E·XFL

Welcome to <u>E-XFL.COM</u>

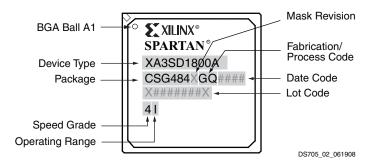
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Details	
Product Status	Obsolete
Number of LABs/CLBs	5968
Number of Logic Elements/Cells	53712
Total RAM Bits	2322432
Number of I/O	309
Number of Gates	3400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-FBGA, CSPBGA
Supplier Device Package	484-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3sd3400a-4csg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package Marking

Figure 2 shows the top marking for XA Spartan-3A DSP FPGAs in BGA packages.



Ordering Information

XA Spartan-3A DSP FPGAs are available in Pb-free packaging only for all device/package combinations.

Pb-Free Packaging

Device		Speed Grade	Package Type / Number of Pins		Temperature Range (T _J)		
XA3SD1800A	-4	Standard Performance	CSG484	484-ball Chip-Scale Ball Grid Array (CSBGA)	I	I-Grade (-40°C to 100°C)	
XA3SD3400A		+	FGG676	676-ball Fine-Pitch Ball Grid Array (FBGA)	Q	Q-Grade (-40°C to 125°C)	

Notes:

1. The XA Spartan-3A DSP FPGA product line is available in -4 speed grade only.

2. The XA3SD3400A is available in I-Grade only.

Power Supply Specifications

Table 5: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO2T}	Threshold for the V_{CCO} Bank 2 supply	0.8	2.0	V

Notes:

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 6: Supply Voltage Ramp Rate

Symbol	Description	Min	Мах	Units
V _{CCINTR}	Ramp rate from GND to valid V_{CCINT} supply level	0.2	100	ms
V _{CCAUXR}	Ramp rate from GND to valid V_{CCAUX} supply level	0.2	100	ms
V _{CCO2R}	Ramp rate from GND to valid V_{CCO} Bank 2 supply level	0.2	100	ms

Notes:

1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V_{CCINT} last for lowest overall power consumption (see <u>UG331</u> chapter "Powering Spartan-3 Generation FPGAs" for more information).

2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM Data

Symbol	Description	Min	Units
V _{DRINT}	V_{CCINT} level required to retain CMOS Configuration Latch (CCL) and RAM data	1.0	V
V _{DRAUX}	V_{CCAUX} level required to retain CMOS Configuration Latch (CCL) and RAM data	2.0	V

^{1.} V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply V_{CCINT} last for lowest overall power consumption (see <u>UG331</u> chapter "Powering Spartan-3 Generation FPGAs" for more information).

Quiescent Current Requirements

Table 10: Quiescent Supply Current Characteristics

Symbol	Description	Device	Typical ⁽²⁾	l-Grade Maximum ⁽²⁾	Q-Grade Maximum ⁽²⁾	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply current	XA3SD1800A	41	500	900	mA
		XA3SD3400A	64	725	-	mA
Iccoq	Quiescent V _{CCO} supply current	XA3SD1800A	0.4	5	5	mA
		XA3SD3400A	0.4	5	-	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XA3SD1800A	25	110	145	mA
		XA3SD3400A	39	160	-	mA

Notes:

- 1. The numbers in this table are based on the conditions set forth in Table 8.
- 2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical devices at room temperature (T_J of 25°C at V_{CCINT} = 1.2V, V_{CCO} = 3.3V, and V_{CCAUX} = 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with V_{CCINT} = 1.26V, V_{CCO} = 3.6V, and V_{CCAUX} = 3.6V. The FPGA is programmed with a "blank" configuration data file (that is, a design with no functional elements instantiated). For conditions other than those described above (for example, a design including functional elements), measured quiescent current levels will be different than the values in the table.

 There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The <u>Spartan-3A DSP FPGA XPower Estimator</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.

4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.

