

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	4160
Number of Logic Elements/Cells	37440
Total RAM Bits	1548288
Number of I/O	519
Number of Gates	1800000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3sd1800a-4fgg676q

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	System	Equivalent Logic	(Or	CLB Array (One CLB = Four Slices)			Distributed	Block RAM Dedicate		Dedicated Multipliers	DCMe	Maximum	Maximum Differential
Device	Gates	es ouis	Rows	Columns	Total CLBs	Total Slices	RAM bits ⁽¹⁾	Bits (1)	Multipliers	DCINIS	User I/O	I/O Pairs	
XA3SD1800A	1800K	37,440	88	48	4,160	16,640	260K	1512K	84	8	519	227	
XA3SD3400A	3400K	53,712	104	58	5,968	23,872	373K	2268K	126	8	469	213	

Table 1: Summary of XA Spartan-3A DSP FPGA Attributes

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

Refer to <u>DS610</u>, *Spartan-3A DSP FPGA Family Data Sheet* for a full product description, AC and DC specifications, and package pinout descriptions. Any values shown specifically in this XA Spartan-3A DSP Automotive FPGA Family data sheet override those shown in DS610.

For information regarding reliability qualification, refer to RPT103, *Xilinx Spartan-3A Family Automotive Qualification Report* and RPT070, *Spartan-3A Commercial Qualification Report*. Contact your local Xilinx representative for more details on these reports.

Key Feature Differences from Commercial XC Devices

- AEC-Q100 device qualification and full production part approval process (PPAP) documentation support available in both extended temperature I- and Q-Grades
- Guaranteed to meet full electrical specifications over the $T_{J} = -40^{\circ}$ C to $+125^{\circ}$ C temperature range (Q-Grade)
- XA Spartan-3A DSP devices are available in the -4 speed grade only
- PCI-66 and PCI-X are not supported in the XA Spartan-3A DSP FPGA product line
- Platform Flash is not supported within the XA family
- XA Spartan-3A DSP devices are available in Pb-free packaging only
- MultiBoot is not supported in XA versions of this product.
- The XA Spartan-3A DSP device must be power cycled prior to reconfiguration.

Architectural Overview

The XA Spartan-3A DSP family architecture consists of five fundamental programmable functional elements:

- XtremeDSP DSP48A Slice provides an 18-bit x 18-bit multiplier, 18-bit pre-adder, 48-bit post-adder/accumulator, and cascade capabilities for various DSP applications.
- **Configurable Logic Blocks (CLBs)** contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. IOBs support bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including several high-performance differential standards. Double Data-Rate (DDR) registers are included.
- Block RAM provides data storage in the form of 18-Kb dual-port blocks.
- **Digital Clock Manager (DCM) Blocks** provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A dual ring of staggered IOBs surrounds a regular array of CLBs. The XA3SD1800A has four columns of DSP48A slices, and the XA3SD3400A has five columns of DSP48A slices. Each DSP48A has an associated block RAM. The DCMs are positioned in the center with two at the top and two at the bottom of the device and in the two outer columns of the four or five columns of block RAM and DSP48As.

The XA Spartan-3A DSP family features a rich network of routing that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

I/O Capabilities

The XA Spartan-3A DSP FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination. Some of the user I/Os are unidirectional input-only pins as indicated in Table 2.

XA Spartan-3A DSP FPGAs support the following single-ended standards:

- 3.3V low-voltage TTL (LVTTL)
- Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V
- 3.3V PCI at 33 MHz
- HSTL I, II, and III at 1.5V and 1.8V, commonly used in memory applications
- SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used for memory applications

XA Spartan-3A DSP FPGAs support the following differential standards:

- LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or 3.3V
- Bus LVDS I/O at 2.5V
- TMDS I/O at 3.3V
- Differential HSTL and SSTL I/O
- LVPECL inputs at 2.5V or 3.3V

Table 2: Available User I/Os and Differential I/O Pairs

Device	CSC	G484	FGG676		
Device	User	Differential	User	Differential	
XA3SD1800A	309	140	519	227	
	(60)	(78)	(110)	(131)	
XA3SD3400A	309	140	469	213	
	(60)	(78)	(60)	(117)	

Notes:

1. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins. The differential input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are restricted to differential inputs.

