



Welcome to **E-XFL.COM** 

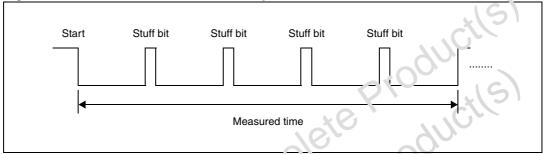
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                    |
|----------------------------|--------------------------------------------------------------------|
| Product Status             | Active                                                             |
| Core Processor             | ST10                                                               |
| Core Size                  | 16-Bit                                                             |
| Speed                      | 64MHz                                                              |
| Connectivity               | ASC, CANbus, EBI/EMI, I <sup>2</sup> C, SSC, UART/USART            |
| Peripherals                | POR, PWM, WDT                                                      |
| Number of I/O              | 143                                                                |
| Program Memory Size        | 832KB (832K x 8)                                                   |
| Program Memory Type        | FLASH                                                              |
| EEPROM Size                | -                                                                  |
| RAM Size                   | 68K x 8                                                            |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                        |
| Data Converters            | A/D 32x10b                                                         |
| Oscillator Type            | Internal                                                           |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                 |
| Mounting Type              | Surface Mount                                                      |
| Package / Case             | 208-BGA                                                            |
| Supplier Device Package    | -                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/st10f296tr |

ST10F296E Contents


|                   | 17.1                                         | CAN module memory mapping                                                                                                                                                                                                                                                                                                                                | 192                                         |
|-------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                   |                                              | 17.1.1 CAN1                                                                                                                                                                                                                                                                                                                                              | 192                                         |
|                   |                                              | 17.1.2 CAN2                                                                                                                                                                                                                                                                                                                                              | 192                                         |
|                   | 17.2                                         | Configuration support                                                                                                                                                                                                                                                                                                                                    | 193                                         |
|                   | 17.3                                         | Clock prescaling                                                                                                                                                                                                                                                                                                                                         | 193                                         |
|                   | 17.4                                         | CAN bus configurations                                                                                                                                                                                                                                                                                                                                   | 194                                         |
|                   |                                              | 17.4.1 Single CAN bus                                                                                                                                                                                                                                                                                                                                    | 194                                         |
|                   |                                              | 17.4.2 Multiple CAN bus                                                                                                                                                                                                                                                                                                                                  | 195                                         |
|                   |                                              | 17.4.3 Parallel mode                                                                                                                                                                                                                                                                                                                                     | 195                                         |
|                   | 17.5                                         | System clock tolerance range                                                                                                                                                                                                                                                                                                                             | 1.5. 196                                    |
|                   | 17.6                                         | Configuration of the CAN controller                                                                                                                                                                                                                                                                                                                      | 199                                         |
|                   | 17.7                                         | Calculation of the bit timing parameters                                                                                                                                                                                                                                                                                                                 | 200                                         |
|                   |                                              | 17.7.1 Example of bit timing at high baud rate                                                                                                                                                                                                                                                                                                           | 201                                         |
|                   |                                              | 17.7.2 Example of bit timing at low baud rate                                                                                                                                                                                                                                                                                                            | 202                                         |
|                   |                                              | lete dule                                                                                                                                                                                                                                                                                                                                                | ,                                           |
| 18                | Real-                                        |                                                                                                                                                                                                                                                                                                                                                          | 203                                         |
|                   | 18.1                                         | RTC registers                                                                                                                                                                                                                                                                                                                                            | 205                                         |
|                   | 18.2                                         | Programming the RTC                                                                                                                                                                                                                                                                                                                                      | 209                                         |
| 40                | <b>\</b>                                     | chdog timer                                                                                                                                                                                                                                                                                                                                              | 044                                         |
| 19                | watc                                         | chdog timer                                                                                                                                                                                                                                                                                                                                              | 211                                         |
| 20                | Cyrote                                       | ( ) 6                                                                                                                                                                                                                                                                                                                                                    |                                             |
|                   | SVSIE                                        | em reset                                                                                                                                                                                                                                                                                                                                                 | 214                                         |
| 20                | •                                            | em res€t ,                                                                                                                                                                                                                                                                                                                                               |                                             |
| 20                | 20.1                                         | ուբա filter                                                                                                                                                                                                                                                                                                                                              | 214                                         |
| 20                | •                                            | เท่นน îlter                                                                                                                                                                                                                                                                                                                                              | 214                                         |
| -01               | 20.1                                         | เกษน filter                                                                                                                                                                                                                                                                                                                                              | 214<br>215<br>215                           |
| 05011             | 20.1                                         | Input filter                                                                                                                                                                                                                                                                                                                                             | 214<br>215<br>215                           |
| osoli             | 20.1                                         | Input filter Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state                                                                                                                                                                                                                                 | 214<br>215<br>215<br>218                    |
| psol <sup>l</sup> | 20.1                                         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)                                                                                                                                                                                                              | 214<br>215<br>215<br>218<br>219             |
| psol              | 20.1                                         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset                                                                                                                                                                     | 214<br>215<br>215<br>218<br>219<br>220      |
| iosoli<br>iosoli  | 20.1                                         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state                                                                                                                           | 214 215 218 219 220 221                     |
| 1050l             | 20.1 20.2                                    | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state  20.3.3 Synchronous reset and the RPD pin                                                                                 | 214 215 218 219 220 222                     |
| 1050l             | 20.1<br>20.2<br>20.3                         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state  20.3.3 Synchronous reset and the RPD pin  Software reset                                                                 | 214 215 218 219 220 221 222                 |
| psol              | 20.1<br>20.2<br>20.3<br>20.4<br>20.5         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state  20.3.3 Synchronous reset and the RPD pin  Software reset  Watchdog timer reset                                           | 214 215 218 219 220 221 222 222             |
| psol              | 20.1<br>20.2<br>20.3                         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state  20.3.3 Synchronous reset and the RPD pin  Software reset  Watchdog timer reset  Bidirectional reset                      | 214 215 218 219 220 221 222 222 226 227     |
| iosoli<br>iosoli  | 20.1<br>20.2<br>20.3<br>20.4<br>20.5<br>20.6 | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state  20.3.3 Synchronous reset and the RPD pin  Software reset  Watchdog timer reset  Bidirectional reset  20.6.1 WDTCON flags | 214 215 218 219 220 221 222 226 227 229 230 |
| psol              | 20.1<br>20.2<br>20.3<br>20.4<br>20.5         | Asynchronous reset  20.2.1 Power-on reset  20.2.2 Hardware reset  20.2.3 Exit from asynchronous reset state  Synchronous reset (warm reset)  20.3.1 Short and long synchronous reset  20.3.2 Exit from synchronous reset state  20.3.3 Synchronous reset and the RPD pin  Software reset  Watchdog timer reset  Bidirectional reset                      | 214 215 218 219 220 221 222 226 227 229     |

