

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	nX-U8/100
Core Size	8-Bit
Speed	625kHz
Connectivity	I ² C, SSP, UART/USART
Peripherals	LCD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.1V ~ 3.6V
Data Converters	A/D 2x12b, 2x24b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/rohm-semi/ml610q411-nnntbz03a7

- Frame frequency selecable (approx. 64 Hz, 73 Hz, 85 Hz, and 102 Hz)
- Bias voltage multiplying clock selectable (8 types)
- Contrast adjustment (32 steps)
- LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable

• Reset

- Reset through the RESET_N pin
- Power-on reset generation when powered on
- Reset when oscillation stop of the low-speed clock is detected
- Reset by the watchdog timer (WDT) overflow

• Battery Level Detector

Threshold voltages: One of 16 levels
 Accuracy: ±2% (Typ.)

Clock

- Low-speed clock: (This LSI can not guarantee the operation withoug low-speed crystal oscillation clock)
 Crystal oscillation (32.768 kHz)
- High-speed clock:

Built-in RC oscillation (500 kHz)

External clock (500kH or less)

- High-speed Clock gear: 1/2(250kHz), 1/4(125kHz), 1/8(62.5kHz: default)
- Selection of high-speed clock mode by software:

Built-in RC oscillation, External clock

· Power management

- HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
- STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
- High-speed Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8 of the oscillation clock)
- Block Control Function: Resets and completely turns circuits of unused peripherals off.

• Guaranteed operating range

- Operating temperature: -20°C to +70°C (P version: -40°C to +85°C)
- Operating voltage: $V_{DD} = 1.1V$ to 3.6V, $AV_{DD} = 2.2V$ to 3.6V

BLOCK DIAGRAM ML610Q411 Block Diagram

Figure 1 show the block diagram of the ML610Q411.
"*" indicates the secondary function of each port.

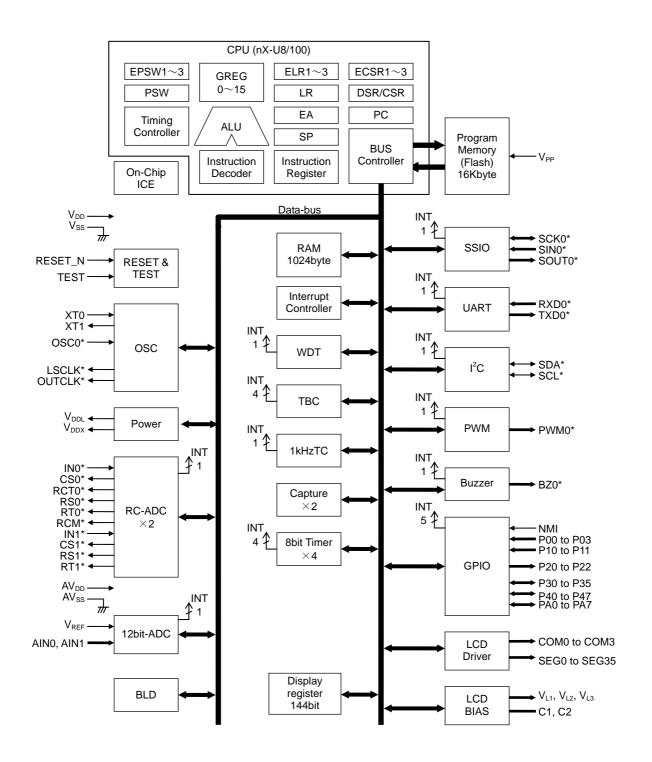


Figure 1 ML610Q411 Block Diagram

ML610Q412 Block Diagram

Figure 2 show the block diagram of the ML610Q412. "*" indicates the secondary function of each port.

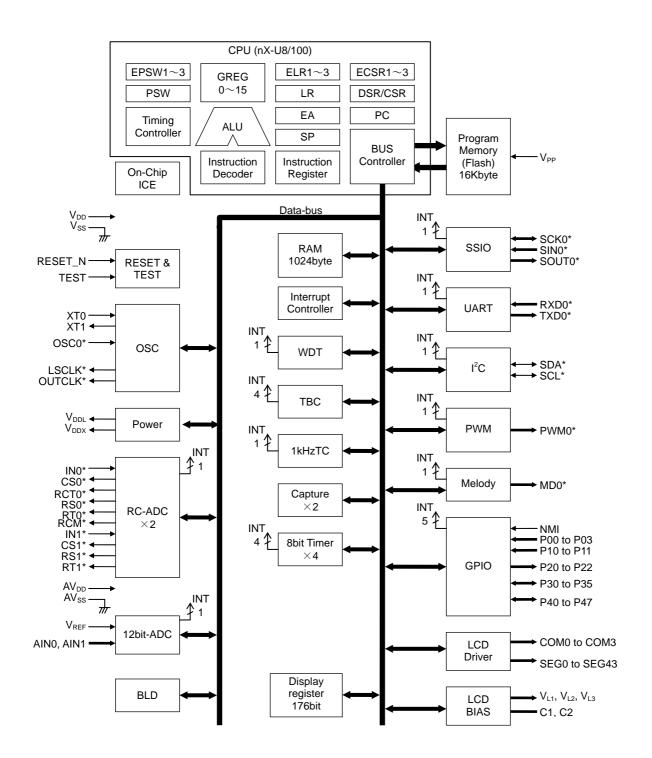
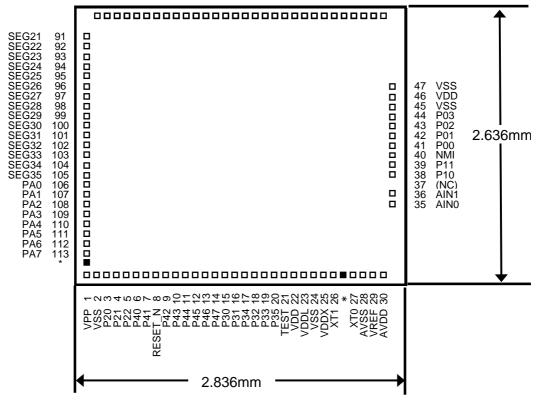



Figure 2 ML610Q412 Block Diagram

ML610Q411 Chip Pin Layout & Dimension

* Dummy pad

Note: These dummy pads are visible and do have any function, they are placed for a mechanical evaluation in LAPIS Semiconductor. Please do NOT implement wire-bonding to the dummy pad.

Chip size: 2.836mm x 2.636mm

PAD count: 95 pins Minimum PAD pitch: 80 μm

PAD aperture: $70 \ \mu m \times 70 \ \mu m$ Chip thickness: $350 \ \mu m$ Voltage of the rear side of chip: V_{SS} level

Figure 5 ML610Q411 Chip Layout & Dimension

ML610Q412 Chip Pin Layout & Dimension

 $\begin{array}{c} 000 \\$ 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 110 110 000000000 VDD VSS P03 46 45 44 43 42 41 40 39 38 37 36 35 P02 P01 P00 2.636mm NMI P11 P10 SEG39 SEG38 SEG37 SEG36 RESET N-P42N-P43N-P444 P44 P47 P310 P310 P310 P310 P310 P310 P310

* Dummy pad

Note: These dummy pads are visible and do have any function, they are placed for a mechanical evaluation in LAPIS Semiconductor. Please do NOT implement wire-bonding to the dummy pad.

