

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	160MHz
Connectivity	CANbus, CSIO, EBI/EMI, I ² C, LINbus, SD, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	100
Program Memory Size	544KB (544K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2hg6g0agv20000

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FDI121

	Pin Nu	ımber	Pin Name		I/O Circuit	Pin State			
LQFP120	LQFP100	LQFP80	FBGA121	r in Nunic	Туре	Туре			
				P36					
20			G2	SIN5_2					
20	15	-	02	IC02_0	F	к			
				INT09_1	_				
-			-	MADATA13_0					
20	-	-	G2	MNWEX_0					
				P37					
			_	SOT5_2					
21	16	-	G3	(SDA5_2)	-	K			
				IC01_0	E	ĸ			
				INT05_2					
-			-	MADATA14_0					
21	-	-	G3	MINREA_U					
				P36					
00			04	SCK5_2 (SCL5_2)					
22	17	-	G4	(30L5_2)	E	K			
				IN106_2					
-			-	MADATA15_0					
		40		ADIG_2					
23	18	13	H1		L	I.			
				SUBOUT_2					
		-		MSDCLK_0					
				P3A					
				TIOA0_1					
24	19	14	H2	AIN0_0	G	l I			
				RTO00_0					
				(PPG00_0)					
		-		MSDCKE_0					
				P3B					
				TIOA1_1					
25	20	15	H3	BIN0_0	G				
_	_		-	RTO01_0	_				
				(PPG00_0)					
		-		MRASX_0					
				P3C					
				TIOA2_1					
26	21	16	H4	ZIN0_0	G	1			
				RTO02_0	-				
		-		MCASX 0					
		-		P3D					
27	22	17	11		G	I.			
		17	JI	(PPG02_0)		1			
				MAD00_0					

	Pin Number		Pin Number Pin Name I/O Pi					Pin State
LQFP120	LQFP100	LQFP80	FBGA121		Туре	Туре		
				P3E				
				TIOA4_1				
28 23		18	J2	RTO04_0 (PPG04_0)	G	I		
				MAD01_0				
				P3F				
				TIOA5_1				
29	24	19	K2	<pre><2 RTO05_0</pre>		I		
				MAD02_0				
30	25	20	L1	VSS	-	-		
31	26	-	K1	VCC	-	-		
				P40				
				TIOA0_0				
32	27	-	L2	RTO10_1 (PPG10_1)	G	К		
				INT12_1				
				P41				
				TIOA1_0				
33	28	-	J3	RTO11_1 (PPG10_1)	G	К		
				INT13_1				
				AIN2_0				
			-	P42				
				TIOA2_0				
34	29	-	J5	RTO12_1 (PPG12_1)	G	I.		
				MSDWEX_0				
				BIN2_0				
				P43				
				ADTG_7				
				TIOA3_0				
35	30	-	H5	RTO13_1 (PPG12_1)	G	I		
				MCSX8_0				
				ZIN2_0				
				P44				
				TIOA4_0				
36	31	21	K3	RTO14_1 (PPG14_1)	R	J		
				DA0				
				P45				
				TIOB0_0				
37	32	22	J4	RTO15_1 (PPG14_1)	R	J		
				DA1				
38	33	23	L3	INITX	В	С		

	Pin Nu	ımber		Pin Name	I/O Circuit	Pin State			
LQFP120	LQFP100	LQFP80	FBGA121		Туре	Туре			
		67		P09					
		07		AN19					
	-		TRACED0						
				TIOA3_2					
97	82	07	D7	SOT1_0 (SDA1_0)	Μ	Ν			
		67		S_DATA2_0					
				MCSX5_0					
				IC23_1					
				P08					
				AN20					
				TRACED1					
00	0.2		07	TIOB3_2		NI			
90	03	-	07	SCK1_0 (SCL1_0)	E E	IN			
							MCSX4_0		1
				IC22_1					
				P07					
				AN21					
			5-	TRACED2					
99				TIOA0_2					
	84	-	В7	SCK7 0	M	N			
				(SCL7_0)					
				MCLKOUT_0					
				IC21_1					
				P06					
				AN22					
				TRACED3					
100	05		A 7	TIOB0_2	_	NI			
100	00	-	A	SOT7_0 (SDA7_0)		IN			
				MCSX3_0					
				IC20_1					
				P05					
				AN23					
				ADTG_0					
404			Do	TRACECLK	_	0			
101	86	-	D6	SIN7_0	F	0			
				INT01_1					
				MCSX2_0	1				
				FRCK2_1					
				P04					
102	87	68	B6	TDO	E	G			
				SWO					
				P03					
103	88	69	C6	TMS	E	G			
				SWDIO					

7. I/O Circuit Type

S6E2H Series

Notes on Power-on

Turn power on/off in the following order or at the same time. The device operates normally after all power on. VBAT only Power-on is possible when VBAT and VCC turns Power-on and Hibernation control is setting and then VCC turns Power-off. About Hibernation control, see Chapter 7-2: VBAT Domain(A) in FM4 Family Peripheral Manual Main Part (002-04856). If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS.