#### 6.4.5 Choosing the baud rate for the BSL via CAN

The bootstrap via CAN acts in the same way as the UART bootstrap mode. When the ST10F296E is started in BSL mode, it polls the RxD0 and CAN1 RxD lines. When polling a low level on one of these lines, a timer is launched that is stopped when the line goes back to high level.

For CAN communication, the algorithm is made to receive a zero frame, where the standard identifier is 0x0 and DLC is 0. This frame produces the following levels on the network: 5D, 1R, 5D, 1R, 5D, 1R, 5D, 1R, 5D, 1R, 4D, 1R, 1D, 11R. The algorithm lets the timer run until detection of the 5<sup>th</sup> recessive bit. In this way, the bit timing is calculated over 29 bit time durations. This minimizes the error introduced by the polling.

Figure 13. Bit rate measurement over a predefined zero-frame



#### Error induced by the polling

The code used for polling is as follows:

```
WaitCom:
         P4.5, CAN Boot
                                  ; if SOF detected on CAN, then go to CAN
   JNB
                                  ; loader
   JВ
         P3.11, VaitCom
                                  ; Wait for start bit at RxD0
   BSET T6R
                                    Start Timer T6
CAN POCC.
   BSEI PWMCONO.0
                                  ; Start PWM Timer0
                                  ; (resolution is 1 CPU clk cycle)
   JMPR cc UC, WaitRecessiveBit
WaitDominantBit:
   JΒ
         P4.5, WaitDominantBit
                                  ; wait for end of stuff bit
WaitRecessiveBit:
   JNB P4.5, WaitRecessiveBit
                                  ; wait for 1st dominant bit = Stuff bit
                                  ; Test if 5th stuff bit detected
   CMPI1 R1, #5
   JMPR cc NE, WaitDominantBit
                                  ; No, go back to count more
   BCLR PWMCON.0
                                  ; Stop timer
                                  ; here the 5th stuff bit is detected:
                                  ; PT0 = 29 Bit Time (25D and 4R)
```

Obani The maximum error at detection of communication on the CAN pin is: (1 not taken + 1 taken jumps) + 1 taken jump + 1 bit set: (6) + 6 CPU clock cycles

> The error at detection of the 5<sup>th</sup> recessive bit is: (1 taken jump) + 1 not taken jump + 1 compare + 1 bit clear: (4) + 6 CPU cycles

In the worst case scenario, the induced error is 6 CPU clock cycles. So, polling could induce an error of 6 timer ticks.

The bootstrap loader ST10F296E

#### 6.7 Selective boot mode

Selective boot mode is a sub-case of alternate boot mode.

The following additional check is made when no signature of the alternate boot mode signature check is correct:

Address 00'1FFCh is read again.

- If a value 0000h or FFFFh is obtained, a jump is performed to the standard bootstrap
- If the value obtained is not 0000h or FFFFh:
  - High byte bits are disregarded
  - Low byte bits select which communication channel is enabled (see *Table 44*).

Table 44. Selective boot mode configurations

| Bit | Function                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------|
| 0   | UART selection 0: UART not watched for a start condition 1: UART is watched for a start condition   |
| 1   | CAN1 selection  0: CAN1 not watched for a start condition  1: CAN1 is watched for a start condition |
| 2-7 | Reserved  Must be programmed to 0 for upward compatibility                                          |

- 0xXX03 configures the selective bootstrap loader to poll for RxD0 and CAN1\_RxD.
- 0xXX01 configures the selective bootstrap loader to poll RxD0 only (no bootloading via CAN).
- ກຕ່າວບາ ading via L u ner values will le 0xXX02 configures the selective bootstrap loader to poll CAN1\_RxD only (no bootloading via UART).
  - c'ne: values will let the ST10F296E executing an endless loop into the Test-Flash.

## 7 Central processing unit (CPU)

The CPU includes a four-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been added for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Most instructions of the ST10F296E can be executed in one instruction cycle which requires 31.25 ns at 25 MHz CPU clock. For example, shift and rotate instructions are processed in one instruction cycle independent of the number of bits to be shifted.

Multiple-cycle instructions have been optimized. Branches are carried out in two cycles, 16 x 16-bit multiplication in five cycles and a 32/16-bit division in 10 cycles.

The jump cache reduces the execution time of repeatedly performed jumps in a loop, itom two cycles to one cycle.

