

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	26
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	· .
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN-EP (5x5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qe16cfm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number		
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D		
MC9S08AC16					
MC9S908AC60					
MC9S08AC128					
MC9S08AW60					
MC9S08GB60A					
MC9S08GT16A					
MC9S08JM16					
MC9S08JM60					
MC9S08LL16					
MC9S08QE128					
MC9S08QE32					
MC9S08RG60					
MCF51CN128					
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D		
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D		
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D		
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D		
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D		
MC9S08QB8					
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D		
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D		
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D		
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D		
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D		
MC9S08QG8	1				
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D		

Table of Contents

1	MCL	J Block Diagram
2	Pin /	Assignments
3	Elec	trical Characteristics
	3.1	Introduction
	3.2	Parameter Classification
	3.3	Absolute Maximum Ratings9
	3.4	Thermal Characteristics
	3.5	ESD Protection and Latch-Up Immunity 12
	3.6	DC Characteristics 12
	3.7	Supply Current Characteristics 16
	3.8	External Oscillator (XOSCVLP) Characteristics 18

	3.9 Internal Clock Source (ICS) Characteris	stics	19
	3.10 AC Characteristics		20
	3.10.1Control Timing		20
	3.10.2TPM Module Timing		21
	3.10.3SPI Timing		22
	3.11 Analog Comparator (ACMP) Electricals		26
	3.12 ADC Characteristics		26
	3.13 Flash Specifications		29
4	Ordering Information		30
5	Package Information		30
	5.1 Mechanical Drawings		30

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	7/2/2008	Initial public released.
2	10/7/2008	Updated the Stop2 and Stop3 mode supply current, and RI _{DD} in FEI mode with all modules on at 25.165 MHz in the Table 8 Supply Current Characteristics. Replaced the stop mode adders section from Table 8 with an individual Table 9 Stop Mode Adders with new specifications.
3	11/4/2008	Updated operating voltage in Table 7.
4	5/4/2009	Added 10×10 mm information to 44 LQFP in the front page. In Table 7, added $ I_{OZTOT} $. In Table 11, updated typicals and Max. for t _{IRST} . In Table 16, removed the Rev. Voltage High item. Updated Table 17.
5	8/27/2009	Updated f _{int_t} and f _{int_ut} in the Table 11.
6	10/13/2009	Corrected the package size descriptions on the cover
7	9/16/2011	Added new package of 32-pin QFN.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual (MC9S08QE32RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08QE32 MCU.

pins not available on 28-pin or 32-pin packages

□ pins not available on 28-pin, 32-pin, or 44-pin packages

Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device. When PTA4 is configured as BKGD, pin becomes bi-directional.

For the 28-pin packages, V_{SSAD}/V_{REFL} and V_{DDAD}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

The 48-pin package is the only package with the option of having the SPI pins (SS, MISO, MOSI, and SPSCK) available on PTE3-0 pins.

Figure 1. MC9S08QE32 Series Block Diagram

Pin Assignments

2 Pin Assignments

This section shows the pin assignments for the MC9S08QE32 series devices.

Pins in **bold** are lost in the next lower pin count package.

Figure 2. 48-Pin QFN

Pin Assignments

Pins in **bold** are lost in the next lower pin count package.

Figure 4. 32-Pin LQFP/QFN

Pin Assignments

Figure 5. 28-Pin SOIC

Table 1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority

Pin Number			< Lowest	Priority	> Highest			
48	44	32	28	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1		PTD1	KBI2P1			
2	2	2		PTD0	KBI2P0			
3	3	—	_	PTE7	TPM3CLK			
4	4	3	5					V _{DD}
5	5	4	6					V _{DDAD}
6	6							V _{REFH}
7	7	5	7					V _{REFL}
8	8							V _{SSAD}
9	9	6	8					V _{SS}
10	10	7	9	PTB7	SCL1			EXTAL
11	11	8	10	PTB6	SDA ¹			XTAL
12		—	_	PTE6				
13	_	—		PTE5				
14	12	9	11	PTB5	TPM1CH1	SS ²		
15	13	10	12	PTB4	TPM2CH1	MISO ²		
16	14	11	13	PTC3	TPM3CH3			
17	15	12	14	PTC2	TPM3CH2			
18	16	—	_	PTD7	KBI2P7			