Production Status

Table 3 indicates the production status of each XA Spartan-3A DSP FPGA by temperature range and speed grade. The table also lists the earliest speed file version required for creating a production configuration bitstream. Later versions are also supported.

Table 3: XA Spartan-3A DSP FPGA Family Production Status (Production Speed File)

Temperat	ure Range	I-Grade	Q-Grade
Speed	Grade	Standard (-4)	Standard (-4)
Part Number	XA3SD1800A	Production (v1.32)	Production (v1.32)
Fait Number	XA3SD3400A	Production (v1.32)	-

DC Electrical Characteristics

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the published parameter values apply to all XA Spartan-3A DSP devices. AC and DC characteristics are specified using the same numbers for both I-Grade and Q-Grade.

Absolute Maximum Ratings

Stresses beyond those listed under Table 4, *Absolute Maximum Ratings* might cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability.

Symbol	Description	Conditions	Min	Max	Units
V _{CCINT}	Internal supply voltage		-0.5	1.32	V
V _{CCAUX}	Auxiliary supply voltage		-0.5	3.75	V
V _{CCO}	Output driver supply voltage		-0.5	3.75	V
V _{REF}	Input reference voltage		-0.5	V _{CCO} + 0.5	V
V _{IN}	Voltage applied to all User I/O pins and Dual-Purpose pins	Driver in a high-impedance state	-0.95	4.6	V
	Voltage applied to all Dedicated pins		-0.5	4.6	V
I _{IK}	Input clamp current per I/O pin	$-0.5V < V_{IN} < (V_{CCO} + 0.5V)$ ⁽¹⁾	-	±100	mA
		Human body model	-	4.6 ±100 ±2000	V
V _{ESD}	Electrostatic Discharge Voltage	Charged device model	-	±500	V
		Machine model	_	$ 1.32 \\ 3.75 \\ 3.75 \\ V_{CCO} + 0.5 \\ 4.6 \\ 4.6 \\ \pm 100 \\ \pm 2000 $	V
Τ _J	Junction temperature		-	125	°C
T _{STG}	Storage temperature		-65	150	°C

Table 4: Absolute Maximum Ratings

Notes:

1. Upper clamp applies only when using PCI IOSTANDARDs.

2. For soldering guidelines, see <u>UG112</u>: Device Packaging and Thermal Characteristics and <u>XAPP427</u>: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

Power Supply Specifications

Table 5: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO2T}	Threshold for the V_{CCO} Bank 2 supply	0.8	2.0	V

Notes:

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 6: Supply Voltage Ramp Rate

Symbol	Description	Min	Мах	Units
V _{CCINTR}	Ramp rate from GND to valid V_{CCINT} supply level	0.2	100	ms
V _{CCAUXR}	Ramp rate from GND to valid V_{CCAUX} supply level	0.2	100	ms
V _{CCO2R}	Ramp rate from GND to valid V_{CCO} Bank 2 supply level	0.2	100	ms

Notes:

1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V_{CCINT} last for lowest overall power consumption (see <u>UG331</u> chapter "Powering Spartan-3 Generation FPGAs" for more information).

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM Data

Symbol	Description	Min	Units
V _{DRINT}	V_{CCINT} level required to retain CMOS Configuration Latch (CCL) and RAM data	1.0	V
V _{DRAUX}	V_{CCAUX} level required to retain CMOS Configuration Latch (CCL) and RAM data	2.0	V

^{1.} V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V_{CCINT} last for lowest overall power consumption (see <u>UG331</u> chapter "Powering Spartan-3 Generation FPGAs" for more information).

