

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

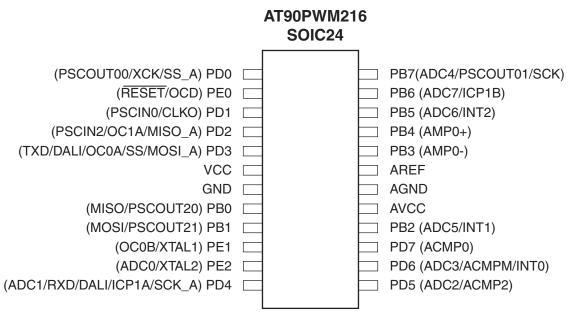
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

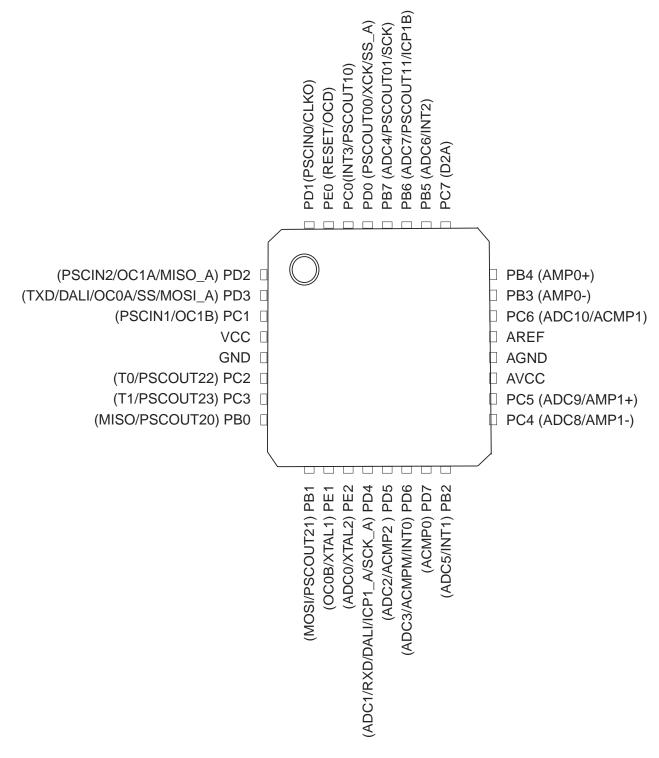
Details

Details	
Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	27
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-SOIC (0.295", 7.50mm Width)
Supplier Device Package	32-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at90pwm316-16sur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Product	Package	12 bit PWM with deadtime	ADC Input	ADC Diff	Analog Comparator	Application
AT90PWM216	SO24	2 x 2	8	1	2	One fluorescent ballast
AT90PWM316	SO32, QFN32	3 x 2	11	2	3	HID ballast, fluorescent ballast, Motor control


1. Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Pin Configurations

Figure 2-1. SOIC 24-pin Package

Note: The Center GND PADDLE has to be connected to GND.

