

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	4160
Number of Logic Elements/Cells	37440
Total RAM Bits	1548288
Number of I/O	519
Number of Gates	1800000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3sd1800a-4fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	System	Equivalent Logic	(Or	CLB A e CLB = F			Distributed	Block RAM	Dedicated Multipliers	DCMe	Maximum	Maximum Differential
	Gates		Rows	Columns	Total CLBs	Total Slices	RAM bits ⁽¹⁾	Bits (1)	Multipliers	DCINIS	User I/O	I/O Pairs
XA3SD1800A	1800K	37,440	88	48	4,160	16,640	260K	1512K	84	8	519	227
XA3SD3400A	3400K	53,712	104	58	5,968	23,872	373K	2268K	126	8	469	213

Table 1: Summary of XA Spartan-3A DSP FPGA Attributes

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

Refer to <u>DS610</u>, *Spartan-3A DSP FPGA Family Data Sheet* for a full product description, AC and DC specifications, and package pinout descriptions. Any values shown specifically in this XA Spartan-3A DSP Automotive FPGA Family data sheet override those shown in DS610.

For information regarding reliability qualification, refer to RPT103, *Xilinx Spartan-3A Family Automotive Qualification Report* and RPT070, *Spartan-3A Commercial Qualification Report*. Contact your local Xilinx representative for more details on these reports.

Key Feature Differences from Commercial XC Devices

- AEC-Q100 device qualification and full production part approval process (PPAP) documentation support available in both extended temperature I- and Q-Grades
- Guaranteed to meet full electrical specifications over the $T_{J} = -40^{\circ}$ C to $+125^{\circ}$ C temperature range (Q-Grade)
- XA Spartan-3A DSP devices are available in the -4 speed grade only
- PCI-66 and PCI-X are not supported in the XA Spartan-3A DSP FPGA product line
- Platform Flash is not supported within the XA family
- XA Spartan-3A DSP devices are available in Pb-free packaging only
- MultiBoot is not supported in XA versions of this product.
- The XA Spartan-3A DSP device must be power cycled prior to reconfiguration.

Architectural Overview

The XA Spartan-3A DSP family architecture consists of five fundamental programmable functional elements:

- XtremeDSP DSP48A Slice provides an 18-bit x 18-bit multiplier, 18-bit pre-adder, 48-bit post-adder/accumulator, and cascade capabilities for various DSP applications.
- **Configurable Logic Blocks (CLBs)** contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. IOBs support bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including several high-performance differential standards. Double Data-Rate (DDR) registers are included.
- Block RAM provides data storage in the form of 18-Kb dual-port blocks.
- **Digital Clock Manager (DCM) Blocks** provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A dual ring of staggered IOBs surrounds a regular array of CLBs. The XA3SD1800A has four columns of DSP48A slices, and the XA3SD3400A has five columns of DSP48A slices. Each DSP48A has an associated block RAM. The DCMs are positioned in the center with two at the top and two at the bottom of the device and in the two outer columns of the four or five columns of block RAM and DSP48As.

The XA Spartan-3A DSP family features a rich network of routing that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

DC Electrical Characteristics

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the published parameter values apply to all XA Spartan-3A DSP devices. AC and DC characteristics are specified using the same numbers for both I-Grade and Q-Grade.

Absolute Maximum Ratings

Stresses beyond those listed under Table 4, *Absolute Maximum Ratings* might cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability.

Symbol	Description	Conditions	Min	Max	Units
V _{CCINT}	Internal supply voltage		-0.5	1.32	V
V _{CCAUX}	Auxiliary supply voltage		-0.5	3.75	V
V _{CCO}	Output driver supply voltage		-0.5	3.75	V
V _{REF}	Input reference voltage		-0.5	V _{CCO} + 0.5	V
V _{IN}	Voltage applied to all User I/O pins and Dual-Purpose pins	Driver in a high-impedance state	-0.95	4.6	V
	Voltage applied to all Dedicated pins		-0.5	4.6	V
I _{IK}	Input clamp current per I/O pin	$-0.5V < V_{IN} < (V_{CCO} + 0.5V)$ ⁽¹⁾	-	±100	mA
		Human body model	-	±2000	V
V _{ESD}	Electrostatic Discharge Voltage	Charged device model	-	±500	V
		Machine model	_	±200	V
Τ _J	Junction temperature		-	125	°C
T _{STG}	Storage temperature		-65	150	°C

