

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	5968
Number of Logic Elements/Cells	53712
Total RAM Bits	2322432
Number of I/O	469
Number of Gates	3400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3sd3400a-4fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package Marking

Figure 2 shows the top marking for XA Spartan-3A DSP FPGAs in BGA packages.

Ordering Information

XA Spartan-3A DSP FPGAs are available in Pb-free packaging only for all device/package combinations.

Pb-Free Packaging

Device	Speed Grade		Package Type / Number of Pins			Temperature Range (T _J)
XA3SD1800A	-4	Standard Performance	CSG484	484-ball Chip-Scale Ball Grid Array (CSBGA)	Ι	I-Grade (–40°C to 100°C)
XA3SD3400A			FGG676	676-ball Fine-Pitch Ball Grid Array (FBGA)	Q	Q-Grade (-40°C to 125°C)

Notes:

1. The XA Spartan-3A DSP FPGA product line is available in -4 speed grade only.

2. The XA3SD3400A is available in I-Grade only.

Single-Ended I/O Standards

Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

IOSTANDARD	v _c	_{CO} for Drive	's ⁽²⁾	V _{REF}			V _{IL}	V _{IH} ⁽³⁾
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	(V) Nom (V) Max (V)		Max (V)	Min (V)
LVTTL	3.0	3.3	3.6				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.6				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95	V _R the	_{IEF} is not used ese I/O standa	l for ards	0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3 ⁽⁶⁾	3.0	3.3	3.6				0.3 • V _{CCO}	0.5 • V _{CCO}
HSTL_I	1.4	1.5	1.6	0.68	0.75	0.9	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III	1.4	1.5	1.6	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_II_18	1.7	1.8	1.9	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	1.1	-	V _{REF} – 0.1	V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL18_II	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL2_II	2.3	2.5	2.7	1.15	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL3_I	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} – 0.2	V _{REF} + 0.2
SSTL3_II	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} – 0.2	V _{REF} + 0.2

Notes:

Descriptions of the symbols used in this table are as follows: 1.

 V_{CCO} – the supply voltage for output drivers V_{REF} – the reference voltage for setting the input switching threshold V_{IL} – the input voltage that indicates a Low logic level

 V_{IH} – the input voltage that indicates a High logic level

In general, the V_{CCO} rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V_{CCAUX} = 3.3V range 2. and for PCI I/O standards.

З. For device operation, the maximum signal voltage (V_{IH} max) can be as high as V_{IN} max. See Table 4.

There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.

- All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail and use the LVCMOS25 or LVCMOS33 standard depending on V_{CCAUX} . The Dual-Purpose configuration pins use the LVCMOS25 standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as 5. well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. 6.

Figure 5: Differential Output Voltages

Table	14: DC	Characteristics	of User	I/Os Using	Differential	Signal Star	ndards
-------	--------	-----------------	---------	------------	--------------	-------------	--------

		V _{OD}			V _{OCM}		V _{OH}	V _{OL}
	Min (mV)	Typ (mV)	Max (mV)	Min (V)	Typ (V)	Max (V)	Min (V)	Max (V)
LVDS_25	247	350	454	1.125	-	1.375	-	-
LVDS_33	247	350	454	1.125	-	1.375	-	-
BLVDS_25	240	350	460	-	1.30	-	-	-
MINI_LVDS_25	300	-	600	1.0	-	1.4	-	-
MINI_LVDS_33	300	-	600	1.0	-	1.4	-	-
RSDS_25	100	-	400	1.0	-	1.4	-	-
RSDS_33	100	-	400	1.0	-	1.4	-	-
TMDS_33	400	-	800	V _{CCO} - 0.405	-	V _{CCO} – 0.190	-	-
PPDS_25	100	-	400	0.5	0.8	1.4	_	-
PPDS_33	100	-	400	0.5	0.8	1.4	-	-
DIFF_HSTL_I_18	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_II_18	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III_18	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_I	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_SSTL18_I	-	-	-	-	-	-	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL18_II	-	-	-	-	-	-	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL2_I	-	-	-	-	-	-	V _{TT} + 0.61	V _{TT} – 0.61
DIFF_SSTL2_II	-	-	-	-	-	-	V _{TT} + 0.81	V _{TT} – 0.81
DIFF_SSTL3_I	-	-	-	-	-	-	V _{TT} + 0.6	V _{TT} – 0.6
DIFF_SSTL3_II	-	-	-	-	-	-	V _{TT} + 0.8	V _{TT} – 0.8

Notes:

The numbers in this table are based on the conditions set forth in Table 8 and Table 13. 1.

