

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	77
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 27x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f693abpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Internal clock divider and prescaler provide exact 1s clock

External Interrupts

- Edge or Level sensitive
- Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

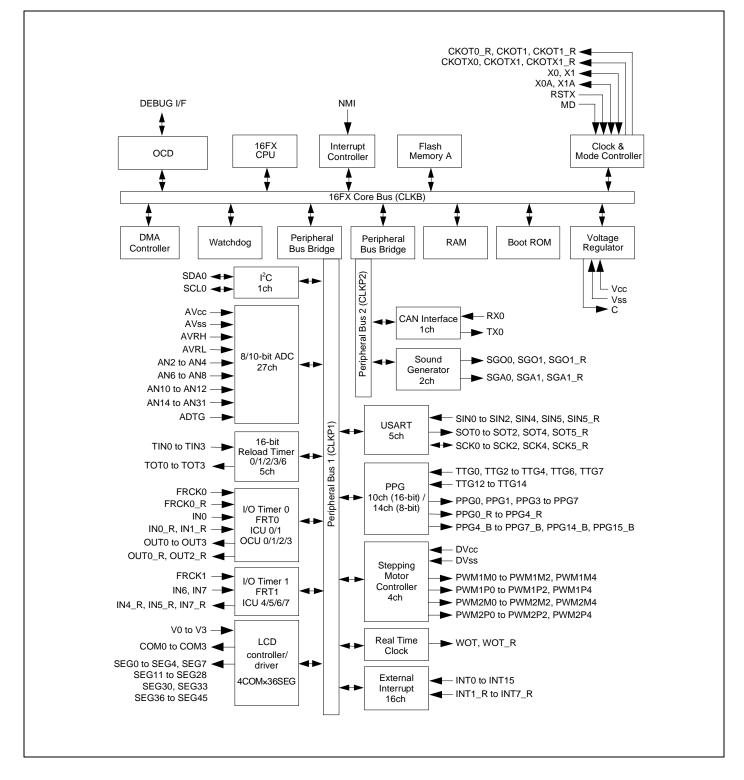
Non Maskable Interrupt

- Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- Once enabled, cannot be disabled other than by reset
- High or Low level sensitive
- Pin shared with external interrupt 0