Chip size: 2.836mm x 2.636mm

PAD count: 95 pins
Minimum PAD pitch: 80 μm
PAD aperture: 70 μm >

2.836mm

PAD aperture: $70 \mu m \times 70 \mu m$ Chip thickness: $350 \mu m$ Voltage of the rear side of chip: V_{SS} level

Figure 6 ML610Q412 Chip Layout & Dimension

ML610Q412 Pad Coordinates

Table 2 ML610Q412 Pad Coordinates

Chip Center: X=0,Y=0

PAD Pad X Y PAD Pad X Y No. Name (μm) (μm) No. Name (μm) 1 VPP -1230 -1212 51 (NC) - 2 VSS -1150 -1212 52 (NC) - 3 P20 -1070 -1212 53 (NC) - 4 P21 -990 -1212 54 (NG) - 5 P22 -910 -1212 56 (NC) - 6 P40 -830 -1212 56 (NC) - 7 P41 -750 -1212 59 (NC) - 9 P42 -590 -1212 69 (NC) - 10 P43 -510 -1212 61 C2 1220 1212 11 P44 -430 -1212 61 C2 1220 1212					1		·	
1	PAD	Pad	Х	Υ	PAD	Pad	X	Υ
2	No.	Name	(µm)	(µm)	No.	Name	(µm)	(µm)
3	1	VPP	-1230	-1212	51		-	-
4 P21 -990 -1212 54 (NC) - - 5 P22 -910 -1212 55 (NC) - - 6 P40 -830 -1212 55 (NC) - - 7 P41 -750 -1212 57 (NC) - - 8 RESET_N -670 -1212 59 (NC) - - 10 P43 -510 -1212 69 (NC) - - 11 P44 -430 -1212 61 C2 1220 1212 12 P45 -550 -1212 62 C1 1140 1212 14 P47 -190 -1212 64 VL.2 980 1212 15 P30 -110 -1212 66 C0M3 820 1212 16 P31 -30 -1212 66 C0M1 60 1212	2	VSS	-1150	-1212	52		-	-
5 P22 -910 -1212 55 (NC) - - 6 P40 -830 -1212 56 (NC) - - 7 P41 -750 -1212 57 (NC) - - 8 RESET_N -670 -1212 58 (NC) - - 9 P42 -590 -1212 59 (NC) - - 10 P43 -510 -1212 60 (NC) - - 11 P44 -430 -1212 60 (NC) - - 11 P44 -430 -1212 60 (NC) - - 11 P44 -430 -1212 60 (NC) - - 12 P46 -350 -1212 61 C2 1120 1212 13 P46 -270 -1212 63 VL1 900 1212	3	P20	-1070	-1212	53	(NC)	-	-
6 P40 -830 -1212 56 (NC) - - 7 P41 -750 -1212 57 (NC) - - 8 RESET_N -670 -1212 58 (NC) - - 10 P43 -510 -1212 60 (NC) - - 11 P44 -430 -1212 61 G2 1220 1212 12 P45 -350 -1212 62 C1 1140 1212 13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 15 P30 -110 -1212 65 VL1 900 1212 16 P31 -30 -1212 66 C0M3 820 1212 17 P34 50 -1212 67 C0M2 740	4	P21	-990	-1212	54	(NC)	-	-
7 P41 -750 -1212 57 (NC) - - 8 RESET_N -670 -1212 58 (NC) - - 10 P43 -510 -1212 60 (NC) - - 11 P44 -430 -1212 61 G2 1220 1212 12 P45 -350 -1212 62 C1 1140 1212 13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 15 P30 -110 -1212 65 VL1 900 1212 16 P31 -30 -1212 66 C0M3 820 1212 17 P34 50 -1212 67 C0M2 740 1212 18 P32 130 -1212 66 C0M3 820	5		-910	-1212	55	(NC)	-	-
8 RESET_N -670 -1212 58 (NC) - - 9 P42 -590 -1212 59 (NC) - - 10 P43 -510 -1212 59 (NC) - - 11 P44 -430 -1212 61 C2 1220 1212 12 P45 -350 -1212 62 C1 1140 1212 13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 16 P31 -30 -1212 66 COM3 820 1212 16 P31 -30 -1212 67 COW2 740 1212 17 P34 50 -1212 67 COW2 740 1212 17 P35 290 -1212 70 SE60 500	6	P40	-830	-1212	56		-	-
9 P42 -590 -1212 59 (NC) - - 10 P43 -510 -1212 60 (NC) - - 11 P44 -430 -1212 61 G2 1220 1212 12 P45 -350 -1212 62 C1 1140 1212 13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 16 P31 -30 -1212 66 C0M3 820 1212 16 P31 -30 -1212 66 C0M3 820 1212 17 P34 50 -1212 67 C0M2 740 1212 18 P32 130 -1212 68 C0M1 660 1212 19 P33 210 -1212 70 8E60 500	7		-750	-1212	57		-	-
10	8	_	-670	-1212	58		-	-
11 P44 -430 -1212 61 C2 1220 1212 12 P45 -350 -1212 62 C1 1140 1212 13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 15 P30 -110 -1212 65 VL1 900 1212 16 P31 -30 -1212 66 C0M3 820 1212 17 P34 50 -1212 67 C0M2 740 1212 18 P32 130 -1212 68 C0M1 660 1212 19 P33 210 -1212 69 C0M0 580 1212 20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 71 SEG1 420 </td <td>9</td> <td></td> <td>-590</td> <td>-1212</td> <td>59</td> <td></td> <td>-</td> <td>-</td>	9		-590	-1212	59		-	-
12 P45 -350 -1212 62 C1 1140 1212 13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 15 P30 -110 -1212 65 VL1 900 1212 16 P31 -30 -1212 66 COM3 820 1212 17 P34 50 -1212 67 COM2 740 1212 18 P32 130 -1212 68 COM1 660 1212 19 P33 210 -1212 69 COM0 580 1212 20 P35 290 -1212 70 SE60 500 1212 21 TEST 370 -1212 71 SE61 420 1212 22 VDDX 500 -1212 73 SE63 260<	10	P43	-510	-1212	60		-	-
13 P46 -270 -1212 63 VL3 1060 1212 14 P47 -190 -1212 64 VL2 980 1212 15 P30 -110 -1212 65 VL1 900 1212 16 P31 -30 -1212 66 C0M3 820 1212 17 P34 50 -1212 66 C0M1 660 1212 18 P32 130 -1212 69 C0M0 580 1212 19 P33 210 -1212 70 SEG0 500 1212 20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 71 SEG1 420 1212 22 VDD 450 -1212 72 SEG2 340 1212 23 VDDX 690 -1212 73 SEG3 260<	11	P44	-430	-1212	61	C2	1220	1212
14 P47 -190 -1212 64 VL2 980 1212 15 P30 -110 -1212 65 VL1 900 1212 16 P31 -30 -1212 66 COM3 820 1212 17 P34 50 -1212 67 COM2 740 1212 18 P32 130 -1212 68 COMI 660 1212 19 P33 210 -1212 68 COMI 680 1212 20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 71 SEG1 420 1212 22 VDD 450 -1212 72 SEG2 340 1212 23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 74 SEG4 180 </td <td>12</td> <td>P45</td> <td>-350</td> <td>-1212</td> <td>62</td> <td>C1</td> <td>1140</td> <td>1212</td>	12	P45	-350	-1212	62	C1	1140	1212
15	13	P46	-270	-1212	63	VL3	1060	1212
16 P31 -30 -1212 66 COM3 820 1212 17 P34 50 -1212 67 COM2 740 1212 18 P32 130 -1212 68 COMI 660 1212 19 P33 210 -1212 69 COMO 580 1212 20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 70 SEG0 500 1212 22 VDD 450 -1212 72 SEG2 340 1212 22 VDD 450 -1212 73 SEG3 260 1212 23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 75 SEG5 100 1212 25 VDDX 690 -1212 75 SEG6 20 </td <td>14</td> <td>P47</td> <td>-190</td> <td>-1212</td> <td>64</td> <td>VL2</td> <td>980</td> <td>1212</td>	14	P47	-190	-1212	64	VL2	980	1212
17 P34 50 -1212 67 COM2 740 1212 18 P32 130 -1212 68 COM1 660 1212 19 P33 210 -1212 69 COM0 580 1212 20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 71 SEG1 420 1212 22 VDD 450 -1212 72 SEG2 340 1212 23 VDDL 530 -1212 72 SEG3 260 1212 24 VSS 610 -1212 73 SEG3 260 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 75 SEG6 20 1212 27 XT0 930 -1212 78 SEG6 20 <td>15</td> <td>P30</td> <td>-110</td> <td>-1212</td> <td>65</td> <td>VL1</td> <td>900</td> <td>1212</td>	15	P30	-110	-1212	65	VL1	900	1212
18 P32 130 -1212 68 COM1 660 1212 19 P33 210 -1212 69 COM0 580 1212 20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 71 SEG1 420 1212 22 VDDL 450 -1212 72 SEG2 340 1212 23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 75 SEG5 100 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 75 SEG6 20 1212 27 XT0 930 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -14	16	P31	-30	-1212	66	COM3	820	1212