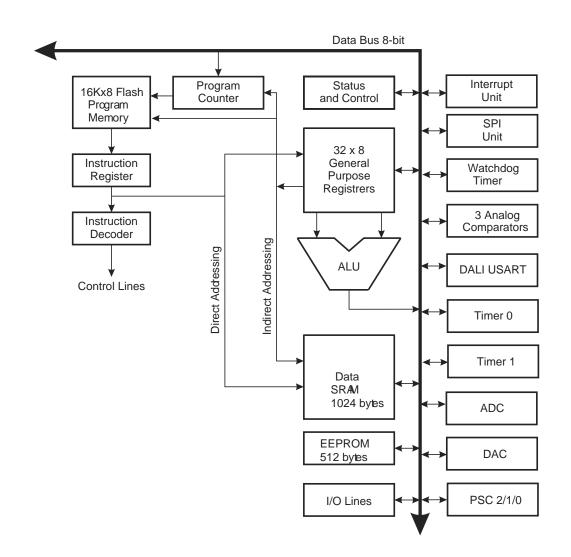

2.1 Pin Descriptions

Table 2-1.Pin out description

S024 Pin Number	SO32 Pin Number	QFN32 Pin Number	Mnemonic	Туре	Name, Function & Alternate Function
7	9	5	GND	Power	Ground: 0V reference
18	24	20	AGND	Power	Analog Ground: 0V reference for analog part
6	8	4	VCC	power	Power Supply:
17	23	19	AVCC	Power	Analog Power Supply: This is the power supply voltage for analog part For a normal use this pin must be connected.
19	25	21	AREF	Power	Analog Reference: reference for analog converter. This is the reference voltage of the A/D converter. As output, can be used by external analog
8	12	8	РВО	I/O	MISO (SPI Master In Slave Out) PSCOUT20 output
9	13	9	PB1	I/O	MOSI (SPI Master Out Slave In) PSCOUT21 output
16	20	16	PB2	I/O	ADC5 (Analog Input Channel5) INT1
20	27	23	PB3	I/O	AMP0- (Analog Differential Amplifier 0 Input Channel)
21	28	24	PB4	I/O	AMP0+ (Analog Differential Amplifier 0 Input Channel)
22	30	26	PB5	I/O	ADC6 (Analog Input Channel 6) INT 2
23	31	27	PB6	I/O	ADC7 (Analog Input Channel 7) ICP1B (Timer 1 input capture alternate input) PSCOUT11 output (see note 1)
24	32	28	PB7	I/O	PSCOUT01 output ADC4 (Analog Input Channel 4) SCK (SPI Clock)
	2	30	PC0	I/O	PSCOUT10 output (see note 1) INT3
	7	3	PC1	I/O	PSCIN1 (PSC 1 Digital Input) OC1B (Timer 1 Output Compare B)
	10	6	PC2	I/O	T0 (Timer 0 clock input) PSCOUT22 output
NA	11	7	PC3	I/O	T1 (Timer 1 clock input) PSCOUT23 output
	21	17	PC4	I/O	ADC8 (Analog Input Channel 8) AMP1- (Analog Differential Amplifier 1 Input Channel)
	22	18	PC5	I/O	ADC9 (Analog Input Channel 9) AMP1+ (Analog Differential Amplifier 1 Input Channel)
	26	22	PC6	I/O	ADC10 (Analog Input Channel 10) ACMP1 (Analog Comparator 1 Positive Input)
	29	25	PC7	I/O	D2A : DAC output ⁽²⁾

3.1 Block Diagram

Figure 3-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The AT90PWM216/316 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1024 bytes SRAM, 53 general purpose I/O lines, 32 general purpose working registers, three Power Stage Controllers, two flexible Timer/Counters with compare modes and PWM, one USART with DALI mode, an 11-channel 10-bit ADC with two differential input stage with programmable gain, a 10bit DAC, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, an On-chip Debug system and four software selectable power saving modes.

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Res-

onator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using the Atmel high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel AT90PWM216/316 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The AT90PWM216/316 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Note: AT90PWM216 device is available in SOIC 24-pin Package and does not have the D2A (DAC Output) brought out to I/0 pins.

3.2 **Pin Descriptions**

3.2.1 VCC

Digital supply voltage.

3.2.2 GND

Ground.

3.2.3 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the AT90PWM216/316 as listed on page 63.

3.2.4 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C is not available on 24 pins package.

Port C also serves the functions of special features of the AT90PWM316 as listed on page 65.

3.2.5 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the AT90PWM216/316 as listed on page 68.

3.2.6 Port E (PE2..0) RESET/ XTAL1/ XTAL2

Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical characteristics of PE0 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 8-1 on page 41. Shorter pulses are not guaranteed to generate a Reset.

Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PE2 can be used as output from the inverting Oscillator amplifier.

The various special features of Port E are elaborated in "Alternate Functions of Port E" on page 71 and "Clock Systems and their Distribution" on page 25.

3.2.7 AVCC

AVCC is the supply voltage pin for the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

3.2.8 AREF

This is the analog reference pin for the A/D Converter.