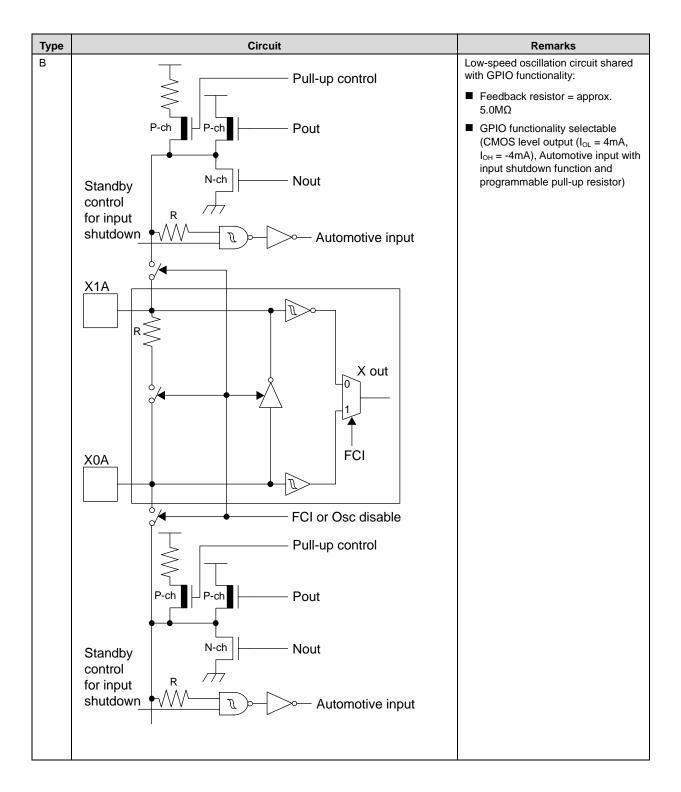
I/O Ports

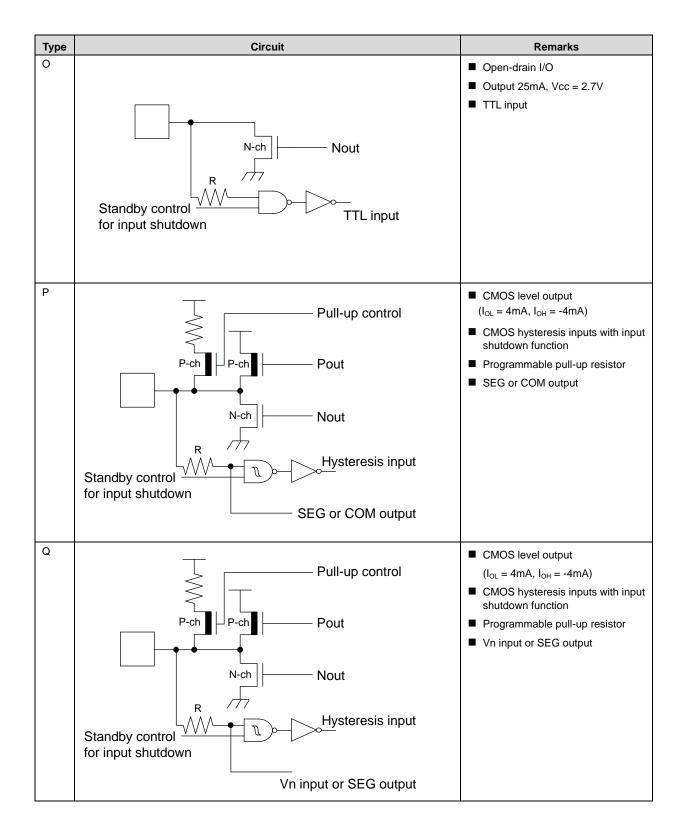
- Most of the external pins can be used as general purpose I/O
- All push-pull outputs(except when used as I²C SDA/SCL line)
- Bit-wise programmable as input/output or peripheral signal
- Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor

Built-in On Chip Debugger (OCD)


- One-wire debug tool interface
- Break function:
- □ Hardware break: 6 points (shared with code event)
- □ Software break: 4096 points
- Event function
 - □ Code event: 6 points (shared with hardware break)
 - Data event: 6 points
 - Event sequencer: 2 levels + reset
- Execution time measurement function
- Trace function: 42 branches
- Security function

Flash Memory


- Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- Supports automatic programming, Embedded Algorithm
- Write/Erase/Erase-Suspend/Resume commands
- A flag indicating completion of the automatic algorithm
- Erase can be performed on each sector individually
- Sector protection
- Flash Security feature to protect the content of the Flash
- Low voltage detection during Flash erase or write


2. Block Diagram

11. Interrupt Vector Table

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _н	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _н	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _н	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3B8 _Н	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _Н	EXTINT1	Yes	18	External Interrupt 1
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _н	EXTINT4	Yes	21	External Interrupt 4
22	3А4 _Н	EXTINT5	Yes	22	External Interrupt 5
23	3А0 _Н	EXTINT6	Yes	23	External Interrupt 6
24	39C _н	EXTINT7	Yes	24	External Interrupt 7
25	398 _н	EXTINT8	Yes	25	External Interrupt 8
26	394 _H	EXTINT9	Yes	26	External Interrupt 9
27	390 _н	EXTINT10	Yes	27	External Interrupt 10
28	38C _н	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _H	EXTINT14	Yes	31	External Interrupt 14
32	37C _н	EXTINT15	Yes	32	External Interrupt 15
33	378 _Н	CAN0	No	33	CAN Controller 0
34	374 _H	-	-	34	Reserved
35	370 _H	-	-	35	Reserved
36	36C _H	-	-	36	Reserved
37	368 _н	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360 _H	PPG1	Yes	39	Programmable Pulse Generator 1

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	-	-	83	Reserved
84	2AC _H	-	-	84	Reserved
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _Н	-	-	91	Reserved
92	28C _H	-	-	92	Reserved
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	SG0	No	95	Sound Generator 0
96	27C _н	IIC0	Yes	96	I ² C interface 0
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	LINR0	Yes	101	LIN USART 0 RX
102	264 _H	LINTO	Yes	102	LIN USART 0 TX
103	260 _H	LINR1	Yes	103	LIN USART 1 RX
104	25C _н	LINT1	Yes	104	LIN USART 1 TX
105	258 _H	LINR2	Yes	105	LIN USART 2 RX
106	254 _H	LINT2	Yes	106	LIN USART 2 TX
107	250 _Н	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	LINR4	Yes	109	LIN USART 4 RX
110	244 _H	LINT4	Yes	110	LIN USART 4 TX
111	240 _H	LINR5	Yes	111	LIN USART 5 RX
112	23C _H	LINT5	Yes	112	LIN USART 5 TX
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	-	-	115	Reserved
116	22C _н	-	-	116	Reserved
117	228 _H	-	-	117	Reserved
118	224 _H	-	-	118	Reserved
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved
121	218 _H	SG1	No	121	Sound Generator 1
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1Е8 _н	FLASHA	Yes	133	Flash memory A interrupt
134	1Е4 _н	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	-	-	137	Reserved
138	1D4 _H	-	-	138	Reserved
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	ADCPD0	No	140	A/D Converter 0 - Pulse detection
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _н	-	-	143	Reserved