19	17	P34	50	-1212	67	COM2	740	1212
20 P35 290 -1212 70 SEG0 500 1212 21 TEST 370 -1212 71 SEG1 420 1212 22 VDD 450 -1212 72 SEG2 340 1212 23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 74 SEG4 180 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 76 SEG6 20 1212 27 XT0 930 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG11 <	18	P32	130	-1212	68	COM1	660	1212
21 TEST 370 -1212 71 SEG1 420 1212 22 VDD 450 -1212 72 SEG2 340 1212 23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 74 SEG4 180 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 76 SEG6 20 1212 26 XT1 770 -1212 76 SEG6 20 1212 26 XT1 770 -1212 78 SEG6 20 1212 27 XT0 930 -1212 78 SEG6 20 1212 27 XT0 930 -1212 79 SEG9 -220 1212 28 AVSS 1030 -1212 80 SEG10 -30	19	P33	210	-1212	69	COMO	580	1212
22 VDD 450 -1212 72 SEG2 340 1212 23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 74 SEG4 180 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 76 SEG6 20 1212 26 XT1 770 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 <	20	P35	290	-1212	70	SEG0	500	1212
23 VDDL 530 -1212 73 SEG3 260 1212 24 VSS 610 -1212 74 SEG4 180 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 76 SEG6 20 1212 - Dummy 850 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 31 (NC) - - 83 SEG13 <td< td=""><td>21</td><td>TEST</td><td>370</td><td>-1212</td><td>71</td><td>SEG1</td><td>420</td><td>1212</td></td<>	21	TEST	370	-1212	71	SEG1	420	1212
24 VSS 610 -1212 74 SEG4 180 1212 25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 76 SEG6 20 1212 - Dummy 850 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 31 (NC) - - 83 SEG13 -540 1212 32 (NC) - - 85 SEG15 -70	22	VDD	450	-1212	72	SEG2	340	1212
25 VDDX 690 -1212 75 SEG5 100 1212 26 XT1 770 -1212 76 SEG6 20 1212 - Dummy 850 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 31 (NC) - - 83 SEG13 -540 1212 32 (NC) - - 83 SEG14 -620 1212 33 (NC) - - 85 SEG15 -700 </td <td>23</td> <td>VDDL</td> <td>530</td> <td>-1212</td> <td>73</td> <td>SEG3</td> <td>260</td> <td>1212</td>	23	VDDL	530	-1212	73	SEG3	260	1212
26 XT1 770 -1212 76 SEG6 20 1212 - Dummy 850 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 31 (NC) - - 83 SEG13 -540 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 83 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700	24	VSS	610	-1212	74	SEG4	180	1212
- Dummy 850 -1212 77 SEG7 -60 1212 27 XT0 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 37 (NC) - - 88 SEG17 -860 </td <td>25</td> <td>VDDX</td> <td>690</td> <td>-1212</td> <td>75</td> <td>SEG5</td> <td>100</td> <td>1212</td>	25	VDDX	690	-1212	75	SEG5	100	1212
27 XTO 930 -1212 78 SEG8 -140 1212 28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 34 (NC) - - 85 SEG16 -780 1212 35 AIN1 1312 -522 86 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940	26	XT1	770	-1212	76	SEG6	20	1212
28 AVSS 1030 -1212 79 SEG9 -220 1212 29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 37 (NC) - - 88 SEG19 -1020 <td>-</td> <td>Dummy</td> <td>850</td> <td>-1212</td> <td>77</td> <td>SEG7</td> <td>-60</td> <td>1212</td>	-	Dummy	850	-1212	77	SEG7	-60	1212
29 VREF 1110 -1212 80 SEG10 -300 1212 30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -11	27	XT0	930	-1212	78	SEG8	-140	1212
30 AVDD 1190 -1212 81 SEG11 -380 1212 31 (NC) - - 82 SEG12 -460 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312	28	AVSS	1030	-1212	79	SEG9	-220	1212
31 (NC) - - 82 SEG12 -460 1212 32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 <td>29</td> <td>VREF</td> <td>1110</td> <td>-1212</td> <td>80</td> <td>SEG10</td> <td>-300</td> <td>1212</td>	29	VREF	1110	-1212	80	SEG10	-300	1212
32 (NC) - - 83 SEG13 -540 1212 33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312	30	AVDD	1190	-1212	81	SEG11	-380	1212
33 (NC) - - 84 SEG14 -620 1212 34 (NC) - - 85 SEG15 -700 1212 35 AIN0 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -	31	(NC)	-	-	82	SEG12	-460	1212
34 (NC) - - 85 SEG15 -700 1212 35 AINO 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 <	32	(NC)	-	-	83	SEG13	-540	1212
35 AINO 1312 -522 86 SEG16 -780 1212 36 AIN1 1312 -350 87 SEG17 -860 1212 37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26	33	(NC)	-	-	84	SEG14	-620	1212
36 AINI 1312 -350 87 SEG17 -860 1212 37 (NC) - - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 <td< td=""><td>34</td><td>(NC)</td><td>-</td><td>-</td><td>85</td><td>SEG15</td><td>-700</td><td>1212</td></td<>	34	(NC)	-	-	85	SEG15	-700	1212
37 (NC) - - 88 SEG18 -940 1212 38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 <	35	AINO	1312	-522	86	SEG16	-780	1212
38 P10 1312 -210 89 SEG19 -1020 1212 39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 <	36	AIN1	1312	-350	87	SEG17	-860	1212
39 P11 1312 -130 90 SEG20 -1100 1212 40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1	37	(NC)	-	-	88	SEG18	-940	1212
40 NMI 1312 -50 91 SEG21 -1312 960 41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	38	P10	1312	-210	89	SEG19	-1020	1212
41 P00 1312 30 92 SEG22 -1312 880 42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	39	P11	1312	-130	90	SEG20	-1100	1212
42 P01 1312 110 93 SEG23 -1312 800 43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	40	NM I	1312	-50	91	SEG21	-1312	960
43 P02 1312 190 94 SEG24 -1312 720 44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	41	P00	1312	30	92	SEG22	-1312	880
44 P03 1312 270 95 SEG25 -1312 640 45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	42	P01	1312	110	93	SEG23	-1312	800
45 VSS 1312 350 96 SEG26 -1312 560 46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	43	P02	1312	190	94	SEG24	-1312	720
46 VDD 1312 430 97 SEG27 -1312 480 47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	44	P03	1312	270	95	SEG25	-1312	640
47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	45	VSS	1312	350	96	SEG26	-1312	560
47 VSS 1312 510 98 SEG28 -1312 400 48 (NC) - - 99 SEG29 -1312 320 49 (NC) - - 100 SEG30 -1312 240	46	VDD	1312	430	97	SEG27	-1312	480
49 (NC) 100 SEG30 -1312 240	47	VSS	1312	510	98		-1312	400
49 (NC) 100 SEG30 -1312 240	48		-	-	99			320
	49	(NC)	-	-	100		-1312	240
	50	(NC)	-	-				