5. For information on the power-saving Suspend mode, see XAPP480, Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode typically saves 40% total power consumption compared to quiescent current.

			nditions	Logic Level Characteristics		
IOSTANDAR	ID Attribute	l _{OL} (mA)	I _{ОН} (mA)	V _{OL} Max (V)	V _{OH} Min (V)	
LVTTL ⁽³⁾	2	2	-2	0.4	2.4	
	4	4	-4			
	6	6	6			
	8	8	-8			
	12	12	-12			
	16	16	-16			
	24	24 ⁽⁶⁾	-24			
LVCMOS33 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8	8	-8]		
	12	12	-12			
	16	16	-16 ⁽⁶⁾			
	24 ⁽⁴⁾	24	-24 ⁽⁶⁾			
LVCMOS25 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16 ⁽⁴⁾	16	-16 ⁽⁶⁾			
	24 ⁽⁴⁾	24 ⁽⁶⁾	-24 ⁽⁶⁾			
LVCMOS18 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6 ⁽⁶⁾			
	8	8	-8			
	12 ⁽⁴⁾	12	-12 ⁽⁶⁾			
	16 ⁽⁴⁾	16	-16			
LVCMOS15 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8(4)	8	-8			
	12 ⁽⁴⁾	12	-12			
LVCMOS12 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4(4)	4	-4			
	6 ⁽⁴⁾	6	-6			
PCI33_3 ⁽⁵⁾		1.5	-0.5	10% V _{CCO}	90% V _{CCO}	

Table 12: DC Characteristics of User I/Os Using Single-Ended Standards

	V _{CCO} for Drivers ⁽¹⁾			V _{ID}			V _{ICM} ⁽²⁾		
IOSTANDARD Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
LVDS_25 ⁽³⁾	2.25	2.5	2.75	100	350	600	0.3	1.25	2.35
LVDS_33 ⁽³⁾	3.0	3.3	3.6	100	350	600	0.3	1.25	2.35
BLVDS_25 ⁽⁴⁾	2.25	2.5	2.75	100	300	-	0.3	1.3	2.35
MINI_LVDS_25 ⁽³⁾	2.25	2.5	2.75	200	-	600	0.3	1.2	1.95
MINI_LVDS_33 ⁽³⁾	3.0	3.3	3.6	200	-	600	0.3	1.2	1.95
LVPECL_25 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	1.95
LVPECL_33 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	2.8 ⁽⁶⁾
RSDS_25 ⁽³⁾	2.25	2.5	2.75	100	200	-	0.3	1.2	1.5
RSDS_33 ⁽³⁾	3.0	3.3	3.6	100	200	-	0.3	1.2	1.5
TMDS_33 ^(3,4,7)	3.14	3.3	3.47	150	-	1200	2.7	-	3.23
PPDS_25 ⁽³⁾	2.25	2.5	2.75	100	-	400	0.2	-	2.3
PPDS_33 ⁽³⁾	3.0	3.3	3.6	100	-	400	0.2	-	2.3
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_II_18 ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_I	1.4	1.5	1.6	100	-	-	0.68		0.9
DIFF_HSTL_III	1.4	1.5	1.6	100	-	-	-	0.9	-
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1
DIFF_SSTL18_II ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.7	-	1.1
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5
DIFF_SSTL2_II ⁽⁸⁾	2.3	2.5	2.7	100	-	-	1.0	-	1.5
DIFF_SSTL3_I	3.0	3.3	3.6	100	-	-	1.1	-	1.9
DIFF_SSTL3_II	3.0	3.3	3.6	100	-	-	1.1	-	1.9

Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2.

 V_{ICM} must be less than V_{CCAUX} . These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. 3.

See External Termination Requirements for Differential I/O, page 16. 4.

LVPECL is supported on inputs only, not outputs. LVPECL_33 requires V_{CCAUX} = 3.3V ± 10%. 5.

6.

7.

8.

EVPECL as supported on inputs only, not outputs. EVPECL_33 requires $V_{CCAUX} = 0.37 \pm 10\%$. EVPECL_33 maximum V_{ICM} = the lower of 2.8V or $V_{CCAUX} - (V_{ID}/2)$. Requires $V_{CCAUX} = 3.3V \pm 10\%$ for inputs. ($V_{CCAUX} - 300 \text{ mV}$) $\leq V_{ICM} \leq (V_{CCAUX} - 37 \text{ mV})$ These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. V_{REF} inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V_{REF} settings are the same as for the single-ended versions in Table 11. Other differential 9. standards do not use V_{REF}