Table 4: Absolute Maximum Ratings

Notes:

1. Upper clamp applies only when using PCI IOSTANDARDs.

2. For soldering guidelines, see <u>UG112</u>: Device Packaging and Thermal Characteristics and <u>XAPP427</u>: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

	Vcc	_{CO} for Drive	rs ⁽¹⁾		V _{ID}		V _{ICM} ⁽²⁾			
IOSTANDARD Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)	
LVDS_25 ⁽³⁾	2.25	2.5	2.75	100	350	600	0.3	1.25	2.35	
LVDS_33 ⁽³⁾	3.0	3.3	3.6	100	350	600	0.3	1.25	2.35	
BLVDS_25 ⁽⁴⁾	2.25	2.5	2.75	100	300	-	0.3	1.3	2.35	
MINI_LVDS_25 ⁽³⁾	2.25	2.5	2.75	200	-	600	0.3	1.2	1.95	
MINI_LVDS_33 ⁽³⁾	3.0	3.3	3.6	200	-	600	0.3	1.2	1.95	
LVPECL_25 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	1.95	
LVPECL_33 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	2.8 ⁽⁶⁾	
RSDS_25 ⁽³⁾	2.25	2.5	2.75	100	200	-	0.3	1.2	1.5	
RSDS_33 ⁽³⁾	3.0	3.3	3.6	100	200	-	0.3	1.2	1.5	
TMDS_33 ^(3,4,7)	3.14	3.3	3.47	150	-	1200	2.7	-	3.23	
PPDS_25 ⁽³⁾	2.25	2.5	2.75	100	-	400	0.2	-	2.3	
PPDS_33 ⁽³⁾	3.0	3.3	3.6	100	-	400	0.2	-	2.3	
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_II_18 ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_I	1.4	1.5	1.6	100	-	-	0.68		0.9	
DIFF_HSTL_III	1.4	1.5	1.6	100	-	-	-	0.9	-	
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1	
DIFF_SSTL18_II ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.7	-	1.1	
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5	
DIFF_SSTL2_II ⁽⁸⁾	2.3	2.5	2.7	100	-	-	1.0	-	1.5	
DIFF_SSTL3_I	3.0	3.3	3.6	100	-	-	1.1	-	1.9	
DIFF_SSTL3_II	3.0	3.3	3.6	100	-	-	1.1	-	1.9	

Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2.

 V_{ICM} must be less than V_{CCAUX} . These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. 3.

See External Termination Requirements for Differential I/O, page 16. 4.

LVPECL is supported on inputs only, not outputs. LVPECL_33 requires V_{CCAUX} = 3.3V ± 10%. 5.

6.

7.

8.

EVPECL as supported on inputs only, not outputs. EVPECL_33 requires $V_{CCAUX} = 0.37 \pm 10\%$. EVPECL_33 maximum V_{ICM} = the lower of 2.8V or $V_{CCAUX} - (V_{ID}/2)$. Requires $V_{CCAUX} = 3.3V \pm 10\%$ for inputs. ($V_{CCAUX} - 300 \text{ mV}$) $\leq V_{ICM} \leq (V_{CCAUX} - 37 \text{ mV})$ These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. V_{REF} inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V_{REF} settings are the same as for the single-ended versions in Table 11. Other differential 9. standards do not use V_{REF}

www.xilinx.com

I/O Timing

Pin-to-Pin Clock-to-Output Times

Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

Symbol	Department	Conditions	Device	Speed Grade: -4	Units
Symbol	Description	Conditions	Device	Max	Units
Clock-to-Out	put Times				
T _{ICKOFDCM}	When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew	XA3SD1800A	3.51	ns
	Clock pin to data appearing at the Output pin. The DCM is in use.	rate, with DCM ⁽³⁾	XA3SD3400A	3.82	ns
T _{ICKOF}	When reading from OFF, the time from the active transition on the Global Clock pin to data	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew	XA3SD1800A	5.58	ns
	appearing at the Output pin. The DCM is not in use.	rate, without DCM	XA3SD3400A	6.13	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 23. If the latter is true, *add* the appropriate Output adjustment from Table 26.