PAD No.	Pad Name	X (µm)	Y (µm)
101	SEG31	-1312	160
102	SEG32	-1312	80
103	SEG33	-1312	0
104	SEG34	-1312	-80
105	SEG35	-1312	-160
106	SEG43	-1312	-240
107	SEG42	-1312	-320
108	SEG41	-1312	-400
109	SEG40	-1312	-480
110	SEG39	-1312	-560
111	SEG38	-1312	-640
112	SEG37	-1312	-720
113	SEG36	-1312	-800
-	Dummy	-1312	-908

PIN LIST

PAD	Primary function		S	Secondary function			Tertiary function		
No.	Pin name	I/O	Function	Pin name	I/O	Function	Pin name	I/O	Function
2, 24,45,47	V _{SS}	_	Negative power supply pin	_		_	_	_	_
22, 46	V_{DD}	—	Positive power supply pin	_	_	_	_	_	_
23	V_{DDL}	_	Power supply pin for internal logic (internally generated)	_	_	_	_	_	_
25	V_{DDX}	_	Power supply pin for low-speed oscillation (internally generated)	_	_	_	_	_	_
1	V_{PP}	_	Power supply pin for Flash ROM				_	_	_
28	$AV_{\mathtt{SS}}$	_	Negative power supply pin for successive approximation type ADC	_	_	_	_	_	_
30	AV_DD	_	Positive power supply pin for successive approximation type ADC	_	_	_	_		_
65	V_{L1}	_	Power supply pin for LCD bias (internally generated)	-	_	_	_		_
64	V_{L2}	_	Power supply pin for LCD bias (internally generated)	_	_	_	_	_	_
63	V _{L3}	_	Power supply pin for LCD bias (internally generated)	_	_	_	_	_	_
62	C1	_	Capacitor connection pin for LCD bias generation			_	_		_
61	C2	_	Capacitor connection pin for LCD bias generation				_		_
21	TEST	I/O	Input/output pin for testing			_	_		_
8	RESET_N	I	Reset input pin		_			_	
27	XT0	I	Low-speed clock oscillation pin			_	_		_
26	XT1	0	Low-speed clock oscillation pin	_		_	_	_	_
29	V_{REF}	_	Reference power supply pin for successive approximation type ADC	_	_	_	_	_	_

			Primary/	
Pin name	1/0	Description	Secondary/	Logic
			Tertiary	3 3
UART				
TXD0	0	UART data output pin. This pin is used as the secondary function of the P43 pin.	Secondary	Positive
RXD0	I	UART data input pin. This pin is used as the secondary function of the P42 or the primary function of the P02 pin.	Primary/Se condary	Positive
I ² C bus interfa	ace		,	
SDA	I/O	I ² C data input/output pin. This pin is used as the secondary function of the P40 pin. This pin has an NMOS open drain output. When using this pin as a function of the I ² C, externally connect a pull-up resistor.	Secondary	Positive
SCL	0	I ² C clock output pin. This pin is used as the secondary function of the P41 pin. This pin has an NMOS open drain output. When using this pin as a function of the I ² C, externally connect a pull-up resistor.	Secondary	Positive
Synchronous	serial	(SSIO)		
SCK0	I/O	Synchronous serial clock input/output pin. This pin is used as the tertiary function of the P41 or P45 pin.	Tertiary	_
SIN0	I	Synchronous serial data input pin. This pin is used as the tertiary function of the P40 or P44 pin.	Tertiary	Positive
SOUT0	0	Synchronous serial data output pin. This pin is used as the tertiary function of the P42 or P46 pin.	Tertiary	Positive
PWM				
PWM0	0	PWM0 output pin. This pin is used as the tertiary function of the P43 or P34 pin.	Tertiary	Positive
T02P0CK	0	PWM0 external clock input pin. This pin is used as the primary function of the P44 pin.	Primary	_
External inter	rupt			
NMI	I	External non-maskable interrupt input pin. An interrupt is generated on both edges.	Primary	Positive/ negative
EXI0-3	I	External maskable interrupt input pins. Interrupt enable and edge selection can be performed for each bit by software. These pins are used as the primary functions of the P00-P03 pins.	Primary	Positive/ negative
Capture				
CAP0	_	Capture trigger input pins. The value of the time base counter is captured in the register synchronously with the interrupt edge selected by software.	Primary	Positive/ negative
CAP1	I	These pins are used as the primary functions of the P00 pin(CAP0) and P01 pin(CAP1).	Primary	Positive/ negative
Timer				
T02P0CK	I	External clock input pin used for both Timer 0 and Timer 2. The clocks for these timers are selected by software. This pin is used as the primary function of the P44 pin.	Primary	_
T13P1CK	I	External clock input pin used for both Timer 1 and Timer 3. The clocks for these timers are selected by software. This pin is used as the primary function of the P45 pin.	Primary	_
Buzzer				
BZ0	0	Buzzer signal output pin. This pin is used as the secondary function of the P22 pin.	Secondary	Positive/ negative
LED drive				
LED0-2	0	Nch open drain output pins to drive LED.	Primary	Positive/ negative