www.xilinx.com

I/O Timing

Pin-to-Pin Clock-to-Output Times

Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

Symbol	Department	Conditions	Device	Speed Grade: -4	Units
	Description	Conditions	Device	Max	Units
Clock-to-Out	put Times				
T _{ICKOFDCM}		ctive transition on the Global output drive, Fast slew ppearing at the Output pin. rate, with DCM ⁽³⁾ XA3SD3	XA3SD1800A	3.51	ns
	Clock pin to data appearing at the Output pin. The DCM is in use.		XA3SD3400A	3.82	ns
T _{ICKOF}		LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew	XA3SD1800A	5.58	ns
	appearing at the Output pin. The DCM is not in use.	rate, without DCM	XA3SD3400A	6.13	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 23. If the latter is true, *add* the appropriate Output adjustment from Table 26.

3. DCM output jitter is included in all measurements.

Pin-to-Pin Setup and Hold Times

Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

Symbol	Description	Conditions	Device	Speed Grade: -4	L lucito	
Symbol	Description	Conditions	Device	Min	Units	
Setup Times						
T _{PSDCM}	When writing to the Input Flip-Flop (IFF), the time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE=0,	XA3SD1800A	3.11	ns	
	the active transition at a Global Clock pin. The DCM is in use. No Input Delay is programmed.	with DCM ⁽⁴⁾	XA3SD3400A	2.49	ns	
T _{PSFD}	When writing to IFF, the time from the setup of data at the Input pin to an active transition at	pin to an active transition at IFD_DELAY_VALUE = 0	XA3SD1800A	3.39	ns	
	the Global Clock pin. The DCM is not in use. The Input Delay is programmed.	without DCM	XA3SD3400A	3.08	ns	
Hold Times		1				
T _{PHDCM}	When writing to IFF, the time from the active transition at the Global Clock pin to the point	n to the point IFD_DELAY_VALUE = 0, with DCM ⁽⁴⁾ XA3SD3400A -0	XA3SD1800A	-0.38	ns	
	when data must be held at the Input pin. The DCM is in use. No Input Delay is programmed.		-0.26	ns		
T _{PHFD}	When writing to IFF, the time from the active transition at the Global Clock pin to the point	LVCMOS25 ⁽³⁾ , IFD_DELAY_VALUE=6,	XA3SD1800A	-0.71	ns	
	when data must be held at the Input pin. The DCM is not in use. The Input Delay is programmed.	without DCM	XA3SD3400A	-0.65	ns	

Notes:

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the appropriate Input adjustment from the same table.

3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 23. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.

4. DCM output jitter is included in all measurements.

^{1.} The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.

Input Setup and Hold Times

Table 20: Setup and Hold Times for the IOB Input Path

Symbol	Description	Conditions	IFD_DELAY	Device	Speed Grade: -4	Units
Cymbol	Decemption	Conditione	_VALUE	Min	Min	onito
Setup Tim	es					
T _{IOPICK}	Time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾	0	XA3SD1800A	1.81	ns
	the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.			XA3SD3400A	1.88	ns
T _{IOPICKD}	Time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾	1	XA3SD1800A	2.24	ns
	the active transition at the ICLK input of the Input Flip-Flop (IFF). The Input Delay is		2		2.83	ns
	programmed.		3	XA3SD3400A	3.64	ns
			4		4.20	ns
			5		4.16	ns
			6		5.09	ns
			7		6.02	ns
			8		6.63	ns
			1		2.44	ns
			2		3.02	ns
			3		3.81	ns
			4		4.39	ns
			5	-	4.26	ns
			6		5.08	ns
			7		5.95	ns
			8]	6.55	ns

Convert Output Time from LV			Add the Adjustment Below	Unite	
	Signal Standard (IOSTAND		Speed Grade: -4		
LVCMOS33	Slow	2 mA	5.58	ns	
		4 mA	3.30	ns	
		6 mA	3.30	ns	
		8 mA	2.26	ns	
		12 mA	1.29	ns	
		16 mA	1.21	ns	
		24 mA	2.79	ns	
	Fast	2 mA	3.72	ns	
		4 mA	2.04	ns	
		6 mA	2.08	ns	
		8 mA	0.53	ns	
		12 mA	0.59	ns	
		16 mA	0.59	ns	
		24 mA	0.51	ns	
	QuietIO	2 mA	27.67	ns	
		4 mA	27.67	ns	
		6 mA	27.67	ns	
		8 mA	16.71	ns	
		12 mA	16.29	ns	
		16 mA	16.18	ns	
		24 mA	12.11	ns	