13. Handling Devices

Special Care is Required for the following when Handling the Device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (Vcc/Vss)
- Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- SMC power supply pins
- Serial communication
- Mode Pin (MD)

13.1 Latch-Up Prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.
- Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused Pins Handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register

PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent

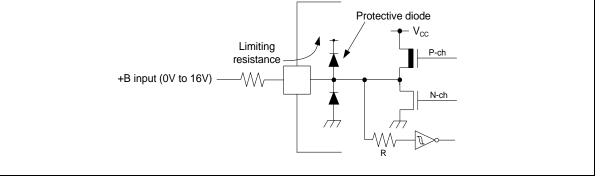
damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with

either input disabled or external pull-up/pull-down resistor as described above.

13.3 External Clock Usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.


See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single Phase External Clock for Main Oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.

Sample recommended circuits:

[5]: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

Icc is the total core current consumption into Vcc as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

IA is the analog current consumption into AVcc.

[6]: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.2 Recommended Operating Conditions

Demonster	Cumhal	Value			l lucit	Domente	
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
	V _{CC} ,	2.7	-	5.5	V		
Power supply voltage	AV _{CC} ,	2.0		5.5	V	Maintains RAM data in stop mode	
	DV _{cc}	2.0	-	5.5	v		
						1.0μF (Allowance within ± 50%)	
							3.9μF (Allowance within ± 20%)
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V_{CC} must use the one of a capacity value that is larger than C_s .	

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

14.3 DC Characteristics

14.3.1 Current Rating

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks		
Farameter	Name		Min	Тур	Max	Unit	Reinarks			
				PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz		-	28	-	mA	T _A = +25°C
			(CLKRC and CLKSC stopped)	-	-	38	mA	T _A = +105°C		
	I _{CCMAIN}		Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz Flash 0 wait (CLKPLL, CLKSC and CLKRC	-	3.5	-	mA	T _A = +25°C		
			stopped)	-	-	8	mA	T _A = +105°C		
Power supply current in Run modes ^[1]	I _{CCRCH} Vcc		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz Flash 0 wait		1.8	-	mA	T _A = +25°C		
modes			(CLKMC, CLKPLL and CLKSC stopped)	-	-	6	mA	T _A = +105°C		
	I _{CCRCL}		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz Flash 0 wait	-	0.16	-	mA	T _A = +25°C		
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	3.5	mA	T _A = +105°C		
	Іссѕив		Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz Flash 0 wait	-	0.1	-	mA	T _A = +25°C		
			(CLKMC, CLKPLL and CLKRC stopped)	-	-	3.3	mA	T _A = +105°C		

Parameter	Parameter Symbol		Pin Conditions		Value		Unit	Remarks
rarameter	Symbol	Name	Conditions	Min	Тур	Max	Onit	Remarks
Power supply current in Stop	I _{CCH}		-	-	20	60	μΑ	T _A = +25°C
mode ^[3]				-	-	880	μA	T _A = +105°C
Flash Power Down current	I _{CCFLASHPD}		-	-	36	70	μA	
Power supply current		Vcc		-	5	-	μA	T _A = +25°C
for active Low Voltage detector ^[4]			Low voltage detector enabled	-	-	12.5	μA	T _A = +105°C
Flash Write/	I _{CCFLASH}		-	-	12.5	-	mA	T _A = +25°C
Erase current ^[5]				-	-	20	mA	T _A = +105°C

[1]: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

[2]: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32 kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

[3]: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

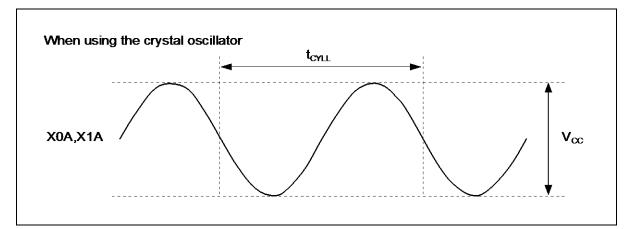
[4]: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

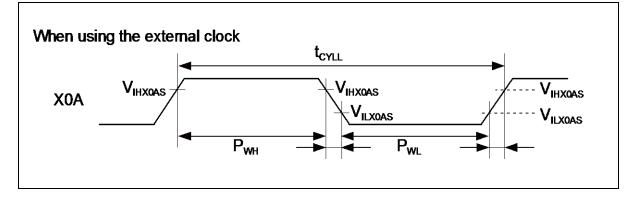
[5]: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.