			Drimo/	
Dia nome	1/0	Decementary	Primary/	l a mi a
Pin name	I/O	Description	Secondary/	Logic
DC assillation	4.00.0	A/D compositor	Tertiary	
		A/D converter Channel 0 oscillation input pin. This pin is used as the secondary function	Canadam.	
IN0	I	of the P30 pin.	Secondary	_
CS0	0	Channel 0 reference capacitor connection pin. This pin is used as the	Casandani	
CSU	0	secondary function of the P31 pin.	Secondary	_
RCT0	0	Resistor/capacitor sensor connection pin of Channel 0 for measurement.	Secondary	
KCTU		This pin is used as the secondary function of the P33 pin.	Secondary	_
RS0	0	This pin is used as the secondary function of the P32 pin which is the	Secondary	
130		reference resistor connection pin of Channel 0.	Secondary	_
RT0	0	Resistor sensor connection pin of Channel 0 for measurement. This pin is	Secondary	
1010		used as the secondary function of the P34 pin.	Occordary	_
RCM	0	RC oscillation monitor pin. This pin is used as the secondary function of	Secondary	
110		the P35 pin.	Cocondary	_
IN1	ı	Oscillation input pin of Channel 1. This pin is used as the secondary	Secondary	
		function of the P44 pin.		_
CS1	0	Reference capacitor connection pin of Channel 1. This pin is used as the	Secondary	
		secondary function of the P45 pin.	,	_
RS1	0	Reference resistor connection pin of Channel 1. This pin is used as the	Secondary	
		secondary function of the P46 pin.	,	_
RT1	0	Resistor sensor connection pin for measurement of Channel 1. This pin is	Secondary	
		used as the secondary function of the P47 pin.	-	
Successive a	pproxi	imation type A/D converter		
AV _{SS}	_	Negative power supply pin for successive approximation type A/D	_	_
		converter.		
AV_{DD}	_	Positive power supply pin for successive approximation type A/D	_	_
		converter.		
V_{REF}	_	Reference power supply pin for successive approximation type A/D	_	_
		converter.		
AIN0	- 1	Channel 0 analog input for successive approximation type A/D converter.		_
AIN1	I	Channel 1 analog input for successive approximation type A/D converter.	_	_
LCD drive sig	nal			
COM0-3	0	Common output pins.	_	_
SEG0-35	0	Segment output pins.	_	_
SEG36-43	0	Segment output pin. These pins are for the ML610Q412, but are not		
SEG30-43		provided in the ML610Q411.	_	_
LCD driver po	Wer o	''		
<u> </u>	WEI S			
V _{L1}		Power supply pins for LCD bias (internally generated). Capacitors Ca, Cb, and Cc (see measuring circuit 1) are connected between V _{SS} and V _{L1} , V _{L2} ,		
V _{L2}		and V_{L3} , respectively.		_
V _{L3}			_	_
C1	_	Power supply pins for LCD bias (internally generated). Capacitors C12 is	—	
C2	_	connected between C1 and C2.	_	_
For testing				
TEST	I/O	Input/output pin for testing. A pull-down resistor is internally connected.	_	
Power supply				
V _{SS}	_	Negative power supply pin.	_	_
V _{DD}	_	Positive power supply pin for I/O, internal regulator, battery low detector,	_	
, 55		and power-on reset.		
V_{DDL}	_	Positive power supply pin (internally generated) for internal logic.	_	_
- DDL		Capacitors CL0 and CL1 (see measuring circuit 1) are connected between		
		this pin and V _{SS} .		
V_{DDX}	_	Positive power supply pin (internally generated) for low-speed oscillation.	_	_
		When using ML610Q411 and ML610Q412, connect capacitor Cx (see		
		measuring circuit 1) between this pin and V _{SS} .		
V _{PP}	_	Power supply pin for programming Flash ROM. A pull-down resistor is	_	_
		internally connected.		

TERMINATION OF UNUSED PINS

Table 3 shows methods of terminating the unused pins.

Table 3 Termination of Unused Pins

Pin	Recommended pin termination
V_{PP}	Open
AV_{DD}	V _{SS}
AV _{SS}	V _{SS}
V _{REF}	V _{SS}
AINO, AIN1	Open
V _{L1} , V _{L2} , V _{L3}	Open
C1, C2	Open
RESET_N	Open
TEST	Open
NMI	Open
P00 to P03	V _{DD} or V _{SS}
P10 to P11	V_{DD}
P20 to P22	Open
P30 to P35	Open
P40 to P47	Open
PA0 to PA7	Open
COM0 to 3	Open
SEG0 to 43	Open

Note:

It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or the output mode since the supply current may become excessively large if the pins are left open in the high impedance input setting.

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 $(V_{SS} = AV_{SS} = 0V)$

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage 1	V_{DD}	Ta = 25°C	-0.3 to +4.6	V
Power supply voltage 2	AV_{DD}	Ta = 25°C	-0.3 to +4.6	V
Power supply voltage 3	V_{PP}	Ta = 25°C	-0.3 to +9.5	V
Power supply voltage 4	V_{DDL}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 5	V_{DDX}	Ta = 25°C	-0.3 to +3.6	V
Power supply voltage 6	V _{L1}	Ta = 25°C	-0.3 to +1.75	V
Power supply voltage 7	V_{L2}	Ta = 25°C	-0.3 to +3.5	V
Power supply voltage 8	V _{L3}	Ta = 25°C	-0.3 to +5.25	V
Input voltage	V _{IN}	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output voltage	V _{OUT}	Ta = 25°C	-0.3 to V _{DD} +0.3	V
Output current 1	I _{OUT1}	Port3-A, Ta = 25°C	-12 to +11	mA
Output current 2	I _{OUT2}	Port2, Ta = 25°C	-12 to +20	mA
Power dissipation	PD	Ta = 25°C	1.25	W
Storage temperature	T _{STG}	_	−55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = AV_{SS} = 0V)$

Parameter	Symbol	Condition	Range	Unit	
		ML610Q411, ML610Q412,	-20 to +70		
Operating temperature	T _{OP}	ML610Q411P, ML610Q411PA, ML610Q412P	-40 to +85	°C	
Operating voltage	V_{DD}		1.1 to 3.6	V	
Operating voltage	AV_{DD}		2.2 to 3.6] v	
Operating frequency (CPU)	f _{OP}	V _{DD} = 1.1 to 3.6V	30k to 36k 46.9k to 78.1k	Hz	
Operating frequency (Of O)	IOP	V _{DD} = 1.3 to 3.6V	30k to 625k 23k to 625k		
Capacitor externally connected to	C _{L0}	_	1.0±30%	_	
V _{DDL} pin	C _{L1}	_	0.1±30%	μF	
Capacitor externally connected to V _{DDX} pin	C _X	_	0.1±30%	μF	
Capacitors externally connected to $V_{L1,2,3}$ pins	C _{1, 2, 3}	_	1.0±30%	μF	
Capacitors externally connected across C1 and C2 pins	C ₁₂	_	1.0±30%	μF	