Quiescent Current Requirements

Table 10: Quiescent Supply Current Characteristics

Symbol	Description	Device	Typical ⁽²⁾	l-Grade Maximum ⁽²⁾	Q-Grade Maximum ⁽²⁾	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply current	XA3SD1800A	41	500	900	mA
		XA3SD3400A	64	725	-	mA
Iccoq	Quiescent V _{CCO} supply current	XA3SD1800A	0.4	5	5	mA
		XA3SD3400A	0.4	5	-	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XA3SD1800A	25	110	145	mA
		XA3SD3400A	39	160	-	mA

Notes:

- 1. The numbers in this table are based on the conditions set forth in Table 8.
- 2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical devices at room temperature (T_J of 25°C at V_{CCINT} = 1.2V, V_{CCO} = 3.3V, and V_{CCAUX} = 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with V_{CCINT} = 1.26V, V_{CCO} = 3.6V, and V_{CCAUX} = 3.6V. The FPGA is programmed with a "blank" configuration data file (that is, a design with no functional elements instantiated). For conditions other than those described above (for example, a design including functional elements), measured quiescent current levels will be different than the values in the table.

 There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The <u>Spartan-3A DSP FPGA XPower Estimator</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.

4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.

5. For information on the power-saving Suspend mode, see XAPP480, Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode typically saves 40% total power consumption compared to quiescent current.

Single-Ended I/O Standards

Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

IOSTANDARD	Vc	CO for Drive	's ⁽²⁾		V _{REF}		V _{IL}	V _{IH} ⁽³⁾
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
LVTTL	3.0	3.3	3.6		·	·	0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.6				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95		_{EF} is not used se I/O standa		0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3 ⁽⁶⁾	3.0	3.3	3.6				0.3 • V _{CCO}	0.5 • V _{CCO}
HSTL_I	1.4	1.5	1.6	0.68	0.75	0.9	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III	1.4	1.5	1.6	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_II_18	1.7	1.8	1.9	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	1.1	-	V _{REF} – 0.1	V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL18_II	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL2_II	2.3	2.5	2.7	1.15	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL3_I	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} - 0.2	V _{REF} + 0.2
SSTL3_II	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} - 0.2	V _{REF} + 0.2

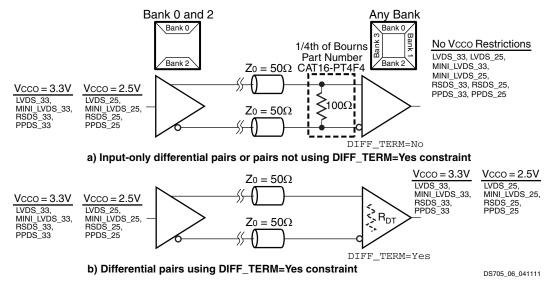
Notes:

Descriptions of the symbols used in this table are as follows: 1.

 V_{CCO} – the supply voltage for output drivers V_{REF} – the reference voltage for setting the input switching threshold V_{IL} – the input voltage that indicates a Low logic level

VIH - the input voltage that indicates a High logic level

In general, the V_{CCO} rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V_{CCAUX} = 3.3V range 2. and for PCI I/O standards.


З. For device operation, the maximum signal voltage (V_{IH} max) can be as high as V_{IN} max. See Table 4.

There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.

- All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail and use the LVCMOS25 or LVCMOS33 standard depending on V_{CCAUX} . The Dual-Purpose configuration pins use the LVCMOS25 standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as 5. well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. 6.

External Termination Requirements for Differential I/O

LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards

BLVDS_25 I/O Standard

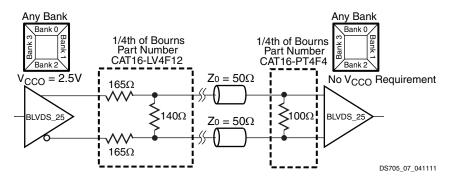


Figure 7: External Output and Input Termination Resistors for BLVDS_25 I/O Standard