Table 26: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCM	IOS25 with 12mA Drive a	nd Fast	Add the Adjustment Below	Units
Slew Rate to the Following Sig	gnal Standard (IOSTAND	ARD)	Speed Grade: -4	Units
LVCMOS15	Slow	2 mA	6.41	ns
		4 mA	3.97	ns
		6 mA	3.21	ns
		8 mA	2.53	ns
		12 mA	2.06	ns
	Fast	2 mA	5.83	ns
		4 mA	3.05	ns
		6 mA	1.95	ns
		8 mA	1.60	ns
		12 mA	1.30	ns
	QuietIO	2 mA	34.11	ns
		4 mA	25.66	ns
		6 mA	24.64	ns
		8 mA	22.06	ns
		12 mA	20.64	ns
LVCMOS12	Slow	2 mA	7.14	ns
		4 mA	4.87	ns
		6 mA	5.67	ns
	Fast	2 mA	6.77	ns
		4 mA	5.02	ns
		6 mA	4.09	ns
	QuietIO	2 mA	50.76	ns
		4 mA	43.17	ns
		6 mA	37.31	ns
PCI33_3	· · · ·		0.34	ns
HSTL_I			0.85	ns
HSTL_III			1.16	ns
HSTL_I_18			0.35	ns
HSTL_II_18			0.30	ns
HSTL_III_18			0.47	ns
SSTL18_I			0.40	ns
SSTL18_II			0.30	ns
SSTL2_I			0.00	ns
SSTL2_II			-0.05	ns
SSTL3_I			0.00	ns
SSTL3_II			0.17	ns

Table 26: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast	Add the Adjustment Below	Units
Slew Rate to the Following Signal Standard (IOSTANDARD)	Speed Grade: -4	Units
Differential Standards		
LVDS_25	1.49	ns
LVDS_33	0.46	ns
BLVDS_25	0.11	ns
MINI_LVDS_25	1.11	ns
MINI_LVDS_33	0.41	ns
LVPECL_25	Input Only	
LVPECL_33		
RSDS_25	1.72	ns
RSDS_33	0.64	ns
TMDS_33	0.46	ns
PPDS_25	1.28	ns
PPDS_33	0.88	ns
DIFF_HSTL_I_18	0.43	ns
DIFF_HSTL_II_18	0.41	ns
DIFF_HSTL_III_18	0.36	ns
DIFF_HSTL_I	1.01	ns
DIFF_HSTL_III	1.16	ns
DIFF_SSTL18_I	0.49	ns
DIFF_SSTL18_II	0.41	ns
DIFF_SSTL2_I	0.91	ns
DIFF_SSTL2_II	0.10	ns
DIFF_SSTL3_I	1.18	ns
DIFF_SSTL3_II	0.28	ns
	1	

Table 26: Output Timing Adjustments for IOB (Cont'd)

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.

2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Signal Standard		Inputs		Out	puts	Inputs and Outputs
(IŎSTANDARD)	V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
SSTL2_II	1.25	V _{REF} – 0.75	V _{REF} + 0.75	25	1.25	V _{REF}
SSTL3_I	1.5	V _{REF} – 0.75	V _{REF} + 0.75	50	1.5	V _{REF}
SSTL3_II	1.5	V _{REF} – 0.75	V _{REF} + 0.75	25	1.5	V _{REF}
Differential	I		· · ·			
LVDS_25	-	V _{ICM} - 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVDS_33	_	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
BLVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}
MINI_LVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
MINI_LVDS_33	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVPECL_25	-	V _{ICM} - 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}
LVPECL_33	_	V _{ICM} - 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}
RSDS_25	_	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
RSDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
TMDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	3.3	V _{ICM}
PPDS_25	_	V _{ICM} - 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}
PPDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}
DIFF_HSTL_I	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_III	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_I_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_II_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_III_18	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
DIFF_SSTL18_I	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_SSTL18_II	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_SSTL2_I	1.25	V _{REF} – 0.5	V _{REF} + 0.5	50	1.25	V _{REF}
DIFF_SSTL2_II	1.25	V _{REF} – 0.5	V _{REF} + 0.5	50	1.25	V _{REF}
DIFF_SSTL3_I	1.5	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}
DIFF_SSTL3_II	1.5	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}