CLOCK GENERATION CIRCUIT OPERATING CONDITIONS

 $(V_{SS} = 0V)$

Parameter	Symbol	Condition		Unit			
Parameter	Symbol	Condition	Min.	Typ.	Max.	Uill	
Low-speed crystal oscillation frequency	f _{XTL}	_	_	32.768k	_	Hz	
Recommended equivalent series resistance value of low-speed crystal oscillation	R_L	_	_	_	40k	Ω	
		C _L =6pF of crystal oscillation *2	_	0	_		
Low-speed crystal oscillation external capacitor *1	C _{DL} /C _{GL}	C _L =9pF of crystal oscillation	_	6	_	pF	
		C _L =12pF of crystal oscillation	_	12	_		
	C _{GH}	_	_	24	_		

^{*1:} The external C_{DL} and C_{GL} need to be adjusted in consideration of variation of internal loading capacitance C_D and C_G, and other additional capacitance such as PCB layout.

OPERATING CONDITIONS OF FLASH ROM

 $(V_{SS} = AV_{SS} = 0V)$

			(00	00 - /
Parameter	Symbol	Symbol Condition		Unit
Operating temperature	T _{OP}	At write/erase	0 to +40	°C
	V_{DD}	At write/erase*1	2.75 to 3.6	
Operating voltage	V_{DDL}	At write/erase*1	2.5 to 2.75	V
	V _{PP}	At write/erase*1	7.7 to 8.3	
Write cycles	C _{EP}		80	cycles
Data retention	Y _{DR}	_	10	years

^{1:} Those voltages must be supplied to V_{DDL} pin and V_{PP} pin when programming and eraseing Flash ROM. V_{PP} pin has an internal pulldown resister.

When using a crystal oscillator $C_L = 6pF$, there is a possibility that can not be adjusted by external C_{DL} and C_{GL} .

DC CHARACTERISTICS (2/5)

 $(V_{DD} = 1.1 \text{ to } 3.6 \text{V}, \text{AV}_{DD} = 2.2 \text{ to } 3.6 \text{V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C} \text{ for P version},$ unless otherwise specified) (2/5)

_				Τ	Rating	นเแธออ		specified) (2/5) Measuring
Parameter	Symbol	Cor	Min.	Typ.	Max.	Unit	circuit	
			CN4-0 = 00H	0.89	0.94	0.99		
			CN4-0 = 01H	0.91	0.96	1.01	1	
			CN4-0 = 02H	0.93	0.98	1.03	1	
			CN4-0 = 03H	0.95	1.00	1.05	1	
			CN4-0 = 04H	0.97	1.02	1.07	1	
			CN4-0 = 05H	0.99	1.04	1.09		
			CN4-0 = 06H	1.01	1.06	1.11	1	
			CN4-0 = 07H	1.03	1.08	1.13	1	
			CN4-0 = 08H	1.05	1.10	1.15	1	
			CN4-0 = 09H	1.07	1.12	1.17	1	
			CN4-0 = 0AH	1.09	1.14	1.19	1	
			CN4-0 = 0BH	1.11	1.16	1.21	1	
			CN4-0 = 0CH	1.13	1.18	1.23	1	
			CN4-0 = 0DH	1.15	1.20	1.25	1	
			CN4-0 = 0EH	1.17	1.22	1.27	1	
V _{L1} voltage	\/	$V_{DD} = 3.0V$, $Tj = 25^{\circ}C$	CN4-0 = 0FH	1.19	1.24	1.29	V	
V _{L1} Voltage	V_{L1}		CN4-0 = 10H	1.21	1.26	1.31	- V 	
			CN4-0 = 11H	1.23	1.28	1.33		
			CN4-0 = 12H	1.25	1.30	1.35		
			CN4-0 = 13H	1.27	1.32	1.37		
			CN4-0 = 14H	1.29	1.34	1.39		1
			CN4-0 = 15H	1.31	1.36	1.41		
			CN4-0 = 16H	1.33	1.38	1.43		
			CN4-0 = 17H	1.35	1.40	1.45		
			CN4-0 = 18H	1.37	1.42	1.47		
			CN4-0 = 19H	1.39	1.44	1.49		
			CN4-0 = 1AH	1.41	1.46	1.51]	
			CN4-0 = 1BH	1.43	1.48	1.53]	
			CN4-0 = 1CH	1.45	1.50	1.55]	
			CN4-0 = 1DH	1.47	1.52	1.57]	
			CN4-0 = 1EH	1.49	1.54	1.59		
			CN4-0 = 1FH	1.51	1.56	1.61		
V _{L1} temperature deviation * ¹	ΔV_{L1}	V _{DD} = 3.0V		_	-1.5	_	mV/°C	
V _{L1} voltage dependency * ¹	ΔV_{L1}	V _{DD} = 1.3 to 3.6V		_	5	20	mV/V	
V _{L2} voltage	V_{L2}	V _{DD} = 3.0	V, Tj = 25°C	Typ. -10%	V _{L1} ×2	Typ. +4%	V	
V _{L3} voltage	V _{L3}	1MΩ load (V _{L3} –V _{SS})		Typ. -10%			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
LCD bias voltage generation time	T _{BIAS}		_	_	_	600	ms	

 $^{^{*1}}$:V_{L1} can not exceed V_{DD} level. The maximum V_{L1} becomes V_{DD} level when the V_{L1} calculated by the temperature deviation and voltage dependency is going to exceed the V_{DD} level.

DC CHARACTERISTICS (3/5)

 $(V_{DD} = 1.1 \text{ to } 3.6\text{V}, \text{AV}_{DD} = 2.2 \text{ to } 3.6\text{V}, \text{V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C} \text{ for P version,}$ unless otherwise specified) (3/5)