The CPU uses a bank of 16 word registers to run the current context. This bent of general purpose registers (GPR) is physically stored within the on-chip internal 5.4.4 (IRAM) area. A context pointer (CP) register determines the base address of the active register bank to be accessed by the CPU.

The number of register banks is restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 bytes is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register.

Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

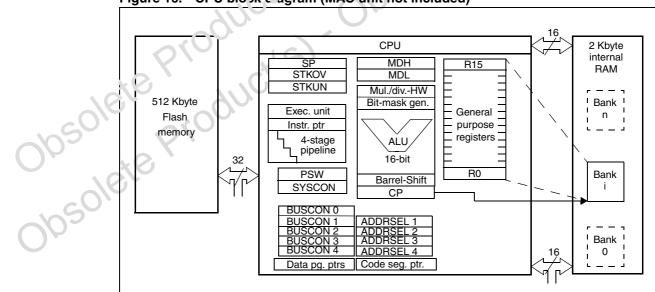



Figure 16. CPU blo ะห เบ่าลฐram (MAC unit not included)

182/346

### **Timer output**

The trigger output, XADCINJ, is generated when the current value of the timer (XTCVR) matches the end value stored in the XTEVR register and when the output enable bit is set (XTCR.TOE = 1). If the output enable bit is reset, no event is generated regardless of the timer status (the XADINJ pin is kept at high impedance state).

The XADCINJ output trigger event is a positive pulse of 12 CPU clock cycles width (187 ns @64 MHz). To generate an ADC channel injection it has to be externally connected to the input P7.7/CC31 (CAPCOM2 capture/compare).

Obsolete Product(s) Obsolete Product(s)
Obsolete Product(s)
Obsolete Product(s) The ADC exclusively converts Port 5 or XPort 10 inputs. If one 'y' channel has to be used continuously in injection mode, it must be externally connected by hardware to Port5.y and

77

Serial channels ST10F296E

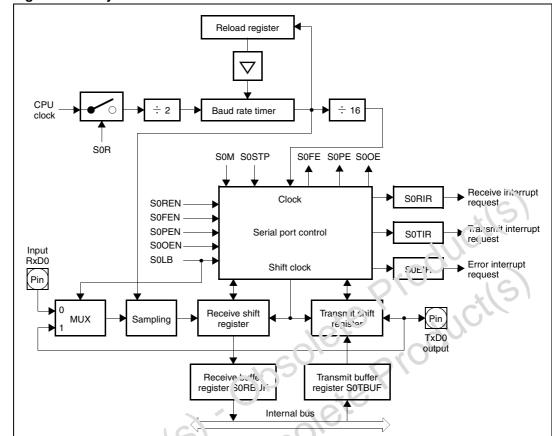



Figure 64. Asynchronous mode of serial channel ASC0

### 15.1.2 Asynchronous made baud rates

For asynchronous operation, the baud rate generator provides a clock with 16 times the rate of the established baud rate. Every received bit is sampled at the 7th, 8th and 9th cycle of this clock. The baud rate for asynchronous operations of serial channel ASCO and the cavaired reload value for a given baud rate can be determined by the following formulae:

$$B_{Async} = f_{CPU} / 16 \times [2 + (S0BRS)] \times [(S0BRL) + 1]$$
  
S0BRL =  $(f_{CPU} / 16 \times [2 + (S0BRS)] \times B_{Async}) - 1$ 

(S0BRL) represents the content of the reload register, taken as an unsigned 13-bit integer. (S0BRS) represents the value of the S0BRS bit (0 or 1), taken as an integer.

Using the above equations, the maximum baud rate can be calculated for any given clock speed. Baud rate versus the reload register value (for both S0BRS = 0 and S0BRS = 1) is described in *Table 118* and *Table 119* for a CPU clock frequency equal to 40 MHz and 64 MHz respectively.

ST10F296E System reset

Warning:

It is recommended to provide the external hardware with a current limitation circuitry. This is necessary to avoid permanent damage to the device during the power-on transient, when the capacitance on  $V_{18}$  pin is charged. For the on-chip voltage regulator functionality, 10 nF is sufficient. A maximum of 100 nF on the V<sub>18</sub> pin should not generate problems of overcurrent (a higher value is allowed if the current is limited by the external hardware). External current limitation is also recommended to avoid risks of damage in case of temporary shorts between V<sub>18</sub> and ground. The internal 1.8 V drivers are sized to drive currents of several tens of ampere, so, the current must be limited by the external hardware. The current limit is imposed by power dissipation considerations (refer to Section 24: Electrical characteristics).

ar-c et phase.

J the RS (II) pin grouermanently d'amage it. Figure 75 and Figure 76 show the asynchronous power-on timing diagrams with boot from internal or external memory respectively. The reset phase extension that is introduced by

Never power the device without keeping the RS [II ] pin grounded as the device could enter

Obsolete Produci(s). Obsolete Produci(s)

ST10F296E System reset

# 20.9 Reset summary

Table 132 summarizes the different reset events.