2.

See External Termination Requirements for Differential I/O, page 16. Output voltage measurements for all differential standards are made with a termination resistor (R_T) of 100 Ω across the N and P pins of the 3. differential signal pair.

At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25, PPDS_25 when V_{CCO}=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when V_{CCO}=3.3V. 4.

Input Setup and Hold Times

Table 20: Setup and Hold Times for the IOB Input Path

Symbol	Description	Conditions	IFD_DELAY	Dovico	Speed Grade: -4	Unite
Symbol	Description	Conditions	_VALUE	Device	Min	Units
Setup Tim	es					
TIOPICK	Time from the setup of data at the Input pin to	LVCMOS25 ⁽²⁾	0	XA3SD1800A	1.81	ns
	the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed.			XA3SD3400A	1.88	ns
T _{IOPICKD}	T _{IOPICKD} Time from the setup of data at the Input pin to		1	XA3SD1800A	2.24	ns
	the active transition at the ICLK input of the Input Flip-Flop (IFF). The Input Delay is		2		2.83	ns
	programmed.		3		3.64	ns
			4		4.20	ns
			5		4.16	ns
			6		5.09	ns
		7	7		6.02	ns
			8		6.63	ns
			1	XA3SD3400A	2.44	ns
			2	-	3.02	ns
			3		3.81	ns
			4		4.39	ns
			5		4.26	ns
			6		5.08	ns
			7		5.95	ns
			8		6.55	ns

Symbol	Description	Conditions	IFD_DELAY	Daviaa	Speed Grade: -4	Unito
Symbol	Description	Conditions	_VALUE	Device	Min	Units
Hold Time	S					
T _{IOICKP}	Time from the active transition at the ICLK	LVCMOS25 ⁽³⁾	0	XA3SD1800A	-0.52	ns
	where data must be held at the Input pin. No Input Delay is programmed.			XA3SD3400A	-0.56	ns
T _{IOICKPD}	Time from the active transition at the ICLK	LVCMOS25 ⁽³⁾	1	XA3SD1800A	-1.40	ns
	where data must be held at the Input pin. The		2		-2.11	ns
	Input Delay is programmed.		3		-2.48	ns
			4		-2.77	ns
			5		-2.62	ns
			6		-3.06	ns
			7		-3.42	ns
			8		-3.65	ns
			1	XA3SD3400A	-1.31	ns
			2		-1.88	ns
			3	-	-2.44	ns
			4		-2.89	ns
			5		-2.83	ns
			6		-3.33	ns
			7		-3.63	ns
			8		-3.96	ns
Set/Reset	Pulse Width					
T _{RPW_IOB}	Minimum pulse width to SR control input on IOB	-	-	All	1.61	ns

Table 20: Setup and Hold Times for the IOB Input Path (Cont'd)

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 23.
- 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 21: Sample Window (Source Synchronous)

Symbol	Description	Мах	Units
T _{SAMP}	Setup and hold capture window of an IOB flip-flop	The input capture sample window value is highly specific to a particular application, device, package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the appropriate Xilinx Answer Record for application-specific values. • Answer Record <u>30879</u>	ps