		unless othe Rating						i wise spe	
Parameter	Symbol	Condition			Min.	Typ.	Max.	Unit	Measuring circuit
			I D3-	-0 = 0H	IVIII I.	1.35	IVIAA.		onoun
				-0 = 1H	-	1.4			
		LD3-		-0 = 2H		1.45			
				0 = 3H	1	1.5			
				-0 = 4H	1	1.6			
				-0 = 5H		1.7			
				-0 = 6H	7	1.8			
BLD threshold			LD3-0 = 7H		Тур.	1.9	Тур.		
voltage	V_{BLD}	$V_{DD} = 1.35 \text{ to } 3.6 \text{V}$		-0 = 8H	-2%	2.0	+2%	V	
-				-0 = 9H		2.1			1
				0 = 0AH		2.2			'
				0 = 0BH		2.3			
				0 = 0CH		2.4			
				0 = 0DH	1	2.5			
				0 = 0EH		2.7			
				0 = 0FH		2.9			
BLD threshold									
voltage temperature deviation	ΔV_{BLD}	V _{DD} = 1.3		-	0	_	%/°C		
deviation		ODLL L OTOD 1 1							
Supply current 1	IDD1	CPU: In STOP state. Low-speed/high-speed RC500kHz oscillation: stopped.		Ta= 25°C	_	0.15	0.5	μΑ	
Supply current 1	וטטו				 		2.5		
					+-		2.0	<u> </u>	
	IDD2	stop detector is Stopped).*3*4 High-speed 500kHz oscillation: Stopped. LCD and BIAS circuits: Stopped.		Ta= 25°C —	l _	0.5	1.3		
							1.0		
Supply current 2				* 5				μА	
					_	3.5			
							 	1	
		CPU: In HALT state (LTBC and WDT		Ta- 25°C		1 20	1.6		1
		are Operating. Low speed oscillation stop detector is Stopped).*3		Ta= 25°C		1.28	1.6		
Supply current 3	IDD3							μΑ	
		High-speed 500kHz oscillation:		_* 5		_	11		
		Stopped.	ed.						
		LCD and BIAS circuits: O CPU: In 32.768kHz opera			_				
Supply current 4		state.* ¹ * ³	iting	Ta= 25°C	°C	5.5	7		
	IDD4					0.0		μΑ	
	.55 .			*5			12		
						- - 12			
Complete accompant 5	IDDE	CPU: In RC 500kHz operating state. LCD and BIAS circuits: Operating. *2		Ta= 25°C		80	90	μΑ	
Supply current 5	IDD5			*5	† <u> </u>		100		
		CPU: In RC 500kHz operating			+		100		-
		state.*2	-	Ta= 25°C	_	0.4	0.5		1
Supply current 6	IDD6	LCD and BIAS circuits: Operating. *2 A/D: In operating state.						mA	
				* 5	_	_ _ 0.6			
		$V_{DD} = AV_{DD} = 3.0V$					0.0		

^{*1:} When the CPU operating rate is 100% (No HALT state).

^{*2:} All SEGs: off waveform, No LCD panel load, 1/3 bias, 1/3 duty, Frame frequency: Approx. 64 Hz, Bias voltage multiplying clock: 1/128 LSCLK (256Hz)

 $^{^{*3}}$: Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance C_{GL}/C_{DL}=0pF.

^{*4:} Significant bits of BLKCON0~BLKCON4 registers are all "1".

^{*5 :} Recommended operating temperature ($Ta = -40 \text{ to } +85^{\circ}\text{C}$ for P version, $Ta = -20 \text{ to } +70^{\circ}\text{C}$ for non-P version)

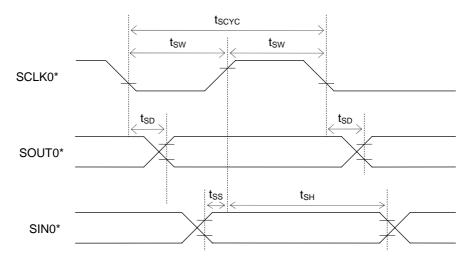

DC CHARACTERISTICS (5/5))

 $(V_{DD} = 1.1 \text{ to } 3.6\text{V}, \text{AV}_{DD} = 2.2 \text{ to } 3.6\text{V}, \text{V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C} \text{ for P version}, unless otherwise specified}) (5/5)$

			Rating				Measuring	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
Input voltage 1 (RESET_N)	VIH1	V _{DD} = 1.3 to 3.6V		_	V_{DD}			
(TEST) (NMI) (P00-P03)	VIIII	V _{DD} = 1.1 to 3.6V	0.7 ×V _{DD}	_	V_{DD}			
(P10–P11) (P31–P35)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$V_{DD} = 1.3 \text{ to } 3.6 \text{V}$	0	_	0.3 $\times V_{DD}$			
(P40–P43) (P45–P47) (PA0–PA7)*1	VIL1	V _{DD} = 1.1 to 3.6V	0	_	0.2 ×V _{DD}			
Hysteresis width (RESET_N) (TEST_N) (NMI) (P00-P03) (P10-P11) (P31-P35) (P40-P43) (P45-P47) (PA0-PA7)*1	ΔVΤ	$V_{DD} = 2.0 \text{ to } 3.6 \text{V}$	0.05 ×V _{DD}	0.18 ×V _{DD}	0.4 ×V _{DD}	V	5	
		V _{DD} = 1.1 to 3.6V	0.02 ×V _{DD}	0.18 ×V _{DD}	0.4 ×V _{DD}			
Input voltage 2	VIH2		0.7 ×V _{DD}		V_{DD}			
(P30, P44)	VIL2	_	0		0.3 $\times V_{DD}$			
Input pin capacitance (NMI) (P00–P03) (P10–P11) (P30–P35) (P40–P47) (PA0–PA7)*1	CIN	f = 10kHz V _{rms} = 50mV Ta = 25°C	_	_	5	pF	_	

^{*1:} ML610Q411

HYSTERESIS WIDTH

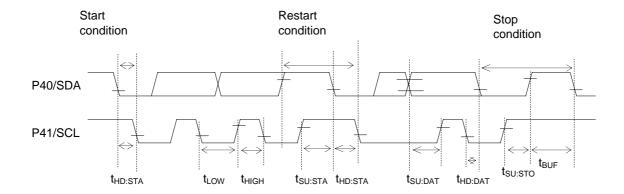


AC CHARACTERISTICS (Synchronous Serial Port)

 $(V_{DD} = 1.3 \text{ to } 3.6\text{V}, \text{AV}_{DD} = 2.2 \text{ to } 3.6\text{V}, \text{V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C} \text{ for P version}, unless otherwise specified})$

-					oti iei wise spi	Joinea	
Parameter	Symbol	Condition		Rating	1	Unit	
	Symus. Semanus.		Min.	Тур.	Max.		
SCLK input cycle		When high-speed oscillation is	40				
(slave mode)	tscyc	not active	10	_	_	μS	
SCLK output cycle	taava			SCLK*1			
(master mode)	t _{scyc}	_		SCLK	_	S	
SCLK input pulse width	4	When high-speed oscillation is	4		ļ	μS	
(slave mode)	t _{SW}	not active	4	_	_		
SCLK output pulse width			SCLK*1	SCLK*1	SCLK*1		
(master mode)	t _{SW}	_	×0.4	×0.5	×0.6	S	
SOUT output delay time	_				500		
(slave mode)	t _{SD}	_			500	ns	
SOUT output delay time	+				500	ns	
(master mode)	t _{SD}	_			300	115	
SIN input							
setup time	t _{SS}	_	80	_	_	ns	
(slave mode)							
SIN input							
setup time	t _{SS}	_	500	_	_	ns	
(master mode)						<u> </u>	
SIN input	t _{SH}		300			ns	
hold time	СЭП		550				

^{*1:} Clock period selected with S0CK3-0 of the serial port 0 mode register (SIO0MOD1)

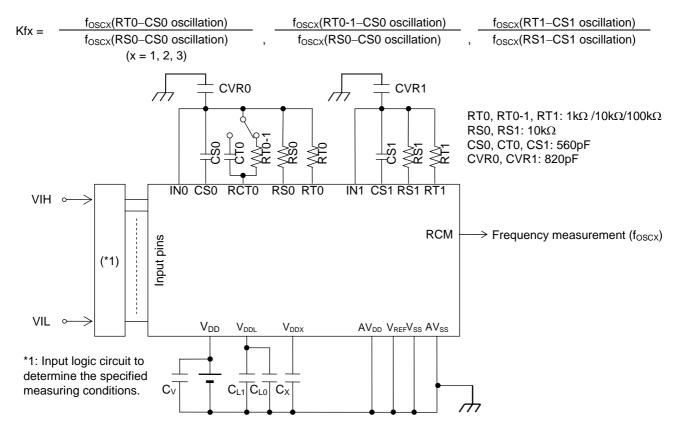


*: Indicates the secondary function of the port.