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 3. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins, except for PTA5 are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human	Series resistance	R1	1500	Ω
Douy	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
Machine	Series resistance	R1	0	Ω
	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200		V
3	Charge device model (CDM)	V _{CDM}	±500	_	V
4	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Electrical Characteristics

Num	С	Characteristic		Symbol	Condition	Min	Typical ¹	Max	Unit
		Operating Vol	tage						
1			V _{DD} rising V _{DD} falling			2.0 1.8	—	3.6	V
	С	Output high voltage ²	All I/O pins, low-drive strength		1.8 V, I _{Load} = -2 mA	V _{DD} – 0.5	_	_	
2 P T	Ρ	-		V _{OH}	2.7 V, $I_{Load} = -10 \text{ mA}$	V _{DD} – 0.5	_	_	V
	Т		All I/O pins, high-drive strength	-	2.3 V, $I_{Load} = -6 \text{ mA}$	V _{DD} – 0.5			
	С		night antio offorigan		1.8V, $I_{Load} = -3 \text{ mA}$	V _{DD} – 0.5			
3	D	Output high current	Max total I _{OH} for all ports	I _{ОНТ}		_	_	100	mA
	С		All I/O pins, low-drive strength		1.8 V, I _{Load} = 2 mA	_	_	0.5	
4	Ρ	Output low		V _{OL}	2.7 V, I _{Load} = 10 mA	_	—	0.5	v
	Т	vollage	All I/O pins, high-drive strength		2.3 V, I _{Load} = 6 mA	_	—	0.5	
	С		nigh-unve stiengtri		1.8 V, I _{Load} = 3 mA		—	0.5	
5	D	Output low current	Max total I _{OL} for all ports	I _{OLT}		_	_	100	mA
6	Ρ	Input high	put high		V_{DD} > 2.3 V	0.70 x V _{DD}	—	—	
b	С	voltage	all digital inputs	VIH	$V_{DD} \le 1.8 \text{ V}$	0.85 x V _{DD}	—	—	v
7	Ρ	Input low	- II - Rodan Linearan	N	$V_{DD} > 2.7 V$	_	_	0.35 x V _{DD}	v
1	С	voltage	all digital inputs	vIL	$V_{DD} \le 1.8 \text{ V}$		—	0.30 x V _{DD}	
8	С	Input hysteresis	all digital inputs	V _{hys}		0.06 x V _{DD}	_	_	mV
9	Ρ	Input leakage current	all input only pins (Per pin)	I _{In}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	1	μA
10	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	ll _{OZ} l	$V_{In} = V_{DD}$ or V_{SS}	_	_	1	μA
11	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	II _{OZTOT} I	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	2	μA
11	Ρ	Pullup, Pulldown resistors	all digital inputs, when enabled	R _{PU,} R _{PD}		17.5	_	52.5	kΩ
		DC injection	Single pin limit			-0.2	—	0.2	mA
12	D	current ^{3, 4, –}	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	—	5	mA
13	С	Input Capacita	ance, all pins	C _{In}		—	—	8	pF
14	С	RAM retention	n voltage	V _{RAM}		_	0.6	1.0	V
15	С	POR re-arm v	voltage ⁶	V _{POR}		0.9	1.4	2.0	V

Table 7. DC Characteristics

Num	С	Characteristic	Symbol	Condition	Min	Typical ¹	Мах	Unit
16	D	POR re-arm time	t _{POR}		10	—	_	μS
17	Ρ	Low-voltage detection threshold — high range	V _{LVDH}	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V
18	Ρ	Low-voltage detection threshold — low range	V _{LVDL}	V _{DD} falling V _{DD} rising	1.80 1.88	1.82 1.90	1.91 1.99	V
19	Р	Low-voltage warning threshold — high range	V _{LVWH}	V _{DD} falling V _{DD} rising	2.36 2.36	2.46 2.46	2.56 2.56	V
20	Ρ	Low-voltage warning threshold — low range	V _{LVWL}	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V
21	С	Low-voltage inhibit reset/recover hysteresis	V _{hys}			80		mV
22	Ρ	Bandgap Voltage Reference ⁷	V _{BG}		1.15	1.17	1.18	V

Table 7. DC Characteristics (continued)

¹ Typical values are measured at 25 °C. Characterized, not tested

 2 As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

 $^3\,$ All functional non-supply pins, except for PTA5 are internally clamped to V_{SS} and V_{DD}

⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

⁶ Maximum is highest voltage that POR is guaranteed.