14.3.2 Pin Characteristics

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

-					Value				
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks	
	N	Port inputs	-	V _{cc} ×0.7	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	VIH	Pnn_m	-	V _{CC} ×0.8	-	V _{cc} + 0.3	V	AUTOMOTIVE Hysteresis input	
"H" level input	VIHXOS	хо	External clock in "Fast Clock Input mode"	VD×0.8	-	VD	V	VD=1.8V±0.15V	
voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	V _{CC} ×0.8	-	V _{cc} + 0.3	V		
-	V _{IHR}	RSTX	-	V _{CC} ×0.8	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	V _{IHM}	MD	-	V _{cc} - 0.3	-	V _{cc} + 0.3	V	CMOS Hysteresis input	
	V _{IHD}	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input	
		Port inputs	-	V _{SS} - 0.3	-	V _{cc} ×0.3	V	CMOS Hysteresis input	
		Pnn_m	-	V _{SS} - 0.3	-	V _{cc} ×0.5	V	AUTOMOTIVE Hysteresis input	
	VILXOS	XO	External clock in "Fast Clock Input mode"	V _{SS}	-	VD×0.2	V	VD=1.8V±0.15V	
"L" level input voltage	VILXOAS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{cc} ×0.2	V		
	V _{ILR}	RSTX	-	V _{SS} - 0.3	-	V _{cc} ×0.2	V	CMOS Hysteresis input	
	V _{ILM}	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input	
	V _{ILD}	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input	

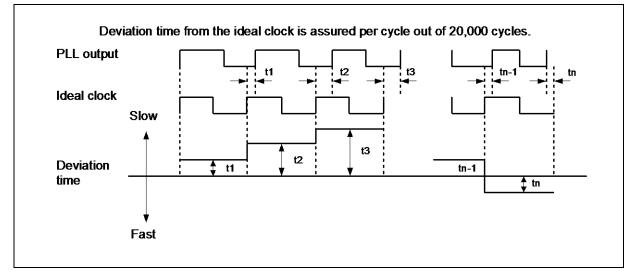

			0		Value			Demerica
Parameters	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
			$4.5V \le (D)V_{CC} \le 5.5V$					
N		4 6 4	$I_{OL} = +4mA$		-	0.4	v	
	V _{OL4}	4mA type	$2.7V \leq (D)V_{CC} < 4.5V$	-	-	0.4	v	
			I _{OL} = +1.7mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			$I_{OL} = +52mA$					$T = 40^{\circ}C$
			$2.7V \le DV_{CC} < 4.5V$					$T_A = -40^{\circ}C$
			$I_{OL} = +22mA$					
			$4.5V \le DV_{CC} \le 5.5V$					
			I _{OL} = +39mA					T
			$2.7V \le DV_{CC} < 4.5V$					T _A = +25°C
"L" level		High Drive	I _{OL} = +18mA			0.5		
output voltage	V _{OL30}	type*	$4.5V \le DV_{CC} \le 5.5V$	-	-	0.5	V	
			I _{OL} = +32mA					
			$2.7V \le DV_{CC} < 4.5V$					T _A = +85°C
			I _{OL} = +14mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			I _{OL} = +30mA					
			2.7V ≤ DV _{CC} < 4.5V					T _A = +105°C
			I _{OL} = +13.5mA					
			$2.7V \le V_{CC} < 5.5V$					
	V _{OL3}	3mA type	$I_{OL} = +3mA$	-	-	0.4	V	
			V _{CC} = 2.7V	0		0.05		
	V _{OLD}	DEBUG I/F	BUG I/F $I_{OL} = +25$ mA		-	0.25	V	
			$V_{\rm SS} < V_{\rm I} < V_{\rm CC}$					Single port pin
		Pnn_m	$AV_{ss} < V_1 < V_{CC}$ AV _{ss} , AVRL < V ₁ < AV _{CC} ,	- 1	-	+ 1	μA	except high
		-	AVSS, AVINE < VI < AVCC,					current output I/O for SMC
Input leak current	IIL							
our one		P08_m,	$DV_{SS} < V_1 < DV_{CC}$			_		
		P09_m,	AV_{SS} , $AVRL < V_1 < AV_{CC}$,	- 3	-	+ 3	μA	
		P10_m	AVRH					
								Maximum
Total LCD leak current	ΣII _{ILCD}	All SEG/ COM pin	$V_{CC} = 5.0V$	-	0.5	10	μΑ	leakage
current								current of all LCD pins
		Between						
Internal LCD divide	R _{LCD}	V3 and V2,	V _{cc} = 5.0V	6.25	12.5	25	kΩ	
resistance	INLCD	V2 and V1,	VCC - 5.0V	0.20	12.0	25	N12	
		V1 and V0						