3. DCM output jitter is included in all measurements.

Pin-to-Pin Setup and Hold Times

Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

Symbol	Description	Conditions	Device	Speed Grade: -4	Units	
Symbol	Description	Conditions	Device	Min	Units	
Setup Times						
T _{PSDCM}	When writing to the Input Flip-Flop (IFF), the time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE=0,	XA3SD1800A	3.11	ns	
	the active transition at a Global Clock pin. The DCM is in use. No Input Delay is programmed.	al Clock pin. The with DCM ⁽⁴⁾ y is programmed.	XA3SD3400A	2.49	ns	
T _{PSFD}	When writing to IFF, the time from the setup of data at the Input pin to an active transition at	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE=6,	XA3SD1800A	3.39	ns	
	the Global Clock pin. The DCM is not in use. The Input Delay is programmed.	without DCM	XA3SD3400A	3.08	ns	
Hold Times		1				
T _{PHDCM}	When writing to IFF, the time from the active transition at the Global Clock pin to the point	LVCMOS25 ⁽³⁾ , IFD_DELAY_VALUE = 0,	XA3SD1800A	-0.38	ns	
	when data must be held at the Input pin. The DCM is in use. No Input Delay is programmed.	with DCM ⁽⁴⁾	XA3SD3400A	-0.26	ns	
T _{PHFD}	When writing to IFF, the time from the active transition at the Global Clock pin to the point	LVCMOS25 ⁽³⁾ , IFD_DELAY_VALUE=6,	XA3SD1800A	-0.71	ns	
	when data must be held at the Input pin. The without DCM DCM is not in use. The Input Delay is programmed.		XA3SD3400A	-0.65	ns	

Notes:

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the appropriate Input adjustment from the same table.

3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 23. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.

4. DCM output jitter is included in all measurements.

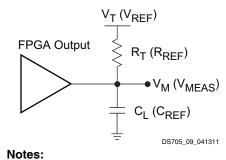
^{1.} The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

Output Timing Adjustments

Table 26: Output Timing Adjustments for IOB

Convert Output Time from L	VCMOS25 with 12mA Drive a	nd Fast	Add the Adjustment Below	
Slew Rate to the Followin	g Signal Standard (IOSTAND	ARD)	Speed Grade: -4	Units
Single-Ended Standards				
LVTTL	Slow	2 mA	5.58	ns
		4 mA	3.44	ns
		6 mA	3.44	ns
		8 mA	2.26	ns
		12 mA	1.66	ns
		16 mA	1.29	ns
		24 mA	2.97	ns
	Fast	2 mA	3.37	ns
		4 mA	2.26	ns
		6 mA	2.26	ns
		8 mA	0.62	ns
		12 mA	0.61	ns
		16 mA	0.59	ns
		24 mA	0.60	ns
	QuietIO	2 mA	27.67	ns
		4 mA	27.67	ns
		6 mA	27.67	ns
		8 mA	16.71	ns
		12 mA	16.67	ns
		16 mA	16.22	ns
		24 mA	12.11	ns

Convert Output Time from LV			Add the Adjustment Below	Unite
	Signal Standard (IOSTAND		Speed Grade: -4	Units
LVCMOS33	Slow	2 mA	5.58	ns
		4 mA	3.30	ns
		6 mA	3.30	ns
		8 mA	2.26	ns
		12 mA	1.29	ns
		16 mA	1.21	ns
		24 mA	2.79	ns
	Fast	2 mA	3.72	ns
		4 mA	2.04	ns
		6 mA	2.08	ns
		8 mA	0.53	ns
		12 mA	0.59	ns
		16 mA	0.59	ns
		24 mA	0.51	ns
	QuietIO	2 mA	27.67	ns
		4 mA	27.67	ns
		6 mA	27.67	ns
		8 mA	16.71	ns
		12 mA	16.29	ns
		16 mA	16.18	ns
		24 mA	12.11	ns


Table 26: Output Timing Adjustments for IOB (Cont'd)

Timing Measurement Methodology

When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 27 lists the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V_L and a High logic level of V_H is applied to the Input under test. Some standards also require the application of a bias voltage to the V_{REF} pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (V_M) is commonly located halfway between V_L and V_H .

The Output test setup is shown in Figure 9. A termination voltage V_T is applied to the termination resistor R_T , the other end of which is connected to the Output. For each standard, R_T and V_T generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (for example, LVCMOS, LVTTL), then R_T is set to 1 M Ω to indicate an open connection, and V_T is set to zero. The same measurement point (V_M) that was used at the Input is also used at the Output.