Turning on:	$VBAT \rightarrow VCC$
	$VCC \rightarrow AVCC \rightarrow AVRH$
Turning off:	$AVRH \to AVCC \to VCC$
	$VCC \rightarrow VBAT$

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

Differences in Features among the Products with Different Memory Sizes and between Flash Products and MASK Products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

Pull-Up Function of 5 V Tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.

Adjoining Wiring on Circuit Board

If wiring of the crystal oscillation circuit X1A adjoins and also runs in parallel with the wiring of P48/VREGCTL, there is a possibility that the oscillation erroneously counts because X1A has noise with the change of P48/VREGCTL. Keep as much distance as possible between both wirings and insert the ground pattern between them in order to avoid this possibility.

Handling when Using Debug Pins

When debug pins(TDO/TMS/TDI/TCK/TRSTX or SWO/SWDIO/SWCLK) are set to GPIO or other peripheral functions, only set them as output, do not set them as input.

Memory Map (2)

	S6E2HG6		S6E2HG4
0x200D_FFFF		0x200D_FFFF	
	Reserved		Reserved
0x200C 8000		0x200C 8000	
0x2000_0000	Work Flash	0x2000_0000	Work Flash
0x200C_0000.	32Kbytes	0x200C_0000	32Kbytes
	Reserved		
0x2004_4000			Reserved
	CDAMO		
	5KAMZ 16 Kbytes	0x2004_2000	SRAM2
0x2004 0000		0x2004 0000	8 Kbytes
			SRAM1
	SRAM1	0x2003_E000	8 Kbytes
0.2002 0000	16 KDytes		
0x2003_C000			Reserved
	Reserved		
0x2000_0000.		0x2000_0000	05444
	SRAMO	0.4555 0000	SRAM0 16 Kbytes
	32 Kbytes	0x1FFF_C000	To Royles
0x1FFF_8000			
	Percented		Reserved
	Reserved		
0x0040_6000.		0x0040_6000	
0x0040_4000	<u>CR</u> trimming	0x0040_4000	General purpose
0x0040_2000. 0x0040_0000	Security	0x0040_2000	Security
0,0040_0000		0,0040_0000	
	Reserved		
0x0008_0000.			
			Reserved
	MainFlash	0x0004_0000	
	512 Kbytes	5,0004_0000	
			MainFlash 256 Kbytes
			200 109103
0x0000_0000		0x0000_0000	

S6E2H Series

status Type	Function Group	Power-on Reset or Low-voltage Detection State	INITX Input State	Device Internal Reset State	Run Mode or Sleep Mode State	Timer Mode, RTC Mode, or Mo Stop Mode State		Deep Standby RTC Mode or Deep Standby Stop Mode State		er Mode, Deep Standby RTC Mode, or Mode State Mode or Deep Standby Stop Mode State Mode State Mode State		Return from Deep Standby Mode State
Pin		Power Supply Unstable	Power Sta	Supply ble	Power Supply Stable	Power Sta	Supply able	Power Supply Stable		Power Supply Stable		
		-	INITX=0	INITX=1	INITX=1	INIT SPL -0	X=1 SPI -1	INIT	X=1 SPI -1	INITX=1		
	NMIX selected	Setting disabled	Setting disabled	Setting disabled		01 240	Maintain previous state			GRIQ		
F	Resource other than above selected	Hi-Z	Hi-Z / Input	Hi-Z / Input	Maintain previous state	Maintain previous state	Hi-Z / Internal input	Hi-Z / Internal input	WKUP input enabled	Hi-Z / WKUP input enabled	selected	
	GPIO selected		enabled	enabled	enabled fixed at 0		at 0			Maintain previous state		
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	Maintain	Maintain	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state		
G	GPIO selected	Setting disabled	Setting disabled	Setting disabled	previous state	previous state	Hi-Z / Internal input fixed at 0	GPIO selected Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected		
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	••••	Maintain	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state		
т	Resource other than above selected GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	GPIO selected Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected		
I	Resource selected	Hi-Z	Hi-Z / Input	Hi-Z / Input	Maintain previous	Maintain previous	Hi-Z / Internal input	GPIO selected Internal input	Hi-Z / Internal input	GPIO		
	GPIO selected		enabled	enabled	state	state	at 0	fixed at 0	at 0	Selected		
	Analog output selected	Setting disabled	Setting disabled	Setting disabled		*2	*3	GPIO	Hi-Z /			
J	Resource other than above selected GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	selected Internal input fixed at 0	Internal input fixed at 0	GPIO selected		

Calculation Method of Power Dissipation (Pd)

The power dissipation is shown in the following formula.