3.3 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

Address	Nomo	Di4 7	Dit 6	Dit 5	Dit 4	Dit 2	Dit 2	Dit 1	Rit 0	Paga
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBD)	Reserved	-	-	-	-	-	-	-	-	
(0xBC)	Reserved	-	-	-	-	-	-	-	-	
(0xBB)	Reserved	-	-	_	-	-	-	-	-	
(0xBA)	Reserved Reserved	-	-	-	-	-	-		-	
(0xB9) (0xB8)	Reserved	-	-	-	-	-	-	-	-	
(0xB8) (0xB7)	Reserved	_	_				_		_	
(0xB6)	Reserved	_	_		_	_	_		_	
(0xB5)	Reserved	_	-	_	-	_	_	_	-	
(0xB4)	Reserved	_	_	_	-	_	_	_	-	
(0xB3)	Reserved	-	-	-	-	-	-	-	-	
(0xB2)	Reserved	_	-	-	-	-	_	_	-	
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	Reserved	-	-	-	-	-	-	-	-	
(0xAF)	AC2CON	AC2EN	AC2IE	AC2IS1	AC2IS0	-	AC2M2	AC2M1	AC2M0	page 218
(0xAE)	AC1CON	AC1EN	AC1IE	AC1IS1	AC1IS0	AC1ICE	AC1M2	AC1M1	AC1M0	page 217
(0xAD)	AC0CON	AC0EN	AC0IE	AC0IS1	AC0IS0	-	AC0M2	AC0M1	AC0M0	page 216
(0xAC)	DACH	- / DAC9	- / DAC8	- / DAC7	- / DAC6	- / DAC5	- / DAC4	DAC9 / DAC3	DAC8 / DAC2	page 247
(0xAB)	DACL	DAC7 / DAC1	DAC6 /DAC0	DAC5 / -	DAC4/-	DAC3 / -	DAC2/-	DAC1/-	DAC0 /	page 247
(0xAA)	DACON	DAATE	DATS2	DATS1	DATS0	-	DALA	DAOE	DAEN	page 246
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8) (0xA7)	Reserved Reserved	-	-		-	-	-		_	
(0xA7) (0xA6)	Reserved	_	_		-	_	_		_	
(0xA6) (0xA5)	PIM2	-	-	PSEIE2	PEVE2B	PEVE2A	-	-	PEOPE2	page 162
(0xA4)	PIFR2	-	-	PSEI2	PEV2B	PEV2A	PRN21	PRN20	PEOP2	page 163
(0xA3)	PIM1	-	-	PSEIE1	PEVE1B	PEVE1A	-	-	PEOPE1	page 162
(0xA2)	PIFR1	-	-	PSEI1	PEV1B	PEV1A	PRN11	PRN10	PEOP1	page 163
(0xA1)	PIM0	-	-	PSEIE0	PEVE0B	PEVE0A	-	-	PEOPE0	page 162
(0xA0)	PIFR0	-	-	PSEI0	PEV0B	PEV0A	PRN01	PRN00	PEOP0	page 163
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	_	-	-	-	_	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	_	-	-	-	-	_	-	
(0x96) (0x95)	Reserved Reserved				-					
(0x94)	Reserved									
(0x93)	Reserved	_	_		_	_	_		_	
(0x92)	Reserved	_	_	_	_	_	_	_	_	
(0x91)	Reserved	-	-	_	-	-	-	-	-	
(0x90)	Reserved	-	-	_	-	-	-	-	-	
(0x8F)	Reserved	-	-	_	-	-	-	-	-	
(0x8E)	Reserved	-	_	-	-	-	-	_	_	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	_	-	-	-	-	-	-	
(0x8B)	OCR1BH	OCR1B15	OCR1B14	OCR1B13	OCR1B12	OCR1B11	OCR1B10	OCR1B9	OCR1B8	page 119
(0x8A)	OCR1BL	OCR1B7	OCR1B6	OCR1B5	OCR1B4	OCR1B3	OCR1B2	OCR1B1	OCR1B0	page 119
(0x89)	OCR1AH	OCR1A15	OCR1A14	OCR1A13	OCR1A12	OCR1A11	OCR1A10	OCR1A9	OCR1A8	page 119
(0x88)	OCR1AL	OCR1A7	OCR1A6	OCR1A5	OCR1A4	OCR1A3	OCR1A2	OCR1A1	OCR1A0	page 119
(0x87)	ICR1H	ICR115	ICR114	ICR113	ICR112	ICR111	ICR110	ICR19	ICR18	page 119
(0x86)	ICR1L	ICR17	ICR16	ICR15	ICR14	ICR13	ICR12	ICR11	ICR10	page 119
(0x85)	TCNT1H TCNT1L	TCNT115 TCNT17	TCNT114 TCNT16	TCNT113 TCNT15	TCNT112 TCNT14	TCNT111 TCNT13	TCNT110 TCNT12	TCNT19 TCNT11	TCNT18 TCNT10	page 119
(0x84) (0x83)	Reserved	-	-	-	- TCN114	-	- TCN112	-	-	page 119
(0x83) (0x82)	TCCR1C	FOC1A	FOC1B	-	-	_	-	-	-	page 118
(0x82) (0x81)	TCCR1B	ICNC1	ICES1	_	WGM13	WGM12	 CS12	 CS11	 CS10	page 118
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	page 114
(0x7F)	DIDR1	-	-	ACMP0D	AMPOPD	AMPOND	ADC10D/ACMP1D	ADC9D/AMP1PD	ADC8D/AMP1ND	page 239
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D/ACMPMD	ADC2D/ACMP2D	ADC1D	ADC0D	page 239
(0x7D)	Reserved	_	-	-	-	-	-	-	_	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	_	MUX3	MUX2	MUX1	MUX0	page 235
		ADHSM	_	_	-	ADTS3	ADTS2	ADTS1	ADTS0	page 237
(0x7B)	ADCSRB	ADH3M								