Convert Output Time from LVCMOS25 with 12mA Drive and Fast	Add the Adjustment Below	11	
Slew Rate to the Following Signal Standard (IOSTANDARD)	Speed Grade: -4		
Differential Standards			
LVDS_25	1.49	ns	
LVDS_33	0.46	ns	
BLVDS_25	0.11	ns	
MINI_LVDS_25	1.11	ns	
MINI_LVDS_33	0.41	ns	
LVPECL_25	Input Only		
LVPECL_33			
RSDS_25	1.72	ns	
RSDS_33	0.64	ns	
TMDS_33	0.46	ns	
PPDS_25	1.28	ns	
PPDS_33	0.88	ns	
DIFF_HSTL_I_18	0.43	ns	
DIFF_HSTL_II_18	0.41	ns	
DIFF_HSTL_III_18	0.36	ns	
DIFF_HSTL_I	1.01	ns	
DIFF_HSTL_III	1.16	ns	
DIFF_SSTL18_I	0.49	ns	
DIFF_SSTL18_II	0.41	ns	
DIFF_SSTL2_I	0.91	ns	
DIFF_SSTL2_II	0.10	ns	
DIFF_SSTL3_I	1.18	ns	
DIFF_SSTL3_II	0.28	ns	

Table 26: Output Timing Adjustments for IOB (Cont'd)

Notes:

1. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.

2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Signal Standard		Inputs		Out	Inputs and Outputs	
(IOSTANDARD)	V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
SSTL2_II	1.25	V _{REF} – 0.75	V _{REF} + 0.75	25	1.25	V _{REF}
SSTL3_I	1.5	V _{REF} – 0.75	V _{REF} + 0.75	50	1.5	V _{REF}
SSTL3_II	1.5	V _{REF} – 0.75	V _{REF} + 0.75	25	1.5	V _{REF}
Differential		I	1			_ I
LVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVDS_33	_	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
BLVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}
MINI_LVDS_25	_	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
MINI_LVDS_33	_	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVPECL_25	-	V _{ICM} - 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}
LVPECL_33	_	V _{ICM} - 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}
RSDS_25	_	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
RSDS_33	_	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
TMDS_33	_	V _{ICM} - 0.1	V _{ICM} + 0.1	50	3.3	V _{ICM}
PPDS_25	_	V _{ICM} - 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}
PPDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}
DIFF_HSTL_I	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_III	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_I_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_II_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_III_18	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
DIFF_SSTL18_I	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_SSTL18_II	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_SSTL2_I	1.25	V _{REF} – 0.5	V _{REF} + 0.5	50	1.25	V _{REF}
DIFF_SSTL2_II	1.25	V _{REF} – 0.5	V _{REF} + 0.5	50	1.25	V _{REF}
DIFF_SSTL3_I	1.5	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}
DIFF_SSTL3_II	1.5	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}

Table 27: Test Methods for Timing Measurement at I/Os (Cont'd)

Notes:

- 1. Descriptions of the relevant symbols are as follows:
 - V_{REF} The reference voltage for setting the input switching threshold V_{ICM} The common mode input voltage V_M Voltage of measurement point on signal transition V_L Low-level test voltage at Input pin

 - R_T Effective termination resistance, which takes on a value of 1 $M\Omega$ when no parallel termination is required V_T Termination voltage
- The load capacitance (C_I) at the Output pin is 0 pF for all signal standards. 2.
- З. According to the PCI specification.

The capacitive load (C₁) is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a C_L value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.

Using IBIS Models to Simulate Load Conditions in Application

IBIS models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF} R_{REF} and V_{MEAS}) correspond directly with the parameters used in Table 27 (V_T , R_T , and V_M). Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table. A fourth parameter, C_{REF} is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link:

www.xilinx.com/support/download/index.htm

Delays for a given application are simulated according to its specific load conditions as follows:

- 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 9. Use parameter values V_T, R_T, and V_M from Table 27. C_{REF} is zero.
- 2. Record the time to V_M .
- Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF} R_{REF} C_{REF} and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS}.
- 5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 26) to yield the worst-case delay of the PCB trace.

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

Table 28 and Table 29 provide the essential SSO guidelines. For each device/package combination, Table 28 provides the number of equivalent V_{CCO}/GND pairs. The equivalent number of pairs is based on characterization and may not match the physical number of pairs. For each output signal standard and drive strength, Table 29 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO}/GND pair within an I/O bank. The guidelines in Table 29 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 28 and Table 29 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 28 x Table 29

The recommended maximum SSO values assumes that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics.