1. The names shown in parentheses are used in the IBIS file.

Figure 9: Output Test Setup

Signal Standard (IOSTANDARD)			Inputs		Out	puts	Inputs and Outputs
		V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
Single-Ende	d			· · · · ·			
LVTTL		-	0	3.3	1M	0	1.4
LVCMOS33		-	0	3.3	1M	0	1.65
LVCMOS25		-	0	2.5	1M	0	1.25
LVCMOS18		-	0	1.8	1M	0	0.9
LVCMOS15		-	0	1.5	1M	0	0.75
LVCMOS12		_	0	1.2	1M	0	0.6
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94
	Falling				25	3.3	2.03
HSTL_I	_!	0.75	V _{REF} – 0.5	V _{REF} + 0.5	50	0.75	V _{REF}
HSTL_III		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}
HSTL_I_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
HSTL_II_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}
HSTL_III_18		1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
SSTL18_II		0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}

Table 27: Test Methods for Timing Measurement at I/Os

Using IBIS Models to Simulate Load Conditions in Application

IBIS models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF} R_{REF} and V_{MEAS}) correspond directly with the parameters used in Table 27 (V_T , R_T , and V_M). Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table. A fourth parameter, C_{REF} is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link:

www.xilinx.com/support/download/index.htm

Delays for a given application are simulated according to its specific load conditions as follows:

- 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 9. Use parameter values V_T, R_T, and V_M from Table 27. C_{REF} is zero.
- 2. Record the time to V_M .
- Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF} R_{REF} C_{REF} and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS}.
- 5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 26) to yield the worst-case delay of the PCB trace.

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

Table 28 and Table 29 provide the essential SSO guidelines. For each device/package combination, Table 28 provides the number of equivalent V_{CCO}/GND pairs. The equivalent number of pairs is based on characterization and may not match the physical number of pairs. For each output signal standard and drive strength, Table 29 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO}/GND pair within an I/O bank. The guidelines in Table 29 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 28 and Table 29 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 28 x Table 29

The recommended maximum SSO values assumes that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics.

Table 28: Equivalent V_{CCO}/GND Pairs per Bank

Device	Package Style (Pb-free)					
Device	CSG484	FGG676				
XA3SD1800A	6	9				
XA3SD3400A	6	10				

0:			Package Type: CS	G484 and FGG676
Signal Standard (IOSTANDARD)			Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)
LVCMOS33	Slow	2	76	76
		4	46	46
		6	27	27
		8	20	20
		12	13	13
		16	10	10
		24	-	9
	Fast	2	10	10
		4	8	8
		6	5	5
		8	4	4
		12	4	4
		16	2	2
		24	-	2
	QuietIO	2	76	76
		4	46	46
		6	32	32
		8	26	26
		12	18	18
		16	14	14
		24	-	10

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

www.xilinx.com

DSP48A Timing

To reference the DSP48A block diagram, see the XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide (UG431).

Table 35: Setup Times for the DSP48A

Cumb al	Description	Due eddau	M	Deet edder	Speed Grade: -4	Unite
Symbol	Description	Pre-adder	Multiplier	Post-adder	Min	Units
Setup Times of	f Data/Control Pins to the Input Register Clo	ck				
T _{DSPDCK_AA}	A input to A register CLK	-	-	-	0.04	ns
T _{DSPDCK_DB}	D input to B register CLK	Yes ⁽¹⁾	-	-	1.88	ns
T _{DSPDCK_CC}	C input to C register CLK	_	-	-	0.05	ns
T _{DSPDCK_DD}	D input to D register CLK	_	-	-	0.04	ns
T _{DSPDCK_OPB}	OPMODE input to B register CLK	Yes	_	-	0.42	ns
T _{DSPDCK_OPOP}	OPMODE input to OPMODE register CLK	_	_	_	0.06	ns
Setup Times of	f Data Pins to the Pipeline Register Clock		L			
T _{DSPDCK_AM}	A input to M register CLK	_	Yes	_	3.79	ns
T _{DSPDCK_BM}	B input to M register CLK	Yes	Yes	_	4.97	ns
		No	Yes	_	3.79	ns
T _{DSPDCK_DM}	D input to M register CLK	Yes	Yes	-	5.06	ns
T _{DSPDCK_OPM}	OPMODE to M register CLK	Yes	Yes	_	5.42	ns
Setup Times of	f Data/Control Pins to the Output Register Cl	ock	•			
T _{DSPDCK_AP}	A input to P register CLK	-	Yes	Yes	5.49	ns
T _{DSPDCK_BP}	B input to P register CLK	Yes	Yes	Yes	6.74	ns
_		No	Yes	Yes	5.48	ns
T _{DSPDCK_DP}	D input to P register CLK	Yes	Yes	Yes	6.83	ns
T _{DSPDCK_CP}	C input to P register CLK	_	-	Yes	2.18	ns
T _{DSPDCK} OPP	OPMODE input to P register CLK	Yes	Yes	Yes	7.18	ns

Notes:

1. "Yes" means that the component is in the path. "No" means that the component is being bypassed. "-" means that no path exists, so it is not applicable.