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x79)	ADCH	- / ADC9	- / ADC8	- / ADC7	- / ADC6	- / ADC5	- / ADC4	ADC9 / ADC3	ADC8 / ADC2	page 238
(0x78)	ADCL	ADC7 / ADC1	ADC6 / ADC0	ADC5/-	ADC4 / -	ADC3 / -	ADC2/-	ADC1 / -	ADC0 /	page 238
(0x77)	AMP1CSR	AMP1EN	-	AMP1G1	AMP1G0	-	AMP1TS2	AMP1TS1	AMP1TS0	page 244
(0x76) (0x75)	AMP0CSR Reserved	AMP0EN -	_	AMP0G1	AMP0G0	_	AMP0TS2	AMP0TS1	AMP0TS0	page 243
(0x73) (0x74)	Reserved	_	_	_	-	_	_	-	_	
(0x74) (0x73)	Reserved	_	_		_	_	_	_	_	
(0x72)	Reserved	_	_	_	_	_	_	_	_	
(0x71)	Reserved	_	_	_	_	_	-	_	-	
(0x70)	Reserved	_	_	_	_	_	_	_	-	
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	page 120
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	page 93
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	Reserved	-	-	-	-	-	-	-	-	
(0x6B)	Reserved	-	-	-	-	-	-	-	-	
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	page 75
(0x68)	Reserved	-	-	-	-	-	-	-	-	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL	-	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	page 29
(0x65)	Reserved	-	-	-	-		-	-	-	
(0x64)	PRR	PRPSC2	PRPSC1	PRPSC0	PRTIM1	PRTIM0	PRSPI	PRUSART	PRADC	page 37
(0x63)	Reserved	_	-	_	-	-	-	-	-	
(0x62)	Reserved CLKPR	– CLKPCE	-		-	– CLKPS3	– CLKPS2	- CLKPS1	- CLKPS0	0000 22
(0x61) (0x60)	WDTCSR	WDIF	- WDIE	WDP3	- WDCE	WDE	WDP2	WDP1	WDP0	page 33 page 48
0x3F (0x5F)	SREG	VVDIF	T	H	S	V	N N	Z	C WDP0	page 48 page 11
0x3F (0x5F) 0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	V SP11	SP10	SP9	SP8	page 14
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 14
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	page II
0x3B (0x5B)	Reserved	_	_	_	_	_	_	_	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	_	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	page 256
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0x35 (0x55)	MCUCR	SPIPS	-	_	PUD	-	-	IVSEL	IVCE	page 54 & page 62
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 44
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	page 35
0x32 (0x52)	MSMCR					de Control Regist	er			reserved
0x31 (0x51)	MONDR					ata Register		1		reserved
0x30 (0x50)	ACSR	-	AC2IF	AC1IF	AC0IF	-	AC2O	AC10	AC0O	page 219
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	171
0x2E (0x4E)	SPDR	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0	page 171
0x2D (0x4D) 0x2C (0x4C)	SPSR SPCR	SPIF SPIE	WCOL SPE	 DORD	– MSTR	- CPOL	– CPHA	- SPR1	SPI2X SPR0	page 171
0x2C (0x4C) 0x2B (0x4B)	Reserved			-	1VISTR			-		page 169
0x2B (0x4B) 0x2A (0x4A)	Reserved		_		_	_	_		_	
0x29 (0x49)	PLLCSR	-	-		-	-	PLLF	PLLE	PLOCK	page 31
0x28 (0x48)	OCROB	OCR0B7	OCR0B6	OCR0B5	OCR0B4	OCR0B3	OCR0B2	OCR0B1	OCR0B0	page 93
0x27 (0x47)	OCR0A	OCR0A7	OCR0A6	OCR0A5	OCR0A4	OCR0A3	OCR0A2	OCR0A1	OCR0A0	page 93
0x26 (0x46)	TCNT0	TCNT07	TCNT06	TCNT05	TCNT04	TCNT03	TCNT02	TCNT01	TCNT00	page 93
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	-	_	WGM02	CS02	CS01	CS00	page 91
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	_	-	WGM01	WGM00	page 89
0x23 (0x43)	GTCCR	TSM	ICPSEL1	-	-	-	-	-	PSRSYNC	page 78
0x22 (0x42)	EEARH	-	-	-	-	EEAR11	EEAR10	EEAR9	EEAR8	page 19
0x21 (0x41)	EEARL	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	page 19
0x20 (0x40)	EEDR	EEDR7	EEDR6	EEDR5	EEDR4	EEDR3	EEDR2	EEDR1	EEDR0	page 19
0x1F (0x3F)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 20
0x1E (0x3E)	GPIOR0	GPIOR07	GPIOR06	GPIOR05	GPIOR04	GPIOR03	GPIOR02	GPIOR01	GPIOR00	page 24
0x1D (0x3D)	EIMSK	-	-	-	-	INT3	INT2	INT1	INT0	page 76
0x1C (0x3C)	EIFR	-	-	-	-	INTF3	INTF2	INTF1	INTF0	page 76
0x1B (0x3B)	GPIOR3	GPIOR37	GPIOR36	GPIOR35	GPIOR34	GPIOR33	GPIOR32	GPIOR31	GPIOR30	page 24
0.44 (0.04)	GPIOR2	GPIOR27	GPIOR26	GPIOR25 GPIOR15	GPIOR24 GPIOR14	GPIOR23 GPIOR13	GPIOR22 GPIOR12	GPIOR21	GPIOR20	page 24
0x1A (0x3A)	ODIOD 1			1-010815	1-011011	1 1-210213	1 GPIOR12	GPIOR11	GPIOR10	page 24
0x19 (0x39)	GPIOR1	GPIOR17	GPIOR16		GFIOR 14		GFIGITIZ	0110111		F-9
· · ·	GPIOR1 Reserved Reserved	GPIOR17 - -								P3