Table 28: Equivalent V_{CCO}/GND Pairs per Bank

Device	Package Style (Pb-free)				
Device	CSG484	FGG676			
XA3SD1800A	6	9			
XA3SD3400A	6	10			

		Package Type: CSG484 and FGG676			
Signal Standard (IOSTANDARD)		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)		
LVCMOS25	Slow	2	76	76	
		4	46	46	
		6	33	33	
		8	24	24	
		12	18	18	
		16	-	11	
		24	-	7	
	Fast	2	18	18	
		4	14	14	
		6	6	6	
		8	6	6	
		12	3	3	
		16	-	3	
		24	-	2	
	QuietIO	2	76	76	
		4	60	60	
		6	48	48	
		8	36	36	
		12	36	36	
		16	-	36	
		24	-	8	
LVCMOS18	Slow	2	64	64	
		4	34	34	
		6	22	22	
		8	18	18	
		12	-	13	
		16	_	10	
	Fast	2	18	18	
		4	9	9	
		6	7	7	
		8	4	4	
		12	_	4	
		16	_	3	
	QuietIO	2	64	64	
		4	64	64	
		6	48	48	
		8	36	36	
		12	-	36	
		16	_	24	

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

www.xilinx.com

			Package Type: CSG484 and FGG676			
			Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)		
LVCMOS15	Slow	2	55	55		
		4	31	31		
		6	18	18		
		8	-	15		
		12	-	10		
	Fast	2	25	25		
		4	10	10		
		6	6	6		
		8	-	4		
		12	-	3		
	QuietIO	2	70	70		
		4	40	40		
		6	31	31		
		8	-	31		
		12	-	20		
LVCMOS12	Slow	2	40	40		
		4	-	25		
		6	-	18		
	Fast	2	31	31		
		4	-	13		
		6	-	9		
	QuietIO	2	55	55		
		4	-	36		
		6	-	36		
PCI33_3			16	16		
HSTL_I			-	20		
HSTL_III			-	8		
HSTL_I_18			17	17		
HSTL_II_18		-	5			
HSTL_III_18		10	8			
SSTL18_I			7	15		
SSTL18_II			-	9		
SSTL2_I			18	18		
SSTL2_II			_	9		
SSTL3_I			8	10		
SSTL3_II			6	7		

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

www.xilinx.com

	Package Type: CSG484 and FGG676			
Signal Standard (IOSTANDARD)	Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)		
Differential Standards (Number of I/O Pairs or Channels)				
LVDS_25	22	-		
LVDS_33	27	-		
BLVDS_25	4	4		
MINI_LVDS_25	22	-		
MINI_LVDS_33	27	-		
LVPECL_25	looute	Only		
LVPECL_33	- input	Soniy		
RSDS_25	22	-		
RSDS_33	27	-		
TMDS_33	27	-		
PPDS_25	22	-		
PPDS_33	27	-		
DIFF_HSTL_I_18	8	8		
DIFF_HSTL_II_18	-	2		
DIFF_HSTL_III_18	5	4		
DIFF_HSTL_I	-	10		
DIFF_HSTL_III	-	4		
DIFF_SSTL18_I	3	7		
DIFF_SSTL18_II	-	1		
DIFF_SSTL2_I	9	9		
DIFF_SSTL2_II	-	4		
DIFF_SSTL3_I	4	5		
DIFF_SSTL3_II	3	3		

Table 29: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

Notes:

1. Not all I/O standards are supported on all I/O banks. The left and right banks (I/O banks 1 and 3) support higher output drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in top or bottom banks (I/O banks 0 and 2). Refer to UG331, Spartan-3 Generation FPGA User Guide for additional information.

 The numbers in this table are recommendations that assume sound board layout practice. This table assumes the following parasitic factors: combined PCB trace and land inductance per V_{CCO} and GND pin of 1.0 nH, receiver capacitive load of 15 pF. Test limits are the V_{IL}/V_{IH} voltage limits for the respective I/O standard.

3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689, Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations.