TMDS_33 I/O Standard

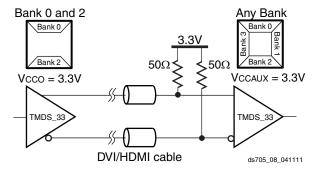


Figure 8: External Input Resistors Required for TMDS_33 I/O Standard

www.xilinx.com

Input Setup and Hold Times

Table 20: Setup and Hold Times for the IOB Input Path

Symbol	Description	otion Conditions		Device	Speed Grade: -4	Units
Cymbol	Decemption	Conditione	_VALUE	Device	Min Min 1.81 1.88 2.24 2.83 3.64 4.20 4.16 5.09 6.02 6.63	onito
Setup Tim	es					
T _{IOPICK}	Time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾	0	XA3SD1800A	1.81	ns
	the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.			XA3SD3400A	1.88	ns
T _{IOPICKD}	Time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾	1	XA3SD1800A	2.24	ns
	the active transition at the ICLK input of the Input Flip-Flop (IFF). The Input Delay is		2		2.83	ns
	programmed.		3	3 3.64	3.64	ns
			4		4.20	ns
			5	XA3SD3400A	4.16	ns
			6		5.09	ns
			7		6.02	ns
			8		6.63	ns
			1		2.44	ns
			2		3.02	ns
			3		3.81	ns
			4		4.39	ns
			5		4.26	ns
			6		5.08	ns
			7	1	5.95	ns
			8]	6.55	ns

Symbol	Description	Conditions	IFD_DELAY _VALUE	Device	Speed Grade: -4 Min	Units
Hold Time	S					
T _{IOICKP}	Time from the active transition at the ICLK	LVCMOS25 ⁽³⁾	0	XA3SD1800A	-0.52	ns
	input of the Input Flip-Flop (IFF) to the point where data must be held at the Input pin. No Input Delay is programmed.			XA3SD3400A	-0.56	ns
T _{IOICKPD}	Time from the active transition at the ICLK	LVCMOS25 ⁽³⁾	1	XA3SD1800A	-1.40	ns
	input of the Input Flip-Flop (IFF) to the point where data must be held at the Input pin. The		2		-2.11	ns
	Input Delay is programmed.		3		-2.48	ns
			4		-2.77	ns
			5	XA3SD3400A	-2.62	ns
			6		-3.06	ns
			7		-3.42	ns
			8		-3.65	ns
			1		-1.31	ns
			2		-1.88	ns
			3		-2.44	ns
			4		-2.89	ns
			5		-2.83	ns
			6		-3.33	ns
			7		-3.63	ns
			8		-3.96	ns
Set/Reset	Pulse Width	•	•	•	•	
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB	-	-	All	1.61	ns

Table 20: Setup and Hold Times for the IOB Input Path (Cont'd)

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 23.
- 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 21: Sample Window (Source Synchronous)

Symbol	Description	Max	Units
T _{SAMP}	Setup and hold capture window of an IOB flip-flop	 The input capture sample window value is highly specific to a particular application, device, package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the appropriate Xilinx Answer Record for application-specific values. Answer Record <u>30879</u> 	ps

Convert Input Time from LVCMOS25 to the	Add the Adjustment Below	Units	
Following Signal Standard (IOSTANDARD)	Speed Grade: -4	Units	
HSTL_I	0.72	ns	
HSTL_III	0.85	ns	
HSTL_I_18	0.69	ns	
HSTL_II_18	0.83	ns	
HSTL_III_18	0.79	ns	
SSTL18_I	0.71	ns	
SSTL18_II	0.71	ns	
SSTL2_I	0.71	ns	
SSTL2_II	0.71	ns	
SSTL3_I	0.78	ns	
SSTL3_II	0.78	ns	
Differential Standards			
LVDS_25	0.79	ns	
LVDS_33	0.79	ns	
BLVDS_25	0.79	ns	
MINI_LVDS_25	0.84	ns	
MINI_LVDS_33	0.84	ns	
LVPECL_25	0.80	ns	
LVPECL_33	0.80	ns	
RSDS_25	0.83	ns	
RSDS_33	0.83	ns	
TMDS_33	0.80	ns	
PPDS_25	0.81	ns	
PPDS_33	0.81	ns	
DIFF_HSTL_I_18	0.80	ns	
DIFF_HSTL_II_18	0.98	ns	
DIFF_HSTL_III_18	1.05	ns	
DIFF_HSTL_I	0.77	ns	
DIFF_HSTL_III	1.05	ns	
DIFF_SSTL18_I	0.76	ns	
DIFF_SSTL18_II	0.76	ns	
DIFF_SSTL2_I	0.77	ns	
DIFF_SSTL2_II	0.77	ns	
DIFF_SSTL3_I	1.06	ns	
DIFF_SSTL3_II	1.06	ns	

Table 23: Input Timing Adjustments by IOSTANDARD (Cont'd)

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.