- $Pd = V_{CC} \times I_{CC} + \Sigma (I_{OL} \times V_{OL}) + \Sigma ((V_{CC}-V_{OH}) \times (-I_{OH}))$
 - IOL: L level output current
 - I_{OH}: H level output current
 - VoL: L level output voltage
 - VOH: H level output voltage

 I_{CC} is a current consumed in device. It can be analyzed as follows.

 $I_{CC} = I_{CC}(INT) + \Sigma I_{CC}(IO)$

Icc(INT): Current consumed in internal logic and memory, etc. through regulator

Σlcc(IO): Sum of current (I/O switching current) consumed in output pin

For I_{CC} (INT), it can be anticipated by (1) Current Rating in 3. DC Characteristics (This rating value does not include I_{CC} (IO) for a value at pin fixed).

For Icc (IO), it depends on system used by customers. The calculation formula is shown below.

 $I_{CC}(IO) = (C_{INT} + C_{EXT}) \times V_{CC} \times fsw$ C_{INT} : Pin internal load capacitance

CEXT: External load capacitance of output pin

f_{SW}: Pin switching frequency

Parameter	Symbol	Conditions	Capacitance Value		
		4 mA type	1.93 pF		
Pin internal load capacitance	CINT	8 mA type	3.45 pF		
		12 mA type	3.42 pF		

Calculate Icc (Max) as follows when the power dissipation can be evaluated by yourself.

1. Measure current value I_{CC} (Typ) at normal temperature (+25°C).

2. Add maximum leak current value I_{CC} (leak_max) at operating on a value in (1).

 $I_{CC}(Max) = I_{CC}(Typ) + I_{CC}(Ieak_max)$

Parameter	Symbol	Conditions	Current Value
		T _J = +125°C	16.8 mA
Maximum leak current at operating	lcc(leak_max)	TJ = +105°C	8.6 mA
-		T _J = +85°C	5.8 mA

Table 12-4 Typical and Maximum Current Consumption in Normal Operation(other than PLL), Code with Data Acc	essing
Running from Flash Memory (Flash 0 wait-cycle Mode and Read Access 0 wait)	

		Pin				Value				
Parameter	Symbol	Name	Conditions		Frequency*4	Typ*1	Max* ²	Unit	Remarks	
			Normal operation	*5*6	4 MHz	4.0	24	mA	*3 When all peripheral clocks are ON	
Power supply current			(main oscillation)	50		3.2	24	mA	*3 When all peripheral clocks are OFF	
	lcc		Normal operation (built-in high-speed CR)	*5	4 MHz 32 kHz	3.2	24	mA	*3 When all peripheral clocks are ON	
		vcc		5		2.7	23	mA	*3 When all peripheral clocks are OFF	
			Normal operation (sub oscillation)	*5		0.34	21	mA	*3 When all peripheral clocks are ON	
						0.30	21	mA	*3 When all peripheral clocks are OFF	
			Normal operation	*5	100 kHz	0.36	21	mA	*3 When all peripheral clocks are ON	
			low-speed CR)	-	100 1012	0.33	21	mA	*3 When all peripheral clocks are OFF	

*1: T_A=+25°C, VC_C=3.3 V

*2: TJ=+125°C, Vcc=5.5 V

*3: When all ports are input and are fixed at "0"

*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2

*5: When 0 wait-cycle mode (FRWTR.RWT = 00, FSYNDN.SD = 000)

*6: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

					Value				
Parameter	Symbol	Pin Name	Conditions	Frequency*4	Typ*1	Max* ²	Unit	Remarks	
Power supply current			Sleep	p		22	mA	*3 When all peripheral clocks are ON	
			(main oscillation)	411172 -	1.3	22	mA	*3 When all peripheral clocks are OFF	
	lccs	s VCC	Sleep operation (built-in high-speed CR)	4 MHz	1.3	22	mA	*3 When all peripheral clocks are ON	
					0.8	21	mA	*3 When all peripheral clocks are OFF	
			Sleep operation (sub oscillation)	32 kHz -	0.28	21	mA	*3 When all peripheral clocks are ON	
					0.27	21	mA	*3 When all peripheral clocks are OFF	
			Sleep	100 kHz	0.29	21	mA	*3 When all peripheral clocks are ON	
			low-speed CR)		0.28	21	mA	*3 When all peripheral clocks are OFF	