2. The numbers in this table are based on the operating conditions set forth in Table 8.

Cumhal	Description	Dre edder	Multiplier	Deet edder	Speed Grade: -4	Unite
Symbol		Pre-adder		Post-adder	Min	Units
Clock to Out f	rom Output Register Clock to Output Pin		·	·		
T _{DSPCKO_PP}	CLK (PREG) to P output	_	_	-	1.44	ns
Clock to Out f	rom Pipeline Register Clock to Output Pins				1	<u>.</u>
T _{DSPCKO_PM}	CLK (MREG) to P output	-	Yes ⁽¹⁾	Yes	3.63	ns
		_	Yes	No	2.23	ns
Clock to Out f	rom Input Register Clock to Output Pins	ł	1	1	1	
T _{DSPCKO_PA}	CLK (AREG) to P output	-	Yes	Yes	7.27	ns
T _{DSPCKO_PB}	CLK (BREG) to P output	Yes	Yes	Yes	8.56	ns
T _{DSPCKO_PC}	CLK (CREG) to P output	_	_	Yes	3.87	ns
T _{DSPCKO_PD}	CLK (DREG) to P output	Yes	Yes	Yes	8.42	ns
Combinatoria	Delays from Input Pins to Output Pins					μ
T _{DSPDO_AP}	A or B input to P output	_	No	Yes	3.19	ns
T _{DSPDO_BP}		_	Yes	No	5.28	ns
		_	Yes	Yes	6.49	ns
T _{DSPDO_BP}	B input to P output	Yes	No	No	4.01	ns
		Yes	Yes	No	6.65	ns
		Yes	Yes	Yes	7.74	ns
T _{DSPDO_CP}	C input to P output	_	_	Yes	3.17	ns
T _{DSPDO_DP}	D input to P output	Yes	Yes	Yes	7.82	ns
T _{DSPDO_OPP}	OPMODE input to P output	Yes	Yes	Yes	8.18	ns
Maximum Free	quency					<u>.</u>
F _{MAX}	All registers used	Yes	Yes	Yes	250	MHz

Table 36: Clock to Out, Propagation Delays, and Maximum Frequency for the DSP48A

Notes:

1. "Yes" means that the component is in the path. "No" means that the component is being bypassed. "-" means that no path exists, so it is not applicable.

2. To reference the DSP48A block diagram, see UG431, XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide.

3. The numbers in this table are based on the operating conditions set forth in Table 8.

www.xilinx.com

Table 38: Switching Characteristics for the DLL

Symbol	Descriptio		Davias	Spee	ed Grade: -4	Units
Symbol	Descriptio	n	Device	Min	Мах	Units
Output Frequency Range	s				·	
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK18	30 outputs	All	5	250	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK2	270 outputs		5	200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2	2X180 outputs		10	334	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output			0.3125	166	MHz
Output Clock Jitter ^(2,3,4)	L		I	J	L	
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output		All	_	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output			-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output			_	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output			_	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2	2X180 outputs		-	±[0.5% of CLKIN period + 100]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output whe division	nen performing integer		-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output wh division	hen performing non-integer		-	±[0.5% of CLKIN period + 100]	ps
Duty Cycle ⁽⁴⁾						
CLKOUT_DUTY_CYCLE_ DLL	Duty cycle variation for the CLK0, C CLK2X, CLK2X180, and CLKDV ou BUFGMUX and clock tree duty-cycl	tputs, including the	All	-	±[1% of CLKIN period + 350]	ps
Phase Alignment ⁽⁴⁾			I		I	
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN ar	nd CLKFB inputs	All	-	±150	ps
CLKOUT_PHASE_DLL	Phase offset between DLL outputs	CLK0 to CLK2X (not CLK2X180)		-	±[1% of CLKIN period + 100]	ps
		All others		-	±[1% of CLKIN period + 150]	ps
Lock Time					1	
LOCK_DLL ⁽³⁾	When using the DLL alone: The	$5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \leq 15 \text{ MHz}$	All	-	5	ms
	time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase	F _{CLKIN} > 15 MHz		_	600	μs
Delay Lines						
DCM_DELAY_STEP ⁽⁵⁾	Finest delay resolution, averaged or	ver all steps	All	15	35	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 37.