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x15 (0x35)	TIFR0	-	_	-	-	_	OCF0B	OCF0A	TOV0	page 94
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	_	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	PORTE	-	-	-	-	-	PORTE2	PORTE1	PORTE0	page 74
0x0D (0x2D)	DDRE	-	-	-	-	-	DDE2	DDE1	DDE0	page 74
0x0C (0x2C)	PINE	-	-	-	-	-	PINE2	PINE1	PINE0	page 74
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 73
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 73
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 74
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	page 73
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	page 73
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	page 73
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 73
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 73
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 73
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x00 (0x20)	Reserved	-	-	-	-	-	-	-	-	

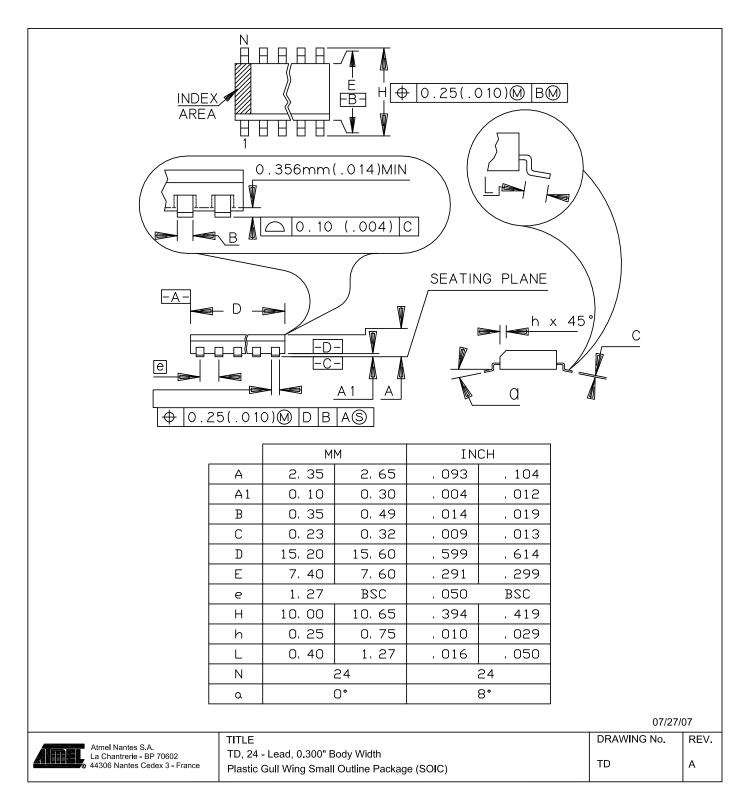
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90PWM216/316 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