⁷ Factory trimmed at V_{DD} = 3.0 V, Temp = 25 °C

Figure 6. Pullup and Pulldown Typical Resistor Values (V_{DD} = 3.0 V)

Figure 10. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)
	Ρ			25 165 MHz		13	14		-40 to 25
	Ρ	Dur curati curat		20.100 10112		14	15		85
1	Т	FEI mode, all modules on	RI _{DD}	20 MHz	3	13.75	—	mA	
	Т			8 MHz		5.59			-40 to 85
	Т			1 MHz		1.03	—		
	С			25.165 MHz		11.5	12.3		
2	Т	Run supply current	Blas	20 MHz	3	9.5	—	mΔ	-40 to 85
2	Т	FEI mode, all modules off	UDD	8 MHz		4.6 —	110.0	40 10 00	
	Т			1 MHz		1.0	—		
3	Т	Run supply current	Blas	16 kHz FBILP	3	152		ΠА	-40 to 85
0	Т	LPRS = 0, all modules off	1.00	16 kHz FBELP		115		pu .	10 10 00
4	т	Run supply current LPRS = 1, all modules off, running from Flash	DI	16 kHz EBELP	а	21.9	_		-40 to 85
4	Т	Run supply current LPRS = 1, all modules off, running from RAM	1.00		0	7.3	—		10 10 00
	С			25.165 MHz		5.74	6.00		
5	Т	Wait mode supply current	WIDE	20 MHz	3	4.57	—	- mA	
	Т	FEI mode, all modules off	00,00	8 MHz	3	2	_		-10 10 00
	Т			1 MHz		0.73			

Table 8. Supply Current Characteristics

¹ Not available in stop2 mode.

3.8 External Oscillator (XOSCVLP) Characteristics

Reference Figure 11 and Figure 12 for crystal or resonator circuits.

Table 10. XOSC and ICS Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic		Min	Typical ¹	Max	Unit
1	с	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C ₁ C ₂	See Note ² See Note ³			
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 0 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high power High range, low power High range, high power	^t CSTL ^t CSTH	 	200 400 5 15	 	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0		40 40	MHz MHz

¹ Data in Typical column is characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Table 11. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic		Symbol	Min	Typical ¹	Max	Unit
1	Ρ	Average internal reference fre	nternal reference frequency — factory trimmed		_	32.768	_	kHz
2	С	Average internal reference frequency — untrimmed		f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	5	10	μS
	Ρ		Low range (DFR = 00)		16		20	
4	Ρ	trimmed ²	Mid range (DFR = 01)	f _{dco_u}	32		40	MHz
	Ρ		High range (DFR = 10)		48		60	
	Ρ	DCO output frequency ² reference = 32768 Hz	Low range (DFR = 00)	f _{dco_DMX32}	_	19.92	_	MHz
5	Р		Mid range (DFR = 01)		_	39.85	_	
	Ρ	DMX32 = 1	High range (DFR = 10)			59.77	_	
6	С	esolution of trimmed DCO output frequency at fixed voltage nd temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO of and temperature (not using F	DCO output frequency at fixed voltage sing FTRIM)		_	±0.2	±0.4	%f _{dco}

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
8	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C	Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	С	FLL acquisition time ³	t _{Acquire}	—	_	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 11. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column is characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t_{cyc} = 1/f_{Bus}) $ V_{DD} \leq 2.1 V \\ 2.1 < V_{DD} \leq 2.4 V \\ V_{DD} > 2.4 V s $	f _{Bus}	DC	_	10 20 25.165	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	—		ns
4	D	Reset low drive	t _{rstdrv}	$34 imes t_{cyc}$	—	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}		_	ns