2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.

3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.

4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps, averaged over all steps.

5. The typical delay step size is 23 ps.

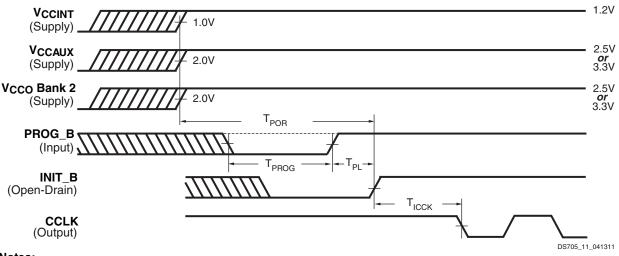
Miscellaneous DCM Timing

Table 43: Miscellaneous DCM Timing

Symbol	Description	Min	Мах	Units
DCM_RST_PW_MIN	Minimum duration of a RST pulse width	3	-	CLKIN cycles

DNA Port Timing

Table 44: DNA_PORT Interface Timing


Symbol	Description	Min	Max	Units
T _{DNASSU}	Setup time on SHIFT before the rising edge of CLK	1.0	-	ns
T _{DNASH}	Hold time on SHIFT after the rising edge of CLK	0.5	-	ns
T _{DNADSU}	Setup time on DIN before the rising edge of CLK	1.0	-	ns
T _{DNADH}	Hold time on DIN after the rising edge of CLK	0.5	-	ns
T _{DNARSU}	Setup time on READ before the rising edge of CLK	5.0	10,000	ns
T _{DNARH}	Hold time on READ after the rising edge of CLK	0.0	-	ns
T _{DNADCKO}	Clock-to-output delay on DOUT after rising edge of CLK	0.5	1.5	ns
T _{DNACLKF}	CLK frequency	0.0	100	MHz
T _{DNACLKH}	CLK High time	1.0	x	ns
T _{DNACLKL}	CLK Low time	1.0	x	ns

Notes:

1. The minimum READ pulse width is 5 ns, and the maximum READ pulse width is 10 $\mu s.$

Configuration and JTAG Timing

General Configuration Power-On/Reconfigure Timing

Notes:

- 1. The $V_{CCINT}\!,\,V_{CCAUX}\!,$ and V_{CCO} supplies can be applied in any order.
- 2. The Low-going pulse on PROG_B is optional after power-on.
- 3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 M2).

Figure 11: Waveforms for Power-On and the Beginning of Configuration

Table 46: Power-On Timing and the Beginning of Configuration

Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V _{CCINT} , V _{CCAUX} , and V _{CCO} Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin	All	-	18	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin	All	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	300	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8. This means power must be applied to all V_{CCINT} , V_{CCO} , and V_{CCAUX} lines.
- 2. Power-on reset and the clearing of configuration memory occurs during this period.
- 3. This specification applies only to the SPI and BPI modes.
- 4. For details on configuration, see UG332, Spartan-3 Generation Configuration User Guide.

Configuration Clock (CCLK) Characteristics

Table 47: CCLK Output Period by ConfigRate Option Setting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by <i>ConfigRate</i> setting	1 (power-on value)	I-Grade/ Q-Grade	1,180	2,500	ns
T _{CCLK3}		3	I-Grade/ Q-Grade	390	833	ns
T _{CCLK6}		6	I-Grade/ Q-Grade	195	417	ns
T _{CCLK7}		7	I-Grade/ Q-Grade	168	357	ns
T _{CCLK8}		8	I-Grade/ Q-Grade	147	313	ns
T _{CCLK10}	-	10	I-Grade/ Q-Grade	116	250	ns
T _{CCLK12}		12	I-Grade/ Q-Grade	97	208	ns
T _{CCLK13}		13	I-Grade/ Q-Grade	88	192	ns
T _{CCLK17}		17	I-Grade/ Q-Grade	68	147	ns
T _{CCLK22}		22	I-Grade/ Q-Grade	51	114	ns
T _{CCLK25}		25	I-Grade/ Q-Grade	45	100	ns
T _{CCLK27}		27	I-Grade/ Q-Grade	42	93	ns
T _{CCLK33}	-	33	I-Grade/ Q-Grade	34	76	ns
T _{CCLK44}		44	I-Grade/ Q-Grade	25	57	ns
T _{CCLK50}		50	I-Grade/ Q-Grade	21	50	ns
T _{CCLK100}		100	I-Grade/ Q-Grade	10.6	25	ns