Table 132. Reset events summary

|                                                   |                                               |           | nal           | snoi<br>/snc                 | RS                                                              | ٧                                      | /DT( | CON  | flag | s          |      |
|---------------------------------------------------|-----------------------------------------------|-----------|---------------|------------------------------|-----------------------------------------------------------------|----------------------------------------|------|------|------|------------|------|
| Event                                             | GAA                                           | <u>EA</u> | Bidirectional | synchronous/<br>asynchronous | Min                                                             | Max                                    | PONR | LHWR | SHWR | SWR        | WDTR |
|                                                   | 0                                             | 0         | N             | Asynch.                      | 1 ms (VREG)<br>1.2 ms (reson. + PLL)<br>10.2 ms (crystal + PLL) | -                                      | 1    | 1    | 1    | 1          | 0    |
| Power-on reset                                    | 0                                             | 1         | N             | Asynch.                      | 1 ms (VREG)                                                     | -                                      | 1    | 1    | 1    |            | 0    |
|                                                   | 1                                             | х         | х             |                              |                                                                 | Forbidden                              | 777  |      |      |            |      |
|                                                   | X                                             | х         | Υ             |                              |                                                                 | Not applicable                         | 7    |      |      |            |      |
|                                                   | 0                                             | 0         | N             | Asynch.                      | 500 ns                                                          | -019                                   | 0    | 1    | 1    | 3          | 0    |
| Hardware reset                                    | 0                                             | 1         | N             | Asynch.                      | 500 ns                                                          | *6                                     | 0    | 1    | 1    | <b>►</b> 1 | 0    |
| (asynchronous)                                    | 0                                             | 0         | Υ             | Asynch.                      | 500 ns                                                          | 18,                                    | 0    | 1    | 1    | 1          | 0    |
|                                                   | 0                                             | 1         | Υ             | Asynch.                      | 500 ns                                                          | 0, 20                                  | 0    | 1    | 1    | 1          | 0    |
|                                                   | 1                                             | 0         | N             | Synch.                       | Max (4 TC′., 500 วิธ)                                           | 1032 + 12 TCL + max (4<br>TCL, 500 ns) | 0    | 0    | 1    | 1          | 0    |
|                                                   | 1                                             | 1         | N             | Synch.                       | Max '4 TCL, 500 ns)                                             | 1032 + 12 TCL + max (4<br>TCL, 500ns)  | 0    | 0    | 1    | 1          | 0    |
| Short hardware reset (synchronous) <sup>(1)</sup> | 1                                             | 0         | Υ             | Synch.                       | Max (4 TCL, 500 ns)                                             | 1032 + 12 TCL + max (4<br>TCL, 500 ns) | 0    | 0    | 1    | 1          | 0    |
| (synchronous)                                     |                                               |           |               | D                            | Activated by interna                                            | al logic for 1024 TCL                  |      |      |      |            |      |
|                                                   | 1                                             | 1         |               | Synch.                       | Max (4 TCL, 500 ns)                                             | 1032 + 12 TCL + max (4<br>TCL, 500 ns) | 0    | 0    | 1    | 1          | 0    |
|                                                   |                                               |           |               |                              | Activated by interna                                            |                                        |      |      |      |            |      |
| 250/10                                            | 1                                             | 0         | N             | Synch.                       | 1032 + 12 TCL + max<br>(4 TCL, 500 ns)                          | -                                      | 0    | 1    | 1    | 1          | 0    |
| O'                                                | 2                                             | 1         | N             | Synch.                       | 1032 + 12 TCL + max(<br>4 TCL, 500 ns)                          | -                                      | 0    | 1    | 1    | 1          | 0    |
| Long hardware reset (synchronous)                 | 1                                             | 0         | Υ             | Synch.                       | 1032 + 12 TCL + max<br>(4 TCL, 500 ns)                          | -                                      | 0    | 1    | 1    | 1          | 0    |
| (Synchronous)                                     |                                               |           |               |                              | Activated by internal le                                        | ogic only for 1024 TCL                 |      |      |      |            |      |
|                                                   | 1                                             | 1         | Υ             | Synch.                       | 1032 + 12 TCL + max<br>(4 TCL, 500 ns)                          | -                                      | 0    | 1    | 1    | 1          | 0    |
|                                                   | Activated by internal logic only for 1024 TCL |           |               |                              |                                                                 |                                        |      |      |      |            |      |

## 22 Programmable output clock divider

A specific register mapped on the XBus allows the division factor on the CLKOUT signal (P3.15) to be chosen. This register, XCLKOUTDIV, is mapped on the XMiscellaneous memory address range.

### **XCLKOUTDICV** register

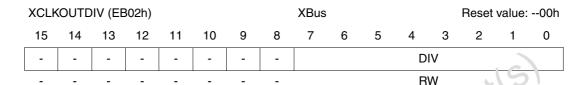



Table 136. XCLKOUTDIV register description

| Bit | Bit name |                                                                             | Function | 00,3 |
|-----|----------|-----------------------------------------------------------------------------|----------|------|
| 7-0 | DIV      | Clock divider setting<br>00h: F <sub>CLKOUT</sub> = F <sub>CPU</sub> /DIV+1 | *6       | Cile |

The CPU clock is output on P3.15, by default, when the CLKOUT function is enabled (setting the CLKEN bit of the SYSCON register)

By setting the XMISCEN and XPEN his of the XPERCON and SYSCON registers respectively, the clock prescaling factor can be programmed. In this way, a prescaled value of the CPU clock can be output on 23.15.

When the CLKOUT function is not enabled (clearing the CLKEN bit of the SYSCON on P3.15), P3.15 does not อากุษณ์ a clock signal, even though the XCLKOUTDIV register is programmed.