Table 12. Control Timing

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

С	Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
	Conversion	Short sample (ADLSMP = 0)		_	20	_	ADCK	See
P	time (including sample time)	Long sample (ADLSMP = 1)	t _{ADC}	_	40	_	cycles	reference manual for
	Completing a	Short sample (ADLSMP = 0)		_	3.5	_	ADCK	conversion time
Р	Sample une	Long sample (ADLSMP = 1)	IADS		23.5	_	cycles	variances
	Temp sensor	–40 °C– 25 °C			1.646	_	m\//°C	
	slope	25 °C– 85 °C	in .		1.769	_	mv/°C	
D	Temp sensor voltage	25 °C	V _{TEMP25}	_	701.2	_	mV	
Т		12-bit mode, 3.6> V _{DDAD} > 2.7			-1 to 3	-2.5 to 5.5		
т	Total unadjusted	12-bit mode, 2.7> V _{DDAD} > 1.8V	E _{TUE}	_	-1 to 3	-3.0 to 6.5	LSB ²	Includes
Р	error	10-bit mode		_	±1	±2.5		quantization
Ρ		8-bit mode		_	±0.5	±1.0		
Т	Differential	12-bit mode	DNL	_	±1.0	-1.5 to 2.0	LSB ²	
Р		10-bit mode ³		_	±0.5	±1.0		
Ρ		8-bit mode ³		_	±0.3	±0.5		
Т	Integral	12-bit mode	INL	_	±1.5	–2.5 to 2.75		
Т	non-linearity	10-bit mode		_	±0.5	±1.0	LSB ²	
Т		8-bit mode		_	±0.3	±0.5		
Т		12-bit mode		_	±1.5	±2.5		
Ρ	Zero-scale error	10-bit mode	E _{ZS}		±0.5	±1.5	LSB ²	V _{ADIN} = V _{SSAD}
Р		8-bit mode		_	±0.5	±0.5		00/12
Т		12-bit mode		_	±1.0	-3.5 to 1.0		
Ρ	Full-scale error	10-bit mode	E _{FS}		±0.5	±1	LSB ²	V _{ADIN} = V _{DDAD}
Ρ		8-bit mode		_	±0.5	±0.5		DDAD
		12-bit mode		_	-1 to 0	_		
D	Quantization error	10-bit mode	EQ	_	—	±0.5	LSB ²	
		8-bit mode		_	—	±0.5		
		12-bit mode			±2	_		Pad
D	Input leakage error	10-bit mode	EIL		±0.2	±4	LSB ²	leakage ⁴ *
		8-bit mode			±0.1	±1.2]	time variances

Table 17. ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB =
$$(V_{REFH} - V_{REFL})/2^{N}$$

- ³ Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes
- ⁴ Based on input pad leakage current. Refer to pad electricals.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see MC9S08QE32 Series Reference Manual Chapter 4 Memory.

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	1.8	_	3.6	V
D	Supply voltage for read operation	V _{Read}	1.8	—	3.6	V
D	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μs
Р	Byte program time (random location) ⁽²⁾	t _{prog}			t _{Fcyc}	
Р	Byte program time (burst mode) ⁽²⁾	t _{Burst}			t _{Fcyc}	
Р	Page erase time ²	t _{Page}			t _{Fcyc}	
Р	Mass erase time ⁽²⁾	t _{Mass}			t _{Fcyc}	
	Byte program current ³	R _{IDDBP}	—	4	—	mA
	Page erase current ³	R _{IDDPE}	—	6	—	mA
С	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to 85 °C T = 25 °C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	—	years

Table 18. Flash Characteristics

¹ The frequency of this clock is controlled by software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information is supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0$ V, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

Ordering Information

4 Ordering Information

This section contains ordering information for the MC9S08QE32 series of MCUs.

Example of the device numbering system:

5 Package Information

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
48	Quad Flat No-Leads	QFN	FT	1314	98ARH99048A
44	Low Quad Flat Package	LQFP	LD	824D	98ASS23225W
32	Low Quad Flat Package	LQFP	LC	873A	98ASH70029A
32	Quad Flat No-Leads	QFN	FM	1582	98ARE10566D
28	Small Outline Integrated Circuit	SOIC	WL	751F	98ASB42345B

Table 19. Package Descriptions

5.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 19. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