Configurable Logic Block Timing

Table 30: CLB (SLICEM) Timing

Symbol	Description		Speed Grade: -4	
Symbol	Description	Min	Max	Units
Clock-to-Output Tin	nes			
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.68	ns
Setup Times				
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB $% \left({{\rm{T}}_{\rm{T}}} \right)$	0.36	-	ns
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB	1.88	-	ns
Hold Times			ľ	
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the ${\sf F}$ or ${\sf G}$ input	0.00	-	ns
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0.00	-	ns
Clock Timing			1	
т _{сн}	The High pulse width of the CLB's CLK signal	0.75	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.75	-	ns
F _{TOG}	Toggle frequency (for export control)	0	667	MHz
Propagation Times				
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.71	ns
Set/Reset Pulse Wid	Jth			
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.61	-	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Table	31:	CLB	Distributed	RAM	Switching	Characteristics
-------	-----	-----	-------------	-----	-----------	-----------------

Symbol	Description		Speed Grade: -4	
Symbol	Description	Min	Max	Units
Clock-to-Output Tim	nes			
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output	-	1.72	ns
Setup Times				
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM	-0.02	-	ns
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK input of the distributed \ensuremath{RAM}	0.36	Ι	ns
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed \ensuremath{RAM}	0.59	Ι	ns
Hold Times				
T _{DH}	Hold time of the BX and BY data inputs after the active transition at the CLK input of the distributed RAM	0.13	-	ns
T _{AH,} T _{WH}	Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM	0.01	-	ns
Clock Pulse Width				
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	_	ns

Table 32: CLB Shift Register Switching Characteristics

Symbol	Symbol Description		Speed Grade: -4	
Symbol			Max	Units
Clock-to-Output Tim	ies			
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output	-	4.82	ns
Setup Times				
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register	0.18	-	ns
Hold Times				
T _{SRLDH}	Hold time of the BX or BY data input after the active transition at the CLK input of the shift register	0.16	-	ns
Clock Pulse Width				
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns

Clock Buffer/Multiplexer Switching Characteristics

Table 33: Clock Distribution Switching Characteristics

Description	Symbol	Minimum	Maximum	Units
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	T _{GIO}	-	0.23	ns
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	T _{GSI}	-	0.63	ns
Frequency of signals distributed on global buffers (all sides)	F _{BUFG}	0	334	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Digital Frequency Synthesizer

Table 39: Recommended Operating Conditions for the DFS

Symbol		Description	Speed G	Unito			
	Symbol	Description	Description			Units	
Input Frequency Ranges ⁽²⁾							
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input	Frequency for the CLKIN input			MHz	
Input Cloc	ck Jitter Tolerance ⁽³⁾						
CLKIN_CY	(C_JITT_FX_LF	Cycle-to-cycle jitter at the CLKIN input,	$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	ps	
CLKIN_CY	/C_JITT_FX_HF	based on CLKFX output frequency	F _{CLKFX} > 150 MHz	-	±150	ps	
CLKIN_PE	R_JITT_FX	Period jitter at the CLKIN input		-	±1	ns	

Notes:

- 1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is used.
- 2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 37.
- 3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
- 4. The DCM specifications are guaranteed when both adjacent DCMs are locked.

Table 40: Switching Characteristics for the DFS

Symbol	Description	Description Dev		Speed Grade: -4		Unito
Symbol	Description			Min	Max	Units
Output Frequency Ranges						
CLKOUT_FREQ_FX ⁽²⁾	Frequency for the CLKFX and CLKFX180	outputs	All	5	311	MHz
Output Clock Jitter ^(3,4)	1					
CLKOUT_PER_JITT_FX	KOUT_PER_JITT_FX Period jitter at the CLKFX and CLKFX180			Тур	Мах	
CLKIN	CLKIN ≤ 20 MHz	All Use the Spartan-3A Jitter Calculator: www.xilinx.com/suppor documentation/data_s ets/s3a_iitter_calc.zi		Spartan-3A Calculator: .com/support/ .tion/data_she itter_calc.zip	ps	
		CLKIN > 20 MHz		±[1% of CLKFX period + 100]	±[1% of CLKFX period + 200]	ps
Duty Cycle ^(5,6)						
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and Cl including the BUFGMUX and clock tree du	Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion		_	±[1% of CLKFX period + 350]	ps
Phase Alignment ⁽⁶⁾						
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX ou CLK0 output when both the DFS and DLL	Itput and the DLL are used	All	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX18 DLL CLK0 output when both the DFS and	0 output and the I DLL are used	All	-	±[1% of CLKFX period + 200]	ps

Table 40: Switching Characteristics for the DFS (Cont'd)

Symbol	Description			Speed Grade: -4		Unito
Symbol				Min	Max	Units
Lock Time						
LOCK_FX ^(2,3)	The time from deassertion at the DCM's Reset input to the rising transition at its	$\begin{array}{l} 5 \text{ MHz} \leq F_{CLKIN} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	ms
	LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		_	450	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 39.
- 2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- 4. Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- 6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of "±[1% of CLKFX period + 200]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.