577

Table 140. SFRs ordered by name (continued)

| Name              | Physical address   | 8-bit<br>address | Description                                   | Reset<br>value |
|-------------------|--------------------|------------------|-----------------------------------------------|----------------|
| CC6IC (b)         | FF84h              | C2h              | CAPCOM register 6 interrupt control register  | 00h            |
| CC7               | FE8Eh              | 47h              | CAPCOM register 7                             | 0000h          |
| CC7IC <b>(b)</b>  | FF86h              | C3h              | CAPCOM register 7 interrupt control register  | 00h            |
| CC8               | FE90h              | 48h              | CAPCOM register 8                             | 0000h          |
| CC8IC (b)         | FF88h              | C4h              | CAPCOM register 8 interrupt control register  | 00h            |
| CC9               | FE92h              | 49h              | CAPCOM register 9                             | 0000h          |
| CC9IC (b)         | FF8Ah              | C5h              | CAPCOM register 9 interrupt control register  | 001            |
| CC10              | FE94h              | 4Ah              | CAPCOM register 10                            | 2000           |
| CC10IC <b>(b)</b> | FF8Ch              | C6h              | CAPCOM register 10 interrupt control register | 00h            |
| CC11              | FE96h              | 4Bh              | CAPCOM register 11                            | 0000h          |
| CC11IC <b>(b)</b> | FF8Eh              | C7h              | CAPCOM register 11 interrupt cont.or register | 00h            |
| CC12              | FE98h              | 4Ch              | CAPCOM register 12                            | 0000h          |
| CC12IC <b>(b)</b> | FF90h              | C8h              | CAPCOM register 12 internipt control register | 00h            |
| CC13              | FE9Ah              | 4Dh              | CAPCOM register 1(4                           | 0000h          |
| CC13IC <b>(b)</b> | FF92h              | C9h              | CAPCOM register 13 interrupt control register | 00h            |
| CC14              | FE9Ch              | 4Eh              | CAPCON' register 14                           | 0000h          |
| CC14IC <b>(b)</b> | FF94h              | CAh              | C^PCOM register 14 interrupt control register | 00h            |
| CC15              | FE9Eh              | 4Fh              | CAPCOM register 15                            | 0000h          |
| CC15IC <b>(b)</b> | FF96h              | C3,              | CAPCOM register 15 interrupt control register | 00h            |
| CC16              | FE60h              | 30h              | CAPCOM register 16                            | 0000h          |
| CC16IC <b>(b)</b> | 5160h ( <b>E</b> ) | B0h              | CAPCOM register 16 interrupt control register | 00h            |
| CC17              | FE62h              | 31h              | CAPCOM register 17                            | 0000h          |
| CC17IC (b)        | F162h <b>(E)</b>   | B1h              | CAPCOM register 17 interrupt control register | 00h            |
| CC18              | FE64h              | 32h              | CAPCOM register 18                            | 0000h          |
| CCidlC (b)        | F164h <b>(E)</b>   | B2h              | CAPCOM register 18 interrupt control register | 00h            |
| CC19              | FE66h              | 33h              | CAPCOM register 19                            | 0000h          |
| CC19IC <b>(b)</b> | F166h <b>(E)</b>   | B3h              | CAPCOM register 19 interrupt control register | 00h            |
| CC20              | FE68h              | 34h              | CAPCOM register 20                            | 0000h          |
| CC20IC (b)        | F168h <b>(E)</b>   | B4h              | CAPCOM register 20 interrupt control register | 00h            |
| CC21              | FE6Ah              | 35h              | CAPCOM register 21                            | 0000h          |
| CC21IC <b>(b)</b> | F16Ah <b>(E)</b>   | B5h              | CAPCOM register 21 interrupt control register | 00h            |
| CC22              | FE6Ch              | 36h              | CAPCOM register 22                            | 0000h          |
| CC22IC <b>(b)</b> | F16Ch (E)          | B6h              | CAPCOM register 22 interrupt control register | 00h            |
| CC23              | FE6Eh              | 37h              | CAPCOM register 23                            | 0000h          |

Table 143. X registers ordered by address (continued)

|      | Name        | Physical address | Description                 | Reset<br>value |
|------|-------------|------------------|-----------------------------|----------------|
|      | CAN2TR2     | EE82h            | CAN2 transmission request 2 | 0000h          |
|      | CAN2ND1     | EE90h            | CAN2 new data 1             | 0000h          |
|      | CAN2ND2     | EE92h            | CAN2 new data 2             | 0000h          |
|      | CAN2IP1     | EEA0h            | CAN2 interrupt pending 1    | 0000h          |
|      | CAN2IP2     | EEA2h            | CAN2 interrupt pending 2    | 0000h          |
|      | CAN2MV1     | EEB0h            | CAN2 message valid 1        | 0000h          |
|      | CAN2MV2     | EEB2h            | CAN2 message valid 2        | 0002h          |
|      | CAN1CR      | EF00h            | CAN1 CAN control register   | 0007h          |
|      | CAN1SR      | EF02h            | CAN1 status register        | 0000h          |
|      | CAN1EC      | EF04h            | CAN1 error counter          | 0000h          |
|      | CAN1BTR     | EF06h            | CAN1 bit timing register    | 2301h          |
|      | CAN1IR      | EF08h            | CAN1 interrupt register     | 0000h          |
|      | CAN1TR      | EF0Ah            | CAN1 test register          | 00x0h          |
|      | CAN1BRPER   | EF0Ch            | CAN1 BRP ex encion register | 0000h          |
|      | CAN1IF1CR   | EF10h            | CAN1 LT1 command request    | 0001h          |
|      | CAN1IF1CM   | EF12h            | CAN111 command mask         | 0000h          |
|      | CAN1IF1M1   | EF14h            | CAN1 IF1 mask 1             | FFFFh          |
|      | CAN1IF1M2   | EF1°h            | CAN1 IF1 mask 2             | FFFFh          |
|      | CAN1IF1A1   | Ei⁻18h           | CAN1 IF1 arbitration 1      | 0000h          |
|      | CAN1IF1A2   | EF1Ah            | CAN1 IF1 arbitration 2      | 0000h          |
|      | CAN1'F1 AC  | EF1Ch            | CAN1 IF1 message control    | 0000h          |
|      | CANTIF (DA1 | EF1Eh            | CAN1 IF1 data A 1           | 0000h          |
| 10   | CAN1IF1DA2  | EF20h            | CAN1 IF1 data A 2           | 0000h          |
| 0/   | CAN1IF1DB1  | EF22h            | CAN1 IF1 data B 1           | 0000h          |
| )    | CAN1IF1DB2  | EF24h            | CAN1 IF1 data B 2           | 0000h          |
|      | CAN1IF2CR   | EF40h            | CAN1 IF2 command request    | 0001h          |
|      | CAN1IF2CM   | EF42h            | CAN1 IF2 command mask       | 0000h          |
| 5    | CAN1IF2M1   | EF44h            | CAN1 IF2 mask 1             | FFFFh          |
| sole | CAN1IF2M2   | EF46h            | CAN1 IF2 mask 2             | FFFFh          |
|      | CAN1IF2A1   | EF48h            | CAN1 IF2 arbitration 1      | 0000h          |
|      | CAN1IF2A2   | EF4Ah            | CAN1 IF2 arbitration 2      | 0000h          |
|      | CAN1IF2MC   | EF4Ch            | CAN1 IF2 message control    | 0000h          |
|      | CAN1IF2DA1  | EF4Eh            | CAN1 IF2 data A 1           | 0000h          |
|      | CAN1IF2DA2  | EF50h            | CAN1 IF2 data A 2           | 0000h          |
|      |             |                  |                             |                |