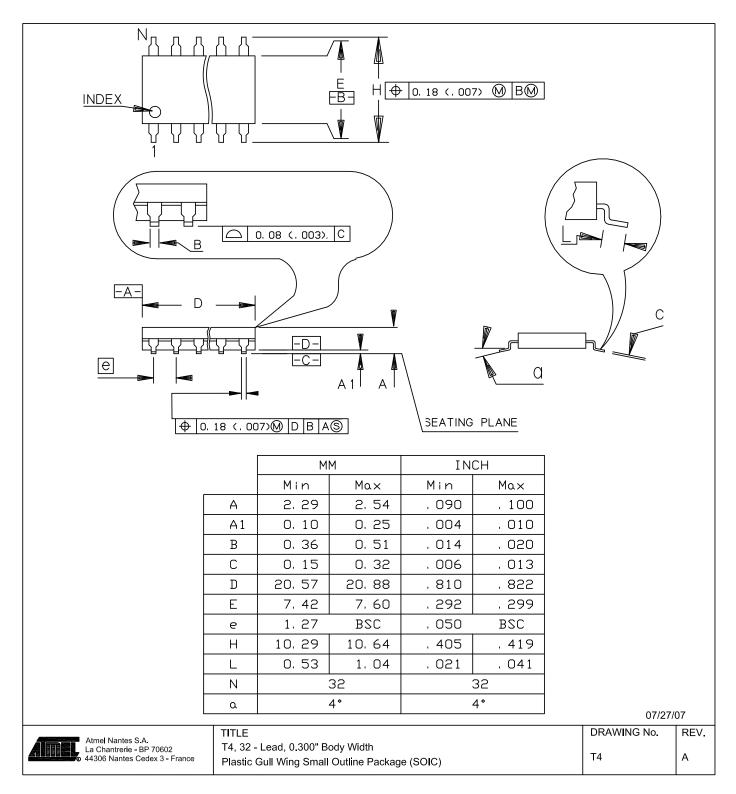
Mnemonics	Operands	Description	Operation	Flags	#Clock
	BIT AND BI	T-TEST INSTRUCTIONS			
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	Ku, b	Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	c	1
SEN		•		N	1
		Set Negative Flag	<u>N ← 1</u>		-
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0		1
SEI		Global Interrupt Enable	← 1	1	1
CLI		Global Interrupt Disable	1 ← 0	1	1
SES		Set Signed Test Flag	<u>S</u> ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
	DATA TRA	NSFER INSTRUCTIONS			
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow \operatorname{Rr}, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(2 + q) \leftarrow \kappa_1$ $(k) \leftarrow Rr$	None	2
LPM	N, INI				3
	D4 7	Load Program Memory	$R0 \leftarrow (Z)$	None	
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	$Rd \gets STACK$	None	2
	MCU CON	TROL INSTRUCTIONS			1
NOP		No Operation		None	1
		Sleep	(see specific descr. for Sleep function)	None	1

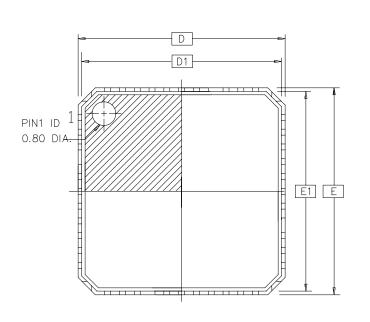
6. Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
16	2.7 - 5.5V	AT90PWM316-16SE	SO32	Engineering Samples
16	2.7 - 5.5V	AT90PWM316-16ME	QFN32	Engineering Samples
16	2.7 - 5.5V	AT90PWM216-16SE	SO24	Engineering Samples
16	2.7 - 5.5V	AT90PWM316-16SU	SO32	Extended (-40°C to 105°C)
16	2.7 - 5.5V	AT90PWM316-16MU	AT90PWM316-16MU QFN32	
16	2.7 - 5.5V	AT90PWM216-16SU	SO24	Extended (-40°C to 105°C)