Table 27: Test Methods for Timing Measurement at I/Os (Cont'd)

Notes:

- 1. Descriptions of the relevant symbols are as follows:
 - V_{REF} The reference voltage for setting the input switching threshold V_{ICM} The common mode input voltage V_M Voltage of measurement point on signal transition V_L Low-level test voltage at Input pin

 - R_T Effective termination resistance, which takes on a value of 1 $M\Omega$ when no parallel termination is required V_T Termination voltage
- The load capacitance (C_I) at the Output pin is 0 pF for all signal standards. 2.
- З. According to the PCI specification.

The capacitive load (C₁) is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a C_L value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.

0:			Package Type: CS	G484 and FGG676
Signal	Standard (IOSTANDARD)		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)
LVCMOS33	Slow	2	76	76
		4	46	46
		6	27	27
		8	20	20
		12	13	13
		16	10	10
		24	-	9
	Fast	2	10	10
		4	8	8
		6	5	5
		8	4	4
		12	4	4
		16	2	2
		24	-	2
	QuietIO	2	76	76
		4	46	46
		6	32	32
		8	26	26
		12	18	18
		16	14	14
		24	-	10

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

www.xilinx.com

Configurable Logic Block Timing

Table 30: CLB (SLICEM) Timing

Symbol	Deservition	Speed Grade: -4		Units
Symbol	Description	Min	Мах	Units
Clock-to-Output	Times			I
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.68	ns
Setup Times			1	I
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.36	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.88	-	ns
Hold Times				
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input	0.00	-	ns
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0.00	-	ns
Clock Timing				I
Т _{СН}	The High pulse width of the CLB's CLK signal	0.75	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.75	-	ns
F _{TOG}	Toggle frequency (for export control)	0	667	MHz
Propagation Time	es			
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.71	ns
Set/Reset Pulse	Width			1
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.61	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Cumbal	Deservition		Grade: -4	Unito
Symbol	Description	Min	Max	Units
Clock-to-Output Tir	nes			
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output	_	1.72	ns
Setup Times				
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM	-0.02	-	ns
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK input of the distributed RAM	0.36	-	ns
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed RAM	0.59	-	ns
Hold Times				L
T _{DH}	Hold time of the BX and BY data inputs after the active transition at the CLK input of the distributed RAM	0.13	-	ns
T _{AH,} T _{WH}	Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM	0.01	-	ns
Clock Pulse Width		1	1	1
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	_	ns

Table 32: CLB Shift Register Switching Characteristics

Symbol	Description		Speed Grade: -4	
Symbol	Description	Min	Max	Units
Clock-to-Output Tir	nes			
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output	-	4.82	ns
Setup Times				
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register	0.18	-	ns
Hold Times				
T _{SRLDH}	Hold time of the BX or BY data input after the active transition at the CLK input of the shift register	0.16	-	ns
Clock Pulse Width			ł	L
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns

Clock Buffer/Multiplexer Switching Characteristics

Table 33: Clock Distribution Switching Characteristics

Description	Symbol	Minimum	Maximum	Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	-	0.23	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	_	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	0	334	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Block RAM Timing