Phase Shifter

Table 41: Recommended Operating Conditions for the PS in Variable Phase Mode

Symbol	Description		Speed Grade: -4				
			Max	Units			
Operating Frequency Ranges							
PSCLK_FREQ (F _{PSCLK})	Frequency for the PSCLK input	1	167	MHz			
Input Pulse Requirements							
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period	40%	60%	—			

Table 42: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description		Phase Shift Amount	Units
Phase Shifting Range				
MAX_STEPS ⁽²⁾	Maximum allowed number of	allowed number of CLKIN < 60 MHz \pm [INTEGER(10 • (T ₀)	\pm [INTEGER(10 • (T _{CLKIN} – 3 ns))]	steps
	given CLKIN clock period, where T = CLKIN clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN ≥ 60 MHz	±[INTEGER(15 • (T _{CLKIN} – 3 ns))]	
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting		±[MAX_STEPS • DCM_DELAY_STEP_MIN]	ns
FINE_SHIFT_RANGE_MA X	Maximum guaranteed delay for variable phase shifting		±[MAX_STEPS • DCM_DELAY_STEP_MAX]	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 41.

- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 38.

Miscellaneous DCM Timing

Table 43: Miscellaneous DCM Timing

Symbol	Description	Min	Мах	Units
DCM_RST_PW_MIN	Minimum duration of a RST pulse width		-	CLKIN cycles

DNA Port Timing

Table 44: DNA_PORT Interface Timing

Symbol	Description		Max	Units
T _{DNASSU}	Setup time on SHIFT before the rising edge of CLK	1.0	-	ns
T _{DNASH}	Hold time on SHIFT after the rising edge of CLK	0.5	-	ns
T _{DNADSU}	Setup time on DIN before the rising edge of CLK	1.0	-	ns
T _{DNADH}	Hold time on DIN after the rising edge of CLK	0.5	-	ns
T _{DNARSU}	Setup time on READ before the rising edge of CLK	5.0	10,000	ns
T _{DNARH}	Hold time on READ after the rising edge of CLK	0.0	-	ns
T _{DNADCKO}	Clock-to-output delay on DOUT after rising edge of CLK	0.5	1.5	ns
T _{DNACLKF}	CLK frequency	0.0	100	MHz
T _{DNACLKH}	CLK High time	1.0	×	ns
T _{DNACLKL}	CLK Low time	1.0	×	ns

Notes:

1. The minimum READ pulse width is 5 ns, and the maximum READ pulse width is 10 $\mu s.$

Suspend Mode Timing

Figure 10: Suspend Mode Timing

Table 45: Suspend Mode Timing Parameters

Symbol	Description		Тур	Max	Units		
Entering Suspend M	Entering Suspend Mode						
T _{SUSPENDHIGH_AWAKE}	Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter (<i>suspend_filter:No</i>)	_	7	-	ns		
T _{SUSPENDFILTER}	Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled (<i>suspend_filter:Yes</i>)	+160	+300	+600	ns		
T _{SUSPEND_GTS}	Rising edge of SUSPEND pin until FPGA output pins drive their defined SUSPEND constraint behavior	_	10	_	ns		
T _{SUSPEND_GWE}	Rising edge of SUSPEND pin to write-protect lock on all writable clocked elements	_	<5	Ι	ns		
T _{SUSPEND_DISABLE}	Rising edge of the SUSPEND pin to FPGA input pins and interconnect disabled	_	340	Ι	ns		
Exiting Suspend Mod	de						
T _{SUSPENDLOW_AWAKE}	Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not include DCM lock time.	_	4 to 108	-	μs		
T _{SUSPEND_ENABLE}	Falling edge of the SUSPEND pin to FPGA input pins and interconnect re-enabled	_	3.7 to 109	_	μs		
T _{AWAKE_GWE1}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using <i>sw_clk:InternalClock</i> and <i>sw_gwe_cycle:1</i> .	-	67	-	ns		
T _{AWAKE_GWE512}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using <i>sw_clk:InternalClock</i> and <i>sw_gwe_cycle:512</i> .	_	14	Ι	μs		
T _{AWAKE_GTS1}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using <i>sw_clk:InternalClock</i> and <i>sw_gts_cycle:1</i> .	_	57	Ι	ns		
T _{AWAKE_GTS512}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using <i>sw_clk:InternalClock</i> and <i>sw_gts_cycle:512</i> .	-	14	_	μs		