Notes:

1. Set the *ConfigRate* option value when generating a configuration bitstream.

Slave Serial Mode Timing

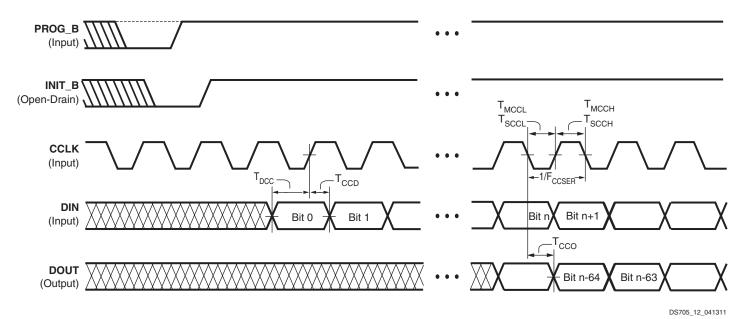
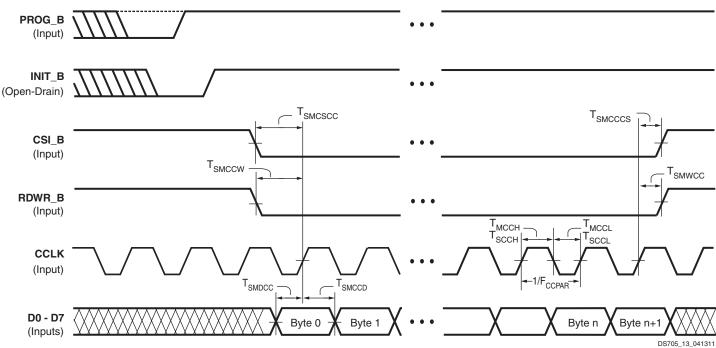


Figure 12: Waveforms for Slave Serial Configuration

Table 51: Timing for the Slave Serial Configuration Modes


Symbol	Description			Max	Units
Clock-to-O	utput Times				
T _{CCO}	The time from the falling transition on the CCLK pin to data appearing at the DOUT pin		1.5	10	ns
Setup Time	es			1	
T _{DCC}	The time from the setup of data at the DIN pin to the rising transition at the CCLK pin		7	-	ns
Hold Time	S				
T _{CCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin		1.0	-	ns
Clock Timi	ng				
Т _{ССН}	High pulse width at the CCLK input pin		See Table 50		
T _{CCL}	CCL Low pulse width at the CCLK input pin		See Table 50		
F _{CCSER}	Frequency of the clock signal at the CCLK	No bitstream compression	0	100	MHz
	input pin	With bitstream compression	0	100	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

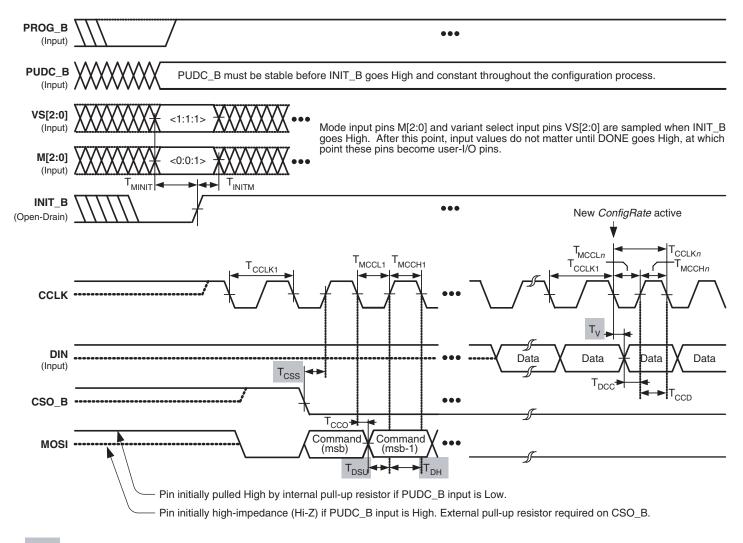
Slave Parallel Mode Timing

Notes:

- 1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 D7 bus.
- 2. To pause configuration, pause CCLK instead of deasserting CSI_B. See the section in Chapter 7 called "Non-Continuous SelectMAP Data Loading" in UG332 for more details.