Table 34: Block RAM Timing

Querra ha a l	Description		Speed Grade: -4	
Symbol	Description	Min	Max	Units
Clock-to-Output 1	Times			
T _{RCKO_DOA_NC}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.80	ns
T _{RCKO_DOA}	Clock CLK to DOUT output (with output register)	_	1.45	ns
Setup Times				
T _{RCCK_ADDR}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.46	_	ns
T _{RDCK_DIB}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.33	-	ns
T _{RCCK_ENB}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.60	_	ns
T _{RCCK_WEB}	Setup time for the WE input before the active transition at the CLK input of the block RAM	0.75	-	ns
T _{RCCK_REGCE}	Setup time for the CE input before the active transition at the CLK input of the block RAM	0.40	-	ns
T _{RCCK_RST}	Setup time for the RST input before the active transition at the CLK input of the block RAM	0.25	-	ns
Hold Times				,
T _{RCKC_ADDR}	Hold time on the ADDR inputs after the active transition at the CLK input	0.10	_	ns
T _{RDCK_DIB}	Hold time on the DIN inputs after the active transition at the CLK input	0.10	-	ns
T _{RCKC_ENB}	Hold time on the EN input after the active transition at the CLK input	0.10	-	ns
T _{RCKC_WEB}	Hold time on the WE input after the active transition at the CLK input	0.10	_	ns
T _{RCKC_REGCE}	Hold time on the CE input after the active transition at the CLK input	0.10	-	ns
T _{RCKC_RST}	Hold time on the RST input after the active transition at the CLK input	0.10	-	ns
Clock Timing				
T _{BPWH}	High pulse width of the CLK signal	1.79	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.79	-	ns
Clock Frequency	· · · · · · · · · · · · · · · · · · ·			
F _{BRAM}	Block RAM clock frequency	0	280	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Digital Frequency Synthesizer

Table 39: Recommended Operating Conditions for the DFS

	Symbol	Description	Description Speed Grade:		Speed Grade: -4	
	Symbol	Min Ma				Units
Input Fre	quency Ranges ⁽²⁾					·
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input		0.200	333	MHz
Input Clo	ck Jitter Tolerance ⁽³⁾	•			<u>.</u>	
CLKIN_C	YC_JITT_FX_LF	Cycle-to-cycle jitter at the CLKIN input,	$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	ps
CLKIN_C	YC_JITT_FX_HF	based on CLKFX output frequency	F _{CLKFX} > 150 MHz	-	±150	ps
CLKIN_PE	ER_JITT_FX	Period jitter at the CLKIN input		-	±1	ns

Notes:

- 1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is used.
- 2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 37.
- 3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
- 4. The DCM specifications are guaranteed when both adjacent DCMs are locked.

Table 40: Switching Characteristics for the DFS

Symbol	Description		Device	Speed Grade: -4		Units
Symbol				Min	Max	Units
Output Frequency Ranges						
CLKOUT_FREQ_FX ⁽²⁾	Frequency for the CLKFX and CLKFX180	outputs	All	5	311	MHz
Output Clock Jitter ^(3,4)						
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180			Тур	Max	
	outputs.	CLKIN ≤ 20 MHz	All	Use the Spartan-3A Jitter Calculator: www.xilinx.com/support/ documentation/data_she ets/s3a_jitter_calc.zip		ps
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)		•				
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion		All	-	±[1% of CLKFX period + 350]	ps
Phase Alignment ⁽⁶⁾						
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX ou CLK0 output when both the DFS and DLI		All	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used		All	-	±[1% of CLKFX period + 200]	ps

Slave Serial Mode Timing

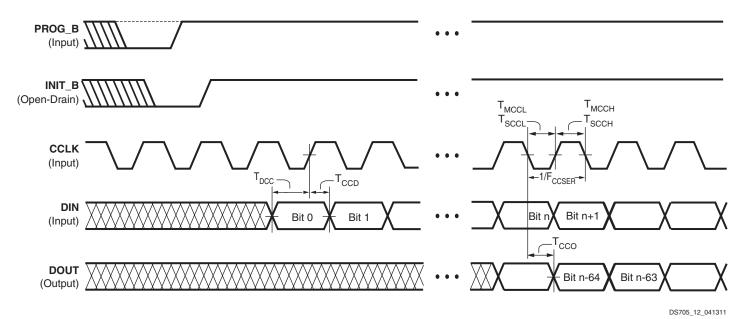
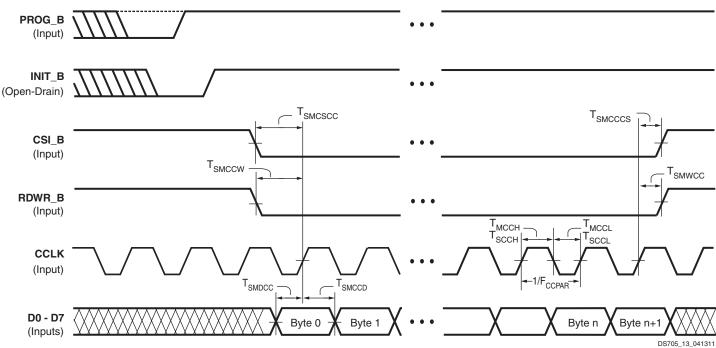