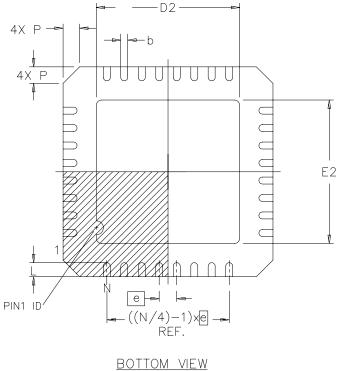

Note: All packages are Pb free, fully LHF

Note: This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.


Note: Parts numbers are for shipping in sticks (SO) or in trays (QFN). These devices can also be supplied in Tape and Reel. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.


7. Package Information

	Package Type							
SO24	24-Lead, Small Outline Package							
SO32	32-Lead, Small Outline Package							
QFN32	32-Lead, Quad Flat No lead							


7.2 SO32

TOP VIEW

		ММ		INCH			
	MIN	NDM	MAX	MIN	NDM	MAX	
А	0, 80	-	1.00	. 032	-	. 040	
J	0, 00	0.01	0. 05	, 000	, 000	. 002	
A1		0, 20	ref	.008 ref			
D/E		7.00	BSC	.276 BSC			
D1/E1		6, 75	BSC	. 266 BSC			
D5\E5	2. 25	-	5. 25	. 090	-	. 207	
N			3	2			
Р	0. 24	0. 42	0, 60	. 009	. 016	. 024	
e		0.65	BSC		026	BSC	
L	0.35	-	0. 75	. 014	-	, 030	
b	0. 23	_	0.35	. 009	-	.014	

A٠

A1

SIDE VIEW

Compliant JEDEC Standard MO-220 variation VKKC

NOTES: MLF PACKAGE FAMILY

- 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM)
- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.
- $\ensuremath{\textbf{3}}$ dimension $\ensuremath{\textbf{b}}$ applies to plated terminal and is measured

BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.

- 4 PACKAGE WARPAGE MAX 0.08mm.
- 5 THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- 6 EXACT SHAPE AND SIZE OF THIS FIXTURE IS OPTIONAL

8.3 Revision A

- DAC Driver linearity above 3.6V
- PSC OCRxx Register update according to PLOCK2 usage

1. DAC Driver linearity above 3.6V

With 5V V_{CC} , the DAC driver linearity is poor when DAC output level is above V_{CC} -1V. At 5V, DAC output for 1023 will be around 5V - 40mV.

Work around:

Use, when Vcc=5V, V_{REF} below $V_{\text{CC}}\text{-}1V$

Or, when $V_{REF}=V_{CC}=5V$, do not uses codes above 800.

2. PSC OCRxx Register update according to PLOCK2 usage

If the PSC is clocked from PLL, and if PLOCK2 bit is changed at the same time as PSC end of cycle occurs, and if OCRxx registers contents have been changed, then the updated OCRxx registers contents are not predictable.

The cause is a synchronization issue between two registers in two different clock domains (PLL clock which clocks PSC and CPU clock).

Workaround:

Enable the PSC end of cycle interrupt.

At the beginning of PSC EOC interrupt vector, change PLOCK value (OCRxx registers can be updated outside the interrupt vector).

This process guarantees that UPDATE and PLOCK actions will not occur at the same moment.

9. Datasheet Revision History for AT90PWM216/316

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

9.1 Rev. 7710H - 07/2013

- 1. Removed "1. History" chapter.
- 2. Errata:

"Revision C" on page 23: Errata added. "Revision B" on page 23: Errata added. "Revision A" on page 24: Errata updated.