2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Output Propagation Times

Table 24: Timing for the IOB Output Path

Symbol	Description	Conditions	Device	Speed Grade: -4	Unito
	Description	Conditions	Device	Max	Units
Clock-to-Out	put Times				
T _{IOCKP}	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OCLK input to data appearing at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	3.13	ns
Propagation [*]	Times				•
T _{IOOP}	The time it takes for data to travel from the JOB's O input to the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew	All	2.91	ns
T _{IOOLP}	The time it takes for data to travel from the O input through the OFF latch to the Output pin	rate	All	2.85	ns
Set/Reset Tin	nes	1			
T _{IOSRP}	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew	All	3.89	ns
T _{IOGSRQ}	Time from asserting the Global Set Reset (GSR) input on the STARTUP_SPARTAN3A primitive to setting/resetting data at the Output pin	rate	All	9.65	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 26.

Three-State Output Propagation Times

Table 25: Timing for the IOB Three-State Path

Cumbal	Description	Conditions	Davias	Speed Grade: -4	Units	
Symbol	Description	Conditions	Device	Max		
Synchronous	Output Enable/Disable Times				•	
Т _{ЮСКНZ}	Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	1.39	ns	
T _{IOCKON} ⁽²⁾	Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data		All	3.35	ns	
Asynchronou	us Output Enable/Disable Times		•		1	
T _{GTS}	Time from asserting the Global Three State (GTS) input on the STARTUP_SPARTAN3A primitive to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	10.36	ns	
Set/Reset Tir	nes		-			
T _{IOSRHZ}	Time from asserting TFF's SR input to when the Output pin enters a high-impedance state	LVCMOS25, 12 mA output drive, Fast slew	All	1.86	ns	
T _{IOSRON} ⁽²⁾	Time from asserting TFF's SR input at TFF to when the Output pin drives valid data	rate	All	3.82	ns	

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 26.

Timing Measurement Methodology

When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 27 lists the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V_L and a High logic level of V_H is applied to the Input under test. Some standards also require the application of a bias voltage to the V_{REF} pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (V_M) is commonly located halfway between V_L and V_H .

The Output test setup is shown in Figure 9. A termination voltage V_T is applied to the termination resistor R_T , the other end of which is connected to the Output. For each standard, R_T and V_T generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (for example, LVCMOS, LVTTL), then R_T is set to 1 M Ω to indicate an open connection, and V_T is set to zero. The same measurement point (V_M) that was used at the Input is also used at the Output.

1. The names shown in parentheses are used in the IBIS file.

Figure 9: Output Test Setup

Signal Standard (IOSTANDARD)			Inputs		Out	puts	Inputs and Outputs
(10514	NDARD)	V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
Single-Ende	d			· · · · ·			
LVTTL		-	0	3.3	1M	0	1.4
LVCMOS33		-	0	3.3	1M	0	1.65
LVCMOS25		-	0	2.5	1M	0	1.25
LVCMOS18		-	0	1.8	1M	0	0.9
LVCMOS15		-	0	1.5	1M	0	0.75
LVCMOS12		_	0	1.2	1M	0	0.6
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94
	Falling				25	3.3	2.03
HSTL_I	_!	0.75	V _{REF} – 0.5	V _{REF} + 0.5	50	0.75	V _{REF}
HSTL_III		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}
HSTL_I_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
HSTL_II_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}
HSTL_III_18		1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
SSTL18_II		0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}