Notes:

1. These parameters based on characterization.

2. For information on using the Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.

Slave Parallel Mode Timing

Notes:

- 1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 D7 bus.
- 2. To pause configuration, pause CCLK instead of deasserting CSI_B. See the section in Chapter 7 called "Non-Continuous SelectMAP Data Loading" in UG332 for more details.

Figure 13: Waveforms for Slave Parallel Configuration

Table 52: Timing for the Slave Parallel Configuration Mode

Symbol	Description			Max	Units	
Setup Times	Setup Times					
T _{SMDCC} ⁽²⁾	The time from the setup of data at the D0-D7 pins t	o the rising transition at the CCLK pin	7	-	ns	
T _{SMCSCC}	Setup time on the CSI_B pin before the rising tran	nsition at the CCLK pin	7	-	ns	
T _{SMCCW}	Setup time on the RDWR_B pin before the rising	transition at the CCLK pin	17	-	ns	
Hold Times						
T _{SMCCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins			-	ns	
T _{SMCCCS}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CSO_B pin			-	ns	
T _{SMWCC}	The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin			-	ns	
Clock Timing						
Т _{ССН}	The High pulse width at the CCLK input pin		5	-	ns	
T _{CCL}	The Low pulse width at the CCLK input pin		5	-	ns	
F _{CCPAR}	Frequency of the clock signal at the CCLK input	No bitstream compression	0	80	MHz	
	pin	With bitstream compression	0	80	MHz	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

2. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Serial Peripheral Interface Configuration Timing

Shaded values indicate specifications on attached SPI Flash PROM.

DS705_14_041311

Figure 14: Waveforms for Serial Peripheral Interface Configuration

Table 53: Timing for Serial Peripheral Interface Configuration Mode

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	Se	See Table 47	
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	Se	See Table 47	
T _{MINIT}	Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the rising edge of INIT_B		-	ns
T _{INITM}	Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the rising edge of INIT_B		-	ns
T _{CCO}	MOSI output valid delay after CCLK falling edge See Table 51			
T _{DCC}	Setup time on DIN data input before CCLK rising edge	See Table 51		
T _{CCD}	Hold time on DIN data input after CCLK rising edge	0	_	ns

Revision History

The following table shows the revision history for this document.

Date	Version	Description
07/10/08	1.0	Initial Xilinx release.
01/20/09	1.1	Updated Features and Key Feature Differences from Commercial XC Devices. Removed MultiBoot description from Configuration. Updated Note 2 in Figure 11. Updated T _{ACC} requirement in Table 56.
04/18/11	2.0	This revision goes along with <u>XCN11019</u> : Data Sheet Revisions for Xilinx Automotive (XA) Spartan-3A/-3A DSP FPGA Devices. Added I _{IK} to Table 4. Updated description for V _{IN} in Table 8 including adding Note 4. Also, added Note 2 to I _L in Table 9 to note potential leakage between pins of a differential pair. Updated Notes 5 and 6 in Table 13. Table 20: Updated tags to Note 3. In Table 44, corrected symbols for T _{DNACLKH} and T _{DNACLKL} . Corrected symbols for T _{SUSPEND_GTS} and T _{SUSPEND_GWE} in Table 45. Revised standard title to: IEEE 1149.1/1532 JTAG Test Access Port Timing. Updated Notice of Disclaimer.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.