14.4.2 Sub Clock Input Characteristics

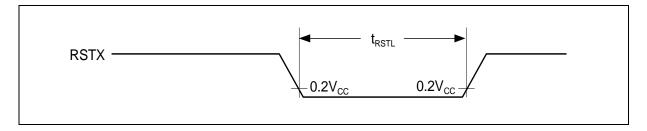
|--|

		D : 11			Value		11	Dementer
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
			-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency	f _{CL}	X0A, X1A	-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	



14.4.5 Operating Conditions of PLL

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)


D	0 miliot	Value			l lucit	Dementer	
Parameter	Symbol	Min	Тур	Мах	Unit	Remarks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{clkvco}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)

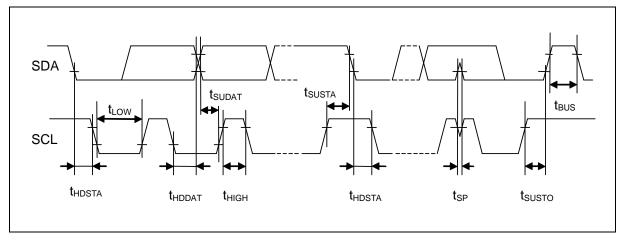
Parameter	Symbol	Pin Name	Valu	Unit		
Farameter	Symbol	Fininame	Min	Max	Onit	
Reset input time	•	RSTX	10	-	μs	
Rejection of reset input time	I _{RSTL}		1	-	μs	

14.4.10 PC Timing

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Descurator	Symbol	Conditions	Typical Mode		High-Speed Mode ^[4]		
Parameter			Min	Мах	Min	Max	Unit
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μs
SCL clock "L" width	t _{LOW}]	4.7	-	1.3	-	μs
SCL clock "H" width	t _{HIGH}		4.0	-	0.6	-	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SUSTA}	$C_{L} = 50 pF,$ $R = (Vp/I_{OL})^{[1]}$	4.7	-	0.6	-	μs
Data hold time			0	3.45 ^[2]	0	0.9 ^[3]	μs
$SCL \downarrow \to SDA \downarrow \uparrow$	t _{HDDAT}		0				
Data setup time	+		250		100	-	20
$SDA\downarrow\uparrow\toSCL\uparrow$	t _{sudat}		250	-	100	-	ns
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{SUSTO}		4.0	-	0.6	-	μs
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μs
Pulse width of spikes which will be suppressed by input noise filter	t _{SP}	-	0	(1-1.5) ×t _{СLКР1} ^[5]	0	(1-1.5) ×t _{СLКР1} ^[5]	ns

[1]: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively.


Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

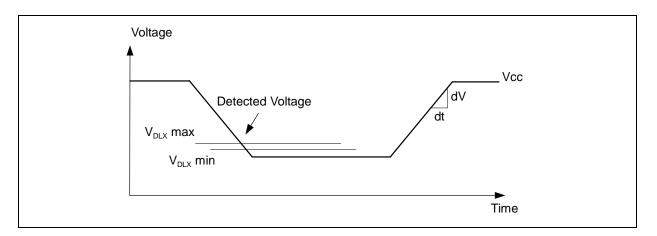
[2]: The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

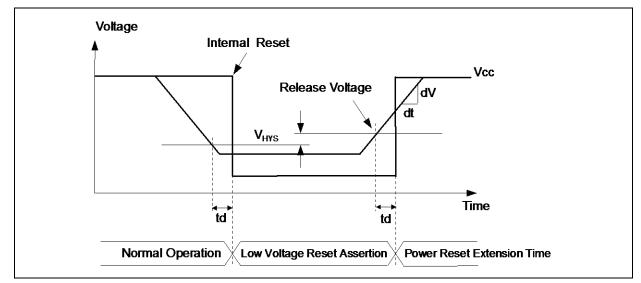
[3]: A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of " $t_{SUDAT} \ge 250$ ns".