Figure 12: Waveforms for Slave Serial Configuration

Table 51: Timing for the Slave Serial Configuration Modes


Symbol	Description			Max	Units
Clock-to-O	utput Times				
T _{CCO}	The time from the falling transition on the CCLK pin to data appearing at the DOUT pin		1.5	10	ns
Setup Time	es			1	
T _{DCC}	The time from the setup of data at the DIN pin to the rising transition at the CCLK pin			-	ns
Hold Time	S				
T _{CCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin		1.0	-	ns
Clock Timi	ng				
Т _{ССН}	High pulse width at the CCLK input pin		See Table 50		
T _{CCL}	Low pulse width at the CCLK input pin		See Table 50		
F _{CCSER}	Frequency of the clock signal at the CCLK input pin	No bitstream compression	0	100	MHz
		With bitstream compression	0	100	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Slave Parallel Mode Timing

Notes:

- 1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 D7 bus.
- 2. To pause configuration, pause CCLK instead of deasserting CSI_B. See the section in Chapter 7 called "Non-Continuous SelectMAP Data Loading" in UG332 for more details.

Figure 13: Waveforms for Slave Parallel Configuration

Table 52: Timing for the Slave Parallel Configuration Mode

Symbol	Description			Max	Units
Setup Times		· · · · · · · · · · · · · · · · · · ·			
T _{SMDCC} ⁽²⁾	The time from the setup of data at the D0-D7 pins t	to the rising transition at the CCLK pin	7	-	ns
T _{SMCSCC}	Setup time on the CSI_B pin before the rising tran	nsition at the CCLK pin	7	_	ns
T _{SMCCW}	Setup time on the RDWR_B pin before the rising transition at the CCLK pin		17	_	ns
Hold Times		I			
T _{SMCCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins		1	-	ns
T _{SMCCCS}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CSO_B pin		0	-	ns
T _{SMWCC}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin		0	-	ns
Clock Timing				1	
T _{CCH}	The High pulse width at the CCLK input pin		5	-	ns
T _{CCL}	The Low pulse width at the CCLK input pin		5	_	ns
F _{CCPAR}	Frequency of the clock signal at the CCLK input pin	No bitstream compression	0	80	MHz
		With bitstream compression	0	80	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
Т _{DH}	SPI serial Flash PROM data input hold time	T _{DH} ≤ T _{MCCH1}	ns
Τ _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f_{C} or f_{R}	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \ge \frac{1}{T_{CCLKn(min)}}$	MHz

Table 54: Configuration Timing Requirements for Attached SPI Serial Flash

Notes:

1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.

2. Subtract additional printed circuit board routing delay as required by the application.

Revision History

The following table shows the revision history for this document.

Date	Version	Description
07/10/08	1.0	Initial Xilinx release.
01/20/09	1.1	Updated Features and Key Feature Differences from Commercial XC Devices. Removed MultiBoot description from Configuration. Updated Note 2 in Figure 11. Updated T _{ACC} requirement in Table 56.
04/18/11	2.0	This revision goes along with <u>XCN11019</u> : Data Sheet Revisions for Xilinx Automotive (XA) Spartan-3A/-3A DSP FPGA Devices. Added I _{IK} to Table 4. Updated description for V _{IN} in Table 8 including adding Note 4. Also, added Note 2 to I _L in Table 9 to note potential leakage between pins of a differential pair. Updated Notes 5 and 6 in Table 13. Table 20: Updated tags to Note 3. In Table 44, corrected symbols for T _{DNACLKH} and T _{DNACLKL} . Corrected symbols for T _{SUSPEND_GTS} and T _{SUSPEND_GWE} in Table 45. Revised standard title to: IEEE 1149.1/1532 JTAG Test Access Port Timing. Updated Notice of Disclaimer.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.