## 23.7 Flash registers ordered by name

*Table 144* lists all Flash control registers which are implemented in the ST10F296E ordered by their name. As these registers are physically mapped on the XBus, they are not bit-addressable.

Table 144. Flash registers ordered by name

| Name                 | Physical address | Description                                            | Reset value |
|----------------------|------------------|--------------------------------------------------------|-------------|
| FARH                 | 0x000E 0012      | Flash address register high                            | 0000h       |
| FARL                 | 0x000E 0010      | Flash address register low                             | 0000h       |
| FCR0H                | 0x000E 0002      | Flash control register 0 - high                        | 7,000       |
| FCR0L                | 0x000E 0000      | Flash control register 0 - low                         | ე000h       |
| FCR1H                | 0x000E 0006      | Flash control register 1 - high                        | 0000h       |
| FCR1L                | 0x000E 0004      | Flash control register 1 - low                         | 0000h       |
| FDR0H                | 0x000E 000A      | Flash data register 0 - high                           | FFFFh       |
| FDR0L                | 0x000E 0008      | Flash data register 0 - low                            | FFFFh       |
| FDR1H                | 0x000E 000E      | Flash data register 1 - า่เมูh                         | FFFFh       |
| FDR1L                | 0x000E 000C      | Flash data register 1 - low                            | FFFFh       |
| FER                  | 0x000E 0014      | Flash Guer register                                    | 0000h       |
| FNVAPR0              | 0x000E DFB8      | Flash non volatile access protection register 0        | ACFFh       |
| FNVAPR1H             | 0x000E DFBE      | Flash non volatile access protection register 1 - high | FFFFh       |
| FNVAPR1L             | 0x000E D/BC      | Flash non volatile access protection register 1 - low  | FFFFh       |
| FNVWPIRH             | 0.1000E DEB6     | Flash non volatile protection I register high          | FFFFh       |
| FNVWPIRL             | 5.YCJ0E DFB4     | Flash non volatile protection I register low           | FFFFh       |
| FNVW PYRE!           | 0x000E DFB2      | Flash non volatile protection X register high          | FFFFh       |
| F(N) WPXRL<br> XrICR | 0x000E DFB0      | Flash non volatile protection X register low           | FFFFh       |
| VEICE                | 0x000E E000      | XFlash interface control register                      | 000Fh       |

In emulation mode, all XPeripherals are enabled (all XPERCON bits are set). The access to the external memory and/or the XBus is controlled by the bondout chip.

Reserved bits of the XPERCON register must always be written to 0.

When the RTC is disabled (RTCEN = 0) the main clock oscillator is switched off if the ST10 enters power-down mode. When the RTC is enabled, the RTCOFF bit of the RTCCON register allows the power-down mode of the main clock oscillator to be chosen (eee Section 18: Real-time clock (RTC) on page 203).

*Table 158* summarizes the address range mapping on segment 8 for programming the ROMEN and XPEN bits (of the SYSCON register) and the XRAM2EN and XFLASHEN bits (of the XPERCON register).

| 14210 1001 0 | oginioni o addir | occ range map    | PH-19            |                  |
|--------------|------------------|------------------|------------------|------------------|
| ROMEN        | XPEN             | XRAM2EN          | XFLASHEN         | Segmer † ¿       |
| 0            | 0                | x <sup>(1)</sup> | x <sup>(1)</sup> | External inchary |
| 0            | 1                | 0                | 0                | External memory  |
| 0            | 1                | 1                | x <sup>(1)</sup> | Reserved         |
| 0            | 1                | x <sup>(1)</sup> | 1,0              | Reserved         |
| 1            | x <sup>(1)</sup> | x <sup>(1)</sup> | 7(1)             | IFlash (B1F1)    |

Table 158. Segment 8 address range mapping

### 23.10.1 XPEREMU register

The XPEREMU register is a write-only register that is mapped on the XBus memory space at address EB7Eh. It contrasts with the XPERCON register, a read/write ESFR register, which must be programmed to enable the single XBus modules separately.

