/91 Doc ID 022979 Rev 1

3.5.5 MOV, MOVS and MVNS

Move and move NOT.

Syntax

MOV{S} Rd, Rm

MOVS Rd, #imm

MVNS Rd, Rm

where:

● ‘S’ is an optional suffix. If S is specified, the condition code flags are updated on the
result of the operation (see Conditional execution on page 39).

● ‘Rd’ is the destination register

● ‘Rm’ is a register

● ‘imm’ is any value in the range 0-255

Operation

The MOV instruction copies the value of Rm into Rd.

The MOVS instruction performs the same operation as the MOV instruction, but also
updates the N and Z flags.

The MVNS instruction takes the value of Rm, performs a bitwise logical NOT operation on the
value, and places the result into Rd.

Restrictions

In these instructions, Rd, and Rm must only specify R0-R7.

When Rd is the PC in a MOV instruction:

● bit[0] of the result is ignored

● A branch occurs to the address created by forcing bit[0] of that value to 0. The T-bit
remains unmodified.

 Note: Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use
of a BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition flags

If S is specified, these instructions:

● Update the N and Z flags according to the result

● Do not affect the C or V flag

Example

MOVS R0, #0x000B ; Write value of 0x000B to R0, flags get updated

MOVS R1, #0x0 ; Write value of zero to R1, flags are updated

MOV R10, R12 ; Write value in R12 to R10, flags are not updated

MOVS R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to R8

MVNS R2, R0 ; Write inverse of R0 to the R2 and update flags

The STM32 Cortex-M0 instruction set PM0215

62/91 Doc ID 022979 Rev 1

3.7.2 CPSID CPSIE

Change processor state.

Syntax

CPSID i

CPSIE i

Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled
by setting PRIMASK. CPSIE cause interrupts to be enabled by clearing PRIMASK. See
Exception mask registers on page 15 for more information about these registers.

Restrictions

None

Condition flags

This instruction does not change the condition flags.

Examples

CPSID i ; Disable all interrupts except NMI (set PRIMASK)

CPSIE i ; Enable interrupts (clear PRIMASK)

PM0215 Core peripherals

Doc ID 022979 Rev 1 69/91

4 Core peripherals

4.1 About the STM32 Cortex-M0 core peripherals
The address map of the Private peripheral bus (PPB) is:

In register descriptions, register type is described as follows:

● RW: Read and write.

● RO: Read-only.

● WO: Write-only.

Table 24. STM32 core peripheral register regions

Address Core peripheral Description

0xE000E008-0xE000E00F System control block (SCB) Table 32 on page 84

0xE000E010-0xE000E01F SysTick timer (STK) Table 34 on page 89

0xE000E100-0xE000E4EF
Nested vectored interrupt controller
(NVIC)

Table 29 on page 76

0xE000ED00-0xE000ED3F System control block (SCB) Table 32 on page 84

0xE000EF00-0xE000EF03
Nested vectored interrupt controller
(NVIC)

Table 29 on page 76

PM0215 Core peripherals

Doc ID 022979 Rev 1 71/91

4.2.2 Interrupt set-enable register (ISER)

Address offset: 0x00

Reset value: 0x0000 0000

The ISER register enables interrupts, and shows which interrupts are enabled

4.2.3 Interrupt clear-enable register (ICER)

Address offset: 0x080

Reset value: 0x0000 0000

The ICER register disables interrupts, and shows which interrupts are enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SETENA[31:16]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SETENA[15:0]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

Bits 31:0 SETENA: Interrupt set-enable bits.
Write:

0: No effect
1: Enable interrupt

Read:

0: Interrupt disabled
1: Interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending,
but the NVIC never activates the interrupt, regardless of its priority.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLRENA[31:16]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLRENA[15:0]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:0 CLRENA: Interrupt clear-enable bits.

Write:
0: No effect
1: Disable interrupt

Read:
0: Interrupt disabled
1: Interrupt enabled.

PM0215 Core peripherals

Doc ID 022979 Rev 1 75/91

4.2.8 NVIC design hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support
unaligned accesses to NVIC registers. See the individual register descriptions for the
supported access sizes.

An interrupt can enter pending state even it is disabled. Disabling an interrupt only prevents
the processor from taking that interrupt.

NVIC programming hints

Software uses the CPSIE I and CPSID I instructions to enable and disable interrupts. The
CMSIS provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

The input parameter IRQn is the IRQ number, see Table 12: Properties of the different
exception types on page 23. For more information about these functions see the CMSIS
documentation.

Table 28. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (1) if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