Table 27: Test Methods for Timing Measurement at I/Os

0:		Package Type: CSG484 and FGG676			
Signal Standard (IOSTANDARD)			Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	
Single-Ended Standards					
LVTTL	Slow 2		60	60	
		4	41	41	
		6	29	29	
		8	22	22	
		12	13	13	
		16	11	11	
		24	9	9	
	Fast	2	10	10	
		4	6	6	
		6	5	5	
		8	3	3	
		12	3	3	
		16	3	3	
		24	2	2	
	QuietIO	2	80	80	
		4	48	48	
		6	36	36	
		8	27	27	
		12	16	16	
		16	13	13	
		24	12	12	

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V)

0:		Package Type: CSG484 and FGG676			
Signal S	Standard (IOSTANDARD)	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)		
LVCMOS25	Slow 2		76	76	
	Slow	4	46	46	
		6	33	33	
		8	24	24	
		12	18	18	
		16	-	11	
		24	-	7	
	Fast	2	18	18	
		4	14	14	
		6	6	6	
		8	6	6	
		12	3	3	
		16	-	3	
		24	-	2	
	QuietIO	2	76	76	
		4	60	60	
		6	48	48	
		8	36	36	
		12	36	36	
		16	-	36	
		24	-	8	
VCMOS18	Slow	2	64	64	
		4	34	34	
		6	22	22	
		8	18	18	
		12	-	13	
		16	-	10	
	Fast	2	18	18	
		4	9	9	
		6	7	7	
		8	4	4	
		12	-	4	
		16	-	3	
	QuietIO	2	64	64	
		4	64	64	
		6	48	48	
		8	36	36	
		12	-	36	
		16	_	24	

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

www.xilinx.com

DSP48A Timing

To reference the DSP48A block diagram, see the XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide (UG431).

Table 35: Setup Times for the DSP48A

Cumb al	Description	Due eddau		Deet edder	Speed Grade: -4	Unite	
Symbol	Description	Pre-adder Multiplie		Post-adder	Min	Units	
Setup Times of	f Data/Control Pins to the Input Register Clo	ck					
T _{DSPDCK_AA}	A input to A register CLK	-	-	-	0.04	ns	
T _{DSPDCK_DB}	D input to B register CLK	Yes ⁽¹⁾	-	-	1.88	ns	
T _{DSPDCK_CC}	C input to C register CLK	_	-	-	0.05	ns	
T _{DSPDCK_DD}	D input to D register CLK	_	-	-	0.04	ns	
T _{DSPDCK_OPB}	OPMODE input to B register CLK	Yes	_	-	0.42	ns	
T _{DSPDCK_OPOP}	OPMODE input to OPMODE register CLK	_	_	_	0.06	ns	
Setup Times of	f Data Pins to the Pipeline Register Clock		L				
T _{DSPDCK_AM}	A input to M register CLK	_	Yes	_	3.79	ns	
T _{DSPDCK_BM}	B input to M register CLK	Yes	Yes	_	4.97	ns	
		No	Yes	_	3.79	ns	
T _{DSPDCK_DM}	D input to M register CLK	Yes	Yes	-	5.06	ns	
T _{DSPDCK_OPM}	OPMODE to M register CLK	Yes	Yes	_	5.42	ns	
Setup Times of	f Data/Control Pins to the Output Register Cl	ock	•			I	
T _{DSPDCK_AP}	A input to P register CLK	-	Yes	Yes	5.49	ns	
T _{DSPDCK_BP}	B input to P register CLK	Yes	Yes	Yes	6.74	ns	
_		No	Yes	Yes	5.48	ns	
T _{DSPDCK_DP}	D input to P register CLK	Yes	Yes	Yes	6.83	ns	
T _{DSPDCK_CP}	C input to P register CLK	_	-	Yes	2.18	ns	
T _{DSPDCK} OPP	OPMODE input to P register CLK	Yes	Yes	Yes	7.18	ns	

Notes:

1. "Yes" means that the component is in the path. "No" means that the component is being bypassed. "-" means that no path exists, so it is not applicable.