9.2 Rev. 7710G - 03/2013

- 1. Applied the Atmel new brand template that includes new logo and new addresses.
- 2. Added note to the MLF/QFN package: The Center GND PADDLE has to be connected to GND.
- 3. Updated the Figure 2-1 on page 3. Pin 18 changed to AGND instead of GND.
- 4. Updated the Figure 2-2 on page 4. Pin 24 changed to AGND instead of GND.
- 5. Added note to the MLF/QFN package: The Center GND PADDLE has to be connected to GND.
- 6. Updated Figure 5-2 on page 18.
- 7. Updated Table 6-2 on page 26.
- 8. Updated "MCU Control Register MCUCR" on page 62. Added link for Bit 4: "Configuring the Pin" on page 57.
- 9. Corrected "typos" in "Overview" on page 122.
- 10. Updated "Features" on page 122. Correct feature is: Abnormality protection function, emergency input to force all outputs to low level.
- 11. Updated "Center Aligned Mode" on page 130. The label PSCn00 and PSCn01 are incorrect and are respectively replaced by PSCn0 and PSCn1.
- 12. Updated the formula of "The waveform frequency is defined by the following equation" in "Normal Mode" on page 134.
- 13. Updated the formula of f_{AVERAGE} in "Enhanced Mode" on page 135.
- 14. Updated "Input Mode Operation" on page 140. Added a link to the Table 15-6.
- 15. Updated "PSC Synchronization" on page 151. The correct content: If the PSCn has its PARUNn bit set, then it can start at the same time as PSCn-1.
- 16. Updated "PSC 1 Control Register PCTL1" on page 158. Bit 4 and Bit 3 linked to "PSC Input Configuration" on page 139.
- 17. Updated content description of Bit 1 and Bit 3 in "PSC 2 Synchro and Output Configuration PSOC2" on page 154.
- 18. Updated "Output Compare SA Register OCRnSAH and OCRnSAL" on page 155 and "Output Compare RB Register OCRnRBH and OCRnRBL" on page 155. The registers are R/W and not only W.

19.

- 20. Updated "Overview" on page 215. Removed "or CLKi/O/2" from the overview description.
- 21. Updated Figure 19-1 on page 216, "Analog Comparator Block Diagram(1)(2)" .

9.6 Rev. 7710C

- 1. Updated table page 2.
- 2. Updated Section "Internal Calibrated RC Oscillator Operating Modes(1)(2)" on page 28.
- 3. Updated Section "Features" on page 245.
- 4. Updated table in Section "Electrical Characteristics" on page 283.
- 5. Added section Section "Calibrated Internal RC Oscillator Accuracy" on page 285.
- 6. Updated Table 25-5 on page 289.
- 7. Updated Figure 26-36 on page 312.
- 8. Updated Figure 26-37 on page 313.
- 9. Updated Figure 26-38 on page 313.

9.7 Rev. 7710B

- 1. Updated "Section "In-System Reprogrammable Flash Program Memory", page 17
- 2. Updated "Figure 5-1 on page 17
- 3. Updated "Figure 6-1 on page 26
- 4. Updated "Figure 6-7 on page 30
- 5. Updated "Table 20-1 on page 227
- 6. Updated "Section "ADC Noise Canceler", page 228
- 7. Updated "Table 20-6 on page 237
- 8. Added "Table 20-7 on page 238
- 9. Updated "Section "Amplifier", page 239
- 10. Updated "Figure 20-15 on page 240
- 11. Added "Figure 20-16 on page 241
- 12. Updated "Figure 20-17 on page 242
- 13. Updated "Section "Amplifier 0 Control and Status register AMP0CSR", page 243
- 14. Updated "Table 20-9 on page 243
- 15. Updated "Section "Amplifier 1Control and Status register AMP1CSR", page 244
- 16. Updated "Table 20-9 on page 243
- 17. Updated "Table 20-11 on page 244
- 18. Updated "Table 23-6 on page 263
- 19. Updated "Table 23-7 on page 263
- 20. Updated "Table 23-8 on page 263
- 21. Updated "Section "DC Characteristics", page 284
- 22. Updated "Table 25-5 on page 289
- 23. Updated "Section "Example 1", page 298
- 24. Updated "Section "Example 2", page 298
- 25. Updated "Section "Example 3", page 298
- 26. Added "Figure 26-22 on page 305
- 27. Updated "Section "Instruction Set Summary", page 15
- 28. Added "Section "Errata AT90PWM216/316", page 23

9.8 Rev. 7710A

1. Document creation.

Enabling Unlimited Possibilities®

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com

Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY **Tel:** (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku Tokyo 141-0032 JAPAN **Tel:** (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 7710HS-AVR-07/2013

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.