Figure 13: Waveforms for Slave Parallel Configuration

Table 52: Timing for the Slave Parallel Configuration Mode


Symbol	Description			Max	Units
Setup Times		· · · · · · · · · · · · · · · · · · ·			
T _{SMDCC} ⁽²⁾	The time from the setup of data at the D0-D7 pins t	to the rising transition at the CCLK pin	7	-	ns
T _{SMCSCC}	Setup time on the CSI_B pin before the rising tran	Setup time on the CSI_B pin before the rising transition at the CCLK pin		_	ns
T _{SMCCW}	Setup time on the RDWR_B pin before the rising transition at the CCLK pin		17	_	ns
Hold Times		I			
T _{SMCCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins		1	-	ns
T _{SMCCCS}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CSO_B pin		0	-	ns
T _{SMWCC}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin		0	-	ns
Clock Timing				1	
T _{CCH}	The High pulse width at the CCLK input pin		5	_	ns
T _{CCL}	The Low pulse width at the CCLK input pin		5	_	ns
F _{CCPAR}	Frequency of the clock signal at the CCLK input	No bitstream compression	0	80	MHz
	pin	With bitstream compression	0	80	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Serial Peripheral Interface Configuration Timing

Shaded values indicate specifications on attached SPI Flash PROM.

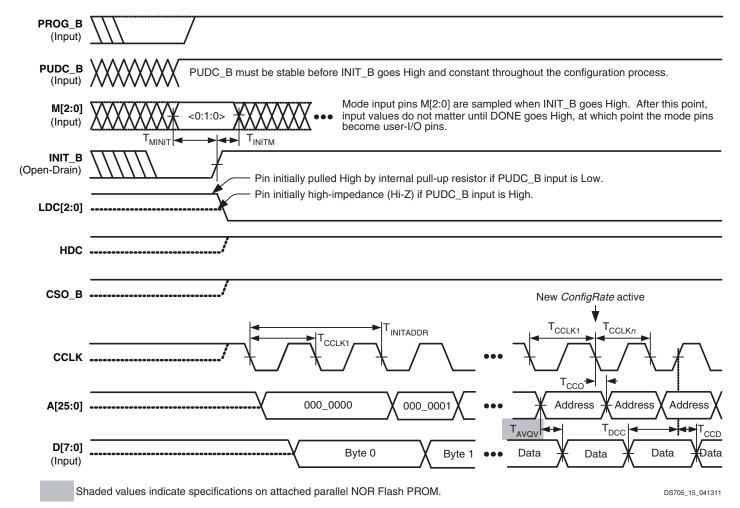
DS705_14_041311

Figure 14: Waveforms for Serial Peripheral Interface Configuration

Table 53: Timing for Serial Peripheral Interface Configuration Mode

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	Se	e Table 47	
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	See Table 47		
T _{MINIT}	Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the rising edge of $INIT_B$	50	-	ns
T _{INITM}	Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the rising edge of INIT_B	0	_	ns
T _{CCO}	MOSI output valid delay after CCLK falling edge	See Table 51		
T _{DCC}	Setup time on DIN data input before CCLK rising edge	See Table 51		
T _{CCD}	Hold time on DIN data input after CCLK rising edge	0	-	ns

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
Т _{DH}	SPI serial Flash PROM data input hold time	T _{DH} ≤ T _{MCCH1}	ns
Τ _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f_{C} or f_{R}	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \ge \frac{1}{T_{CCLKn(min)}}$	MHz


Table 54: Configuration Timing Requirements for Attached SPI Serial Flash

Notes:

1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.

2. Subtract additional printed circuit board routing delay as required by the application.

Byte Peripheral Interface Configuration Timing

Figure 15: Waveforms for Byte-wide Peripheral Interface Configuration

Table 55: Timing for Byte-wide Peripheral Interface Configuration Mode

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	S	See Table 47	
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	See Table 47		
T _{MINIT}	Setup time on M[2:0] mode pins before the rising edge of INIT_B	50	-	ns
T _{INITM}	Hold time on M[2:0] mode pins after the rising edge of INIT_B	0	-	ns
T _{INITADDR}	Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted and valid	5 5		T _{CCLK1} cycles
T _{CCO}	Address A[25:0] outputs valid after CCLK falling edge	See Table 51		
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge	See T _{SMDCC} in Table 52		
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edge	0	-	ns