Once the XPEN of the SYSCON register is set and at least one of the XPeripherals (except the morpo ies) is activated, the XPEREMU register must be written with the same content as the XPERCON register. This is to allow a correct emulation of the new set of features introduced on the XBus for the new ST10 generation. The following instructions must be added inside the initialization routine:

```
if (SYSCON.XPEN && (XPERCON & 0 \times 07D3)) then { XPEREMU = XPERCON }
```

XPEREMU must be programmed after both the XPERCON and SYSCON registers in such a way that the final configuration for the XPeripherals is stored in the XPEREMU register and used for the emulation hardware setup.

| 1 | XPEREMU (EB7Eh) XBus |    |    |    |             |             |            |            |            |            | Reset value: xxxxh |            |             |             |            |            |
|---|----------------------|----|----|----|-------------|-------------|------------|------------|------------|------------|--------------------|------------|-------------|-------------|------------|------------|
|   | 15                   | 14 | 13 | 12 | 11          | 10          | 9          | 8          | 7          | 6          | 5                  | 4          | 3           | 2           | 1          | 0          |
|   | -                    | -  | -  | -  | XPORT<br>EN | XMISC<br>EN | XI2C<br>EN | XSSC<br>EN | XASC<br>EN | XPWM<br>EN | XFLASH<br>EN       | XRTC<br>EN | XRAM<br>2EN | XRAM<br>1EN | CAN<br>2EN | CAN<br>1EN |
| • | -                    | -  | -  | -  | W           | W           | W          | W          | W          | W          | W                  | W          | W           | W           | W          | W          |

XPEREMU bit descriptition follows the XPERCON register (see Table 5 and Table 157).

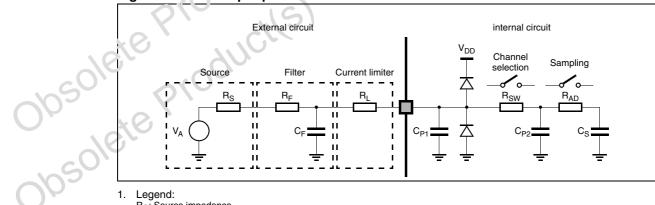
<sup>1.</sup> Don't care

ST10F296E **Electrical characteristics** 

#### 24.7.3 Analog reference pins

The accuracy of the ADC converter depends on the accuracy of its analog reference. A noise in the reference results in the same proportion of error in a conversion. A low pass filter on the ADC converter reference source (supplied through the V<sub>AREF</sub> and V<sub>AGND</sub> pins), is recommended to clean the signal thereby minimizing the noise. A simple capacitive bypassing may be sufficient in most cases. In the presence of high RF noise energy, inductors or ferrite beads may be necessary.

In the ST10F296E architecture, the  $V_{AREF}$  and  $V_{AGND}$  pins also represent the power supply of the analog circuitry of the ADC. An effective DC current is required from the reference voltage to the internal resistor string in the R-C DAC array and to the rest of the analog circuitry.


An external resistance on V<sub>AREF</sub> could introduce error under certain conditions. For this reason, series resistance is not advisable. Any series devices in the filter network should be designed to minimize the DC resistance.

#### 24.7.4 Analog input pins

To improve the accuracy of the ADC, analog input pins must reverse low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective. The capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin. Moreover, the source of the capacitor charges during the sampling phase, when the analog signal source is a highimpedance source.

A real filter is typically obtained by using a series resistance with a capacitor on the input pin (simple RC filter). RC filtering may be limited according to the value of the impedance source of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be assigned to account for the dynamic characteristics of the input signal (bandwidth).

ADC input pins scheme Figure 99.



Legend:

R<sub>S</sub>: Source impedance

R<sub>F</sub>: Filter resistance

C<sub>E</sub>: Filter capacitance

R<sub>I</sub>: Current limiter resistance

R<sub>SW</sub>: Channel selection switch impedance

R<sub>AD</sub>: Sampling switch impedance

Pin capacitance (two contributions, CP1 and CP2)

S: Sampling capacitance

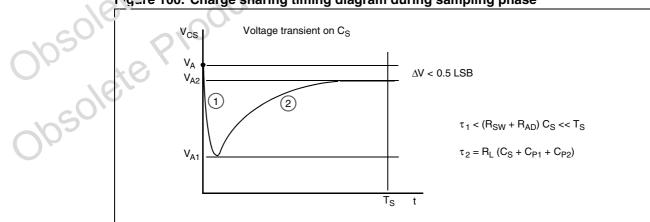
VA: Source voltage

#### Input leakage and external circuit

The series resistor used to limit the current to a pin (see  $R_L$  in *Figure 99*), in combination with a large source of impedance, can lead to a degradation of the ADC accuracy when input leakage is present.

Data about maximum input leakage current at each pin is provided in *Section 24.5: DC characteristics*. Input leakage is greatest at high operating temperatures and generally decreases by one half a degree for each 10 °C decrease in temperature.

Considering that one count of a 10-bit ADC is about 5 mV (assuming  $V_{AREF} = 5$  V), an input leakage of 100 nA acting though an  $R_L = 50$  k $\Omega$  of external resistance, leads to an error of exactly one count (5 mV). If the resistance is 100 k $\Omega$ , the error is two counts (10 mV).