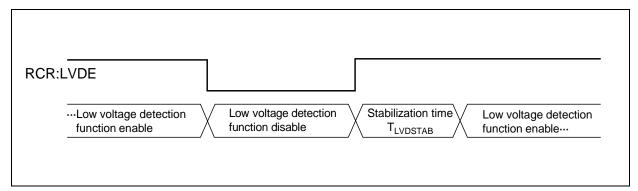
[4]: For use at over 100 kHz, set the peripheral clock1 (CLKP1) to at least 6 MHz.

[5]: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.

14.5 A/D Converter


14.5.1 Electrical Characteristics for the A/D Converter


 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$


	Symb	Pin Name		Value				
Parameter	ol		Min	Тур	Мах	Unit	Remarks	
Resolution	-	-	-	-	10	bit		
Total error	-	-	- 3.0	-	+ 3.0	LSB		
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB		
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB		
Zero transition voltage	V _{OT}	ANn	Тур - 20	AVRL+ 0.5LSB	Typ + 20	mV		
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH- 1.5LSB	Typ + 20	mV		
			1.0	-	5.0	μs	$4.5V \le AV_{CC} \le 5.5V$	
Compare time*	-	-	2.2	-	8.0	μs	$2.7V \le AV_{CC} < 4.5V$	
o		-	0.5	-	-	μs	$4.5V \le AV_{CC} \le 5.5V$	
Sampling time*	-		1.2	-	-	μs	$2.7V \le AV_{CC} < 4.5V$	
	IA		-	2.0	3.1	mA	A/D Converter active	
Power supply current	I _{AH}	AV _{cc}	-	-	3.3	μA	A/D Converter not operated	
Reference power supply current (between AVRH and AVRL)	I _R	AVRH	-	520	810	μA	A/D Converter active	
	I _{RH}		-	-	1.0	μA	A/D Converter not operated	
Analog input capacity	C _{VIN}	AN2 to 4, 6 to 8, 10 to 12, 14, 15	-	-	16.0	pF	Normal outputs	
		AN16 to 31	-	-	17.8	pF	High current outputs	
A	5	A.N.L.	-	-	2050	Ω	$4.5V \le AV_{CC} \le 5.5V$	
Analog impedance	R _{VIN}	ANn	-	-	3600	Ω	$2.7V \le AV_{CC} < 4.5V$	
Analog port input current (during conversion)	ut I _{AIN}	alog port input rent (during I _{AIN}	AN2 to 4, 6 to 8, 10 to 12, 14, 15	- 0.3	-	+ 0.3	μA	AV _{SS} , AVRL < V _{AIN} < AV _{CC} , AVRH
		AN16 to 31	- 3.0	-	+ 3.0	μA		
Analog input voltage	V _{AIN}	ANn	AVRL	-	AVRH	V		
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AV _{cc}	V		
	-	AVRL	AV _{ss}	-	AV _{ss} + 0.1	V		
Variation between channels	-	ANn	-	-	4.0	LSB		

*: Time for each channel.

Page	Section	Change Results
66	16. Ordering Information	Revised Marketing Part Numbers as follows:
		Before) MCU with CAN controller
		MB96F693RBPMC-GSE1
		MB96F693RBPMC-GSE2 MB96F695RBPMC-GSE1
		MB96F695RBPMC-GSE2
		MB96F696RBPMC-GSE1 MB96F696RBPMC-GSE2
		MB90F090RBFMC-GSE2
		MCU without CAN controller
		MB96F693ABPMC-GSE1 MB96F693ABPMC-GSE2
		MB96F695ABPMC-GSE1
		MB96F695ABPMC-GSE2
		After)
		MCU with CAN controller CY96F693RBPMC-GS-UJE1
		CY96F696RBPMC-GS-UJE1
		CY96F696RBPMC-GS-UJE2
		MCU without CAN controller
		CY96F693ABPMC-GS-UJE1 CY96F693ABPMC-GS-UJE2

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere

© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software is not compared by an eproduce the Software is not comparised by a license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software in binary code form, to modify and reproduce the Software solely for use with Cypress hardware product, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABLITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly deage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indem

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.