2. The numbers in this table are based on the operating conditions set forth in Table 8.

Table 40: Switching Characteristics for the DFS (Cont'd)

Symbol	Description			Speed Grade: -4		– Units
Symbol				Min	Max	Units
Lock Time						
LOCK_FX ^(2,3)	The time from deassertion at the DCM's Reset input to the rising transition at its	$\begin{array}{l} 5 \text{ MHz} \leq F_{CLKIN} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	ms
	LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 39.
- 2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- 4. Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- 6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of "±[1% of CLKFX period + 200]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.

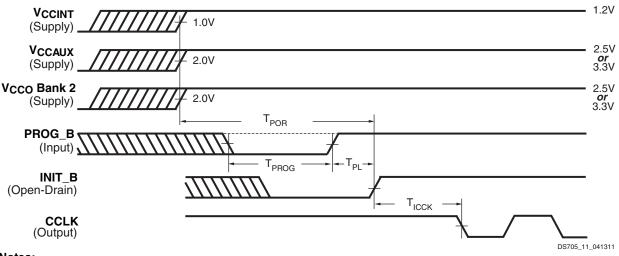
Phase Shifter

Table 41: Recommended Operating Conditions for the PS in Variable Phase Mode

Symbol	Description		Speed Grade: -4						
Symbol			Max	Units					
Operating Frequency Ranges									
PSCLK_FREQ (F _{PSCLK})	Frequency for the PSCLK input		167	MHz					
Input Pulse Requirements									
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period		60%	-					

Table 42: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description	Phase Shift Amount	Units							
Phase Shifting Range	Phase Shifting Range									
MAX_STEPS ⁽²⁾	Maximum allowed number of	CLKIN < 60 MHz	\pm [INTEGER(10 • (T _{CLKIN} – 3 ns))]	steps						
	DCM_DELAY_STEP ⁽³⁾ steps for a given CLKIN clock period, where T = CLKIN clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN ≥ 60 MHz	±[INTEGER(15 • (T _{CLKIN} − 3 ns))]							
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable	±[MAX_STEPS • DCM_DELAY_STEP_MIN]	ns							
FINE_SHIFT_RANGE_MA X	Maximum guaranteed delay for variab	±[MAX_STEPS • DCM_DELAY_STEP_MAX]	ns							


Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 41.

- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 38.

Configuration and JTAG Timing

General Configuration Power-On/Reconfigure Timing

Notes:

- 1. The $V_{CCINT}\!,\,V_{CCAUX}\!,$ and V_{CCO} supplies can be applied in any order.
- 2. The Low-going pulse on PROG_B is optional after power-on.
- 3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 M2).

Figure 11: Waveforms for Power-On and the Beginning of Configuration

Table 46: Power-On Timing and the Beginning of Configuration

Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V _{CCINT} , V _{CCAUX} , and V _{CCO} Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin	All	-	18	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin	All	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	300	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8. This means power must be applied to all V_{CCINT} , V_{CCO} , and V_{CCAUX} lines.
- 2. Power-on reset and the clearing of configuration memory occurs during this period.
- 3. This specification applies only to the SPI and BPI modes.
- 4. For details on configuration, see UG332, Spartan-3 Generation Configuration User Guide.