Additional leakage due to external clamping diodes must also be taken into account in computing the total leakage affecting the ADC measurements. Another contribution in the total leakage is represented by the charge sharing effects with the sampling capacitance. The sampling capacitance,  $C_S$ , is essentially a switched capacitance with a frequency equal to the conversion rate of a single channel (maximum when the fixed change continuous conversion mode is selected). It can be seen as a resistive path to ground. For instance, assuming a conversion rate of 250 kHz and a  $C_S$  of 4 pF, a resistance of 1 M $\Omega$  is obtained ( $R_{EQ} = 1/f_C C_S$ , where  $f_C$  represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning that we in this resistance (sampled voltage on  $C_S$ ) and the sum of  $R_S + R_F + R_L + R_{SV} + R_{AD}$ , the external circuit must be designed to respect the following relation:

#### **Equation 25**

$$V_A \times (R_S + R_F + R_L + R_{SW} + R_{AD}) / R_{EQ} < (1/2)LSB$$

Equation 25 places constraints on the external network design, in particular on the resistive path.

A second aspect of the capacitance network must be considered. Assuming the three capacitances.  $C_{F_1} \cap_{P_1}$  and  $C_{P_2}$ , are initially charged at the source voltage  $V_A$  (see *Figure 99*) when the sampling phase is started (ADC switch closed), a charge-sharing phenomena begins (see *Figure 100*).



คัญนาย 100. Charge sharing timing diagram during sampling phase

Two different transient periods can be distinguished in *Figure 100*. They are described below.

ST10F296E Electrical characteristics

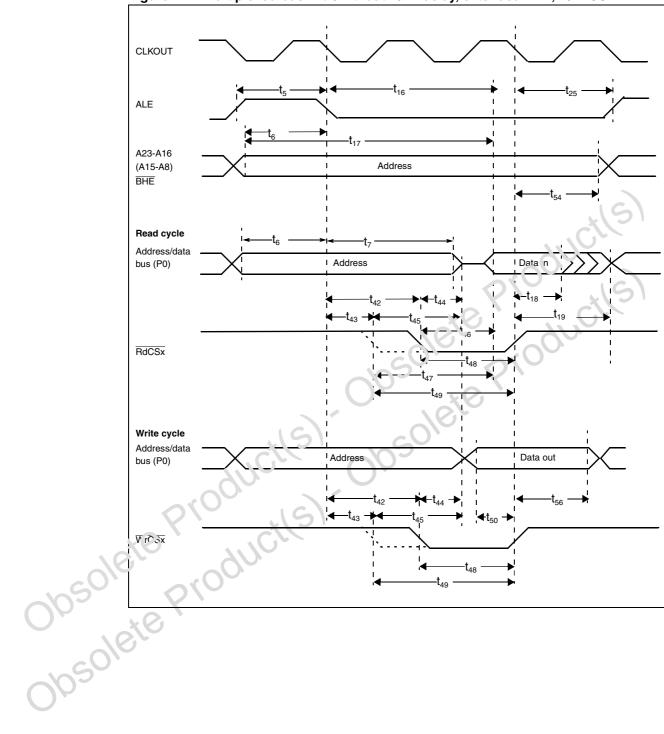
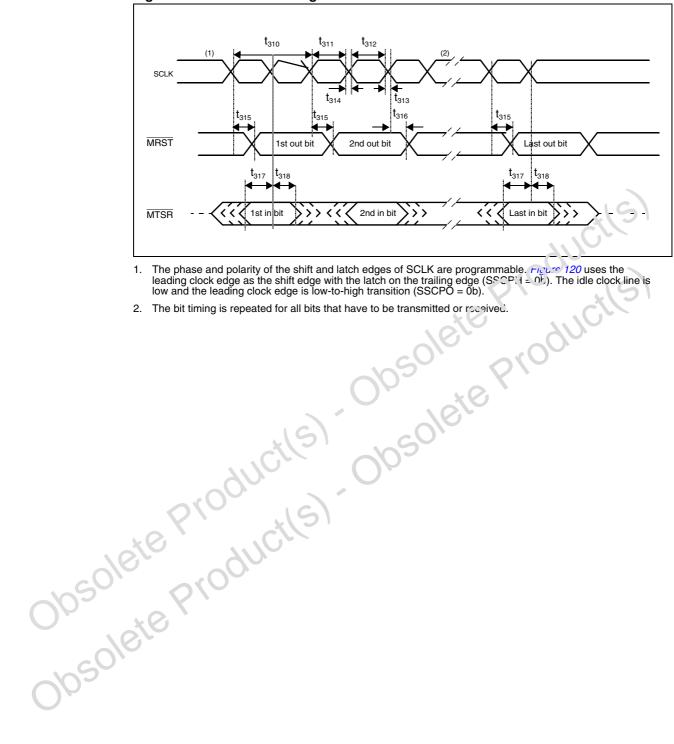




Figure 111. Multiplexed bus with/without R/W delay, extended ALE, R/W CS

Figure 120. SSC slave timing



- The phase and polarity of the shift and latch edges of SCLK are programmable. Figure 120 uses the leading clock edge as the shift edge with the latch on the trailing edge (SSCP) 1 = 05). The idle clock line is low and the leading clock edge is low-to-high transition (SSCPO = 0b).

577

Ordering information ST10F296E

## 26 Ordering information

Table 182. Order codes

| Order codes | Package  | Packing       | Temperature range (°C) | CPU frequency range (MHz) |  |  |
|-------------|----------|---------------|------------------------|---------------------------|--|--|
| ST10F296    | PBGA208  | Tray          | -40 to 125             | 1 to 64                   |  |  |
| ST10F296TR  | I DUAZUU | Tape and reel | -70 10 120             | 1 10 04                   |  |  |

Obsolete Products). Obsolete Products) Obsolete Products). Obsolete Products).