AC CHARACTERISTICS (I²C Bus Interface: Standard Mode)

 $(V_{DD} = 1.8 \text{ to } 3.6 \text{V}, \text{AV}_{DD} = 2.2 \text{ to } 3.6 \text{V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C} \text{ for P version}, unless otherwise specified})$

Parameter	Symbol	Condition		Unit			
Farameter	Symbol	Condition	Min.	Тур.	Max.	Offic	
SCL clock frequency	f _{SCL}	_	_	50	_	kHz	
SCL hold time (start/restart condition)	t _{HD:STA}	_	4.0			μS	
SCL "L" level time	t _{LOW}	_	4.7			μS	
SCL "H" level time	t _{HIGH}	_	4.0	_	_	μS	
SCL setup time (restart condition)	t _{SU:STA}	_	4.7	_	_	μS	
SDA hold time	t _{HD:DAT}	_	0	_	_	μS	
SDA setup time	t _{SU:DAT}	_	0.25			μS	
SDA setup time (stop condition)	t _{su:sto}	_	4.0	_	_	μS	
Bus-free time	t _{BUF}	_	4.7			μS	

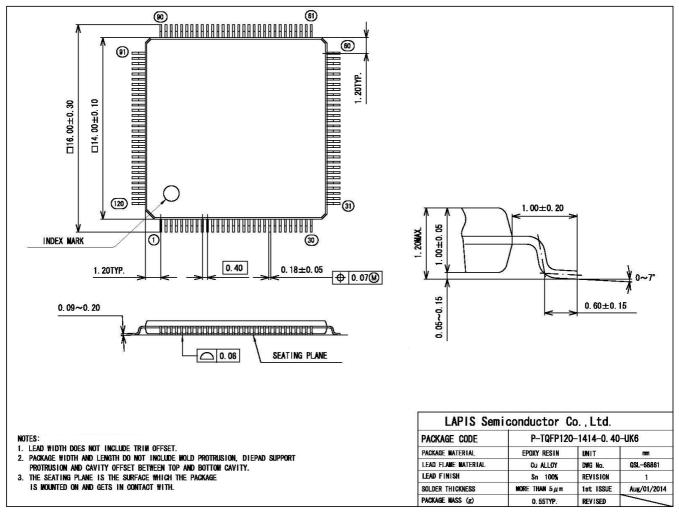


AC CHARACTERISTICS (RC Oscillation A/D Converter)

 $(V_{DD} = 1.3 \text{ to } 3.6\text{V}, \text{AV}_{DD} = 2.2 \text{ to } 3.6\text{V}, \text{V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{Ta} = -20 \text{ to } +70^{\circ}\text{C}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C} \text{ for P version},$

			I	Rating	or wide ape	- Cilicu)	
Parameter	Symbol	Condition		Unit			
	Symbol Condition		Min.	Тур.	Max.	0.111	
Designations for accillation	RS0, RS1,		4			1.0	
Resistors for oscillation	RT0, RT0-1,RT1	CS0, CT0, CS1 ≥ 740pF	1		_	kΩ	
Ossillation fragues as	f _{OSC1}	Resistor for oscillation = $1k\Omega$	209.4	330.6	435.1	kHz	
Oscillation frequency VDD = 1.5V	f _{OSC2}	Resistor for oscillation = $10k\Omega$	41.29	55.27	64.16	kHz	
VDD = 1.5V	f _{OSC3}	Resistor for oscillation = $100k\Omega$	4.71	5.97	7.06	kHz	
RS to RT oscillation frequency	Kf1	RT0, RT0-1, RT1 = 1kHz	5.567	5.982	6.225		
ratio *1	Kf2	RT0, RT0-1, RT1 = 10kHz	0.99	1	1.01		
VDD = 1.5V	Kf3	RT0, RT0-1, RT1 = 100kHz	0.104	0.108	0.118		
Ossillation fraguency	f _{OSC1}	Resistor for oscillation = $1k\Omega$	407.3	486.7	594.6	kHz	
Oscillation frequency VDD = 3.0V	f _{OSC2}	Resistor for oscillation = $10k\Omega$	49.76	59.28	72.76	kHz	
VDD = 0.0 V	f _{OSC3}	Resistor for oscillation = $100k\Omega$	5.04	5.993	7.04	kHz	
RS to RT oscillation frequency	Kf1	RT0, RT0-1, RT1 = 1kHz	8.006	8.210	8.416	_	
ratio *1	Kf2	RT0, RT0-1, RT1 = 10kHz	0.99	1	1.01		
VDD = 3.0V	Kf3	RT0, RT0-1, RT1 = 100kHz	0.100	0.108	0.115		

^{*1:} Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the same conditions.



Note:

- Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise around the node.
- When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please have VSS(GND) trace next to the signal.
- Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved components may affect to the A/D conversion operation by noise the components itself may have.

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Pa	ge		
Document No.	Date	Previous	Current	Description	
		Edition	Edition		
FEDL610Q411-01	Jul.17,2010	_	_	Formally edition 1	
		3, 4, 21	3, 4, 21	Add the explanation of ML610Q411PC.	
FEDL610Q411-02	Mar.23,2011	34	34	Replace the package dimension (Only the format is changed.	
		34		Package size and material are not changed.)	
		All	All	Change header and footer.	
		1~3	1~3		
		5	5		
		7	7		
		9	9		
		11	11		
		13	13		
		15	15	Delete ML610Q415 and ML610Q411PC	
		16	16	Delete ME010Q413 and ME010Q4111 C	
	Apr.15,2015	18~20	18~20		
FEDL610Q411-03		Am 45 0045	21	22	
FEDL010Q411-03		23	24		
		24	25		
		1	25	26	
		27	27		
			4	4	Change from "Shipment" to "Product name - Supported
		4	7	Function"	
			21	Add CLOCK GENERATION CIRCUIT OPERATING	
		_	21	CONDITIONS	
		21	22	Change "RESET" to "Reset pulse width (PRST) " and	
		21	22	"Power-on reset activation power rise time (T _{POR}) ".	
		36	36	Change description in Note.	
				Corrected a typo.	
FEDL610Q411-04	Q411-04 July.13,2015		14	-PAD No,"37" is corrected to "36".	
				-PAD No,"36" is corrected to "35".	