Slave Serial Mode Timing

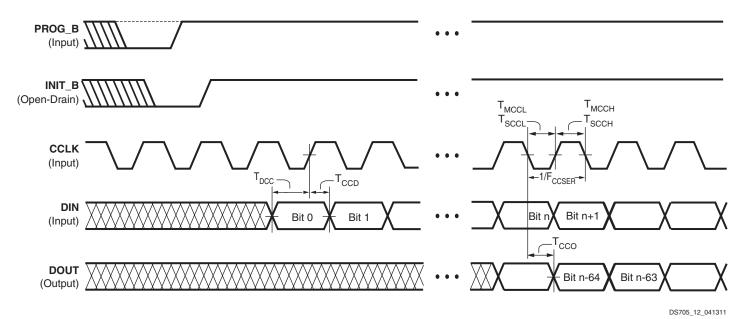
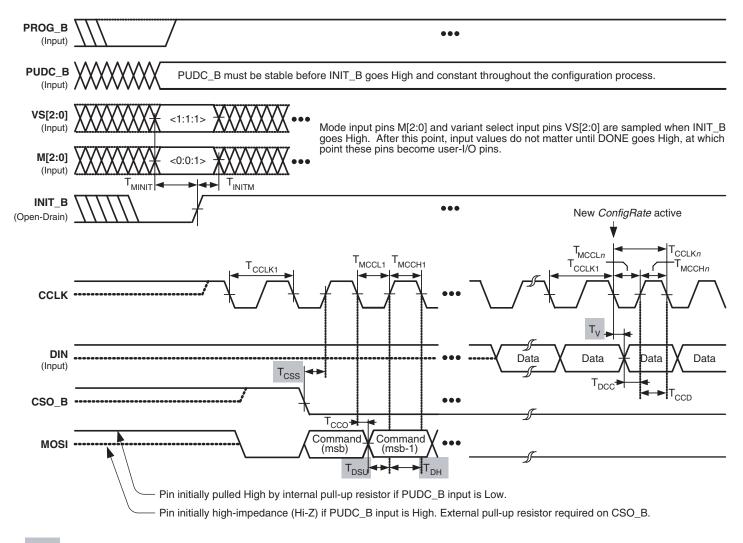


Figure 12: Waveforms for Slave Serial Configuration

Table 51: Timing for the Slave Serial Configuration Modes


Symbol	Description			Max	Units	
Clock-to-O	utput Times					
T _{CCO}	The time from the falling transition on the CCLK pin to data appearing at the DOUT pin			10	ns	
Setup Time	es			1		
T _{DCC}	The time from the setup of data at the DIN pin to the rising transition at the CCLK pin			-	ns	
Hold Time	S					
T _{CCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin			-	ns	
Clock Timi	ng					
Т _{ССН}	High pulse width at the CCLK input pin			See Table 50		
T _{CCL}	Low pulse width at the CCLK input pin		See Table 50			
F _{CCSER}	Frequency of the clock signal at the CCLK input pin	No bitstream compression	0	100	MHz	
		With bitstream compression	0	100	MHz	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Serial Peripheral Interface Configuration Timing

Shaded values indicate specifications on attached SPI Flash PROM.

DS705_14_041311

Figure 14: Waveforms for Serial Peripheral Interface Configuration

Table 53: Timing for Serial Peripheral Interface Configuration Mode

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	See Table 47		
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	See Table 47		
T _{MINIT}	Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the rising edge of $INIT_B$	50	_	ns
T _{INITM}	Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the rising edge of INIT_B	0	_	ns
T _{CCO}	MOSI output valid delay after CCLK falling edge	See Table 51		
T _{DCC}	Setup time on DIN data input before CCLK rising edge	See Table 51		
T _{CCD}	Hold time on DIN data input after CCLK rising edge		-	ns

Revision History

The following table shows the revision history for this document.

Date	Version	Description
07/10/08	1.0	Initial Xilinx release.
01/20/09	1.1	Updated Features and Key Feature Differences from Commercial XC Devices. Removed MultiBoot description from Configuration. Updated Note 2 in Figure 11. Updated T _{ACC} requirement in Table 56.
04/18/11	2.0	This revision goes along with <u>XCN11019</u> : Data Sheet Revisions for Xilinx Automotive (XA) Spartan-3A/-3A DSP FPGA Devices. Added I _{IK} to Table 4. Updated description for V _{IN} in Table 8 including adding Note 4. Also, added Note 2 to I _L in Table 9 to note potential leakage between pins of a differential pair. Updated Notes 5 and 6 in Table 13. Table 20: Updated tags to Note 3. In Table 44, corrected symbols for T _{DNACLKH} and T _{DNACLKL} . Corrected symbols for T _{SUSPEND_GTS} and T _{SUSPEND_GWE} in Table 45. Revised standard title to: IEEE 1149.1/1532 JTAG Test Access Port Timing. Updated Notice of Disclaimer.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.