Table 12-7 Typical and Maximum Current Consumption in Sleep Operation(other than PLL), when PCLK0 = PCLK1 = PCLK2 = HCLK/2

*1: T_A=+25°C, V_{CC}=3.3 V

*2: T_=+125°C, V_{CC}=5.5 V

*3: When all ports are input and are fixed at "0"

*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2

*5: When using the crystal oscillator of 4 MHz (including the current consumption of the oscillation circuit)

13.4.9 External Bus Timing

External Bus Clock Output Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Bin Namo	Conditions	Va	lue	Unit	
	Symbol	Fill Name	Conditions	Min	Max		
Output frequency	town		V _{CC} ≥ 4.5 V	-	50* ²	MHz	
	ICYCLE	MOLKOUT	Vcc < 4.5 V	-	32* ³	MHz	

*1: The external bus clock (MCLKOUT) is a divided clock of HCLK.

For more information about setting of clock divider, see Chapter 14: External Bus Interface in FM4 Family Peripheral Manual Main part (002-04856).

*2: Generate MCLKOUT at setting more than 4 division when the AHB bus clock exceeds 100 MHz.

*3: Generate MCLKOUT at setting more than 4 division when the AHB bus clock exceeds 64 MHz.

External Bus Signal Input/output Characteristics

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	Value	Unit	Remarks
Signal input characteristics	Vih		0.8 × Vcc	V	
	VIL		0.2 × V _{CC}	V	
Signal output characteristics	Vон	-	0.8 × Vcc	V	
	V _{OL}		0.2 × V _{CC}	V	

When Using High-speed Synchronous Serial Chip Select (SCINV = 0, CSLVL = 1)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	V _{cc} <	4.5 V	V _{cc} ≥	Unit		
Falameter	Symbol	Conditions	Min	Max	Min	Max	Sint	
SCS↓→SCK↓setup time	tcssi		(*1)-20	(*1)+0	(*1)-20	(*1)+0	ns	
SCK↑→SCS↑ hold time	tcsнi	Internal shift	(*2)+0	(*2)+20	(*2)+0	(*2)+20	ns	
SCS deselect time	tcsdi	clock operation	(*3)-20 +5tсүср	(*3)+20 +5tсүср	(*3)-20 +5tсүср	(*3)+20 +5tсүср	ns	
SCS↓→SCK↓setup time	tcsse		3tcycp+15	-	3tcycp+15	-	ns	
SCK↑→SCS↑ hold time	t CSHE		0	-	0	-	ns	
SCS deselect time	t _{CSDE}	External shift clock operation.	3t _{CYCP} +15	-	3t _{CYCP} +15	-	ns	
SCS↓→SOT delay time	tDSE		-	25	-	25	ns	
SCS↑→SOT delay time	tDEE		0	-	0	-	ns	

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit valuexserial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which multi-function serial is connected to, see 1. S6E2H Series Block Diagram in this data sheet.
- About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual.
- When the external load capacitance $C_L = 30 \text{ pF}$.

External Clock (EXT = 1): when in Asynchronous Mode Only

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Demonster	Currench of	O a se alliti a se	Va	lue	11	Remarks
Parameter	Symbol	Condition	Min	Max	Unit	
Serial clock L pulse width	tslsh		tcycp + 10	-	ns	
Serial clock H pulse width	tsнs∟	$C_{1} = 20 \text{ pE}$	tcycp + 10	-	ns	
SCK falling time	t⊧	$C_L = 30 \text{ pr}$	-	5	ns	
SCK rising time	t _R		-	5	ns	

13.4.14 PC Timing

Standard-mode, Fast-mode

(Vcc = 2.7V to 5.5V, Vss = 0V)

Devementer	Currench of	Conditions	Standard-mode		Fast-mode		11	Demerke
Falameter	Symbol	Conditions	Min	Max	Min	Max	Unit	Remarks
SCL clock frequency	f _{SCL}		0	100	0	400	kHz	
(Repeated) Start condition								
hold time	t HDSTA		4.0	-	0.6	-	μs	
$SDA \downarrow \to SCL \downarrow$								
SCL clock L width	t _{LOW}		4.7	-	1.3	-	μs	
SCL clock H width	t _{HIGH}		4.0	-	0.6	-	μs	
(Repeated) Start condition								
setup time	t susta		4.7	-	0.6	-	μs	
$SCL \uparrow \to SDA \downarrow$		C∟ = 30 pF,						
Data hold time	tuppat	$R = (Vp/I_{OL})^{*1}$	0	3 15*2	0	∩ 0 *3	116	
$SCL \downarrow \to SDA \downarrow \uparrow$	HDDAI		0	5.45	0	0.9	μο	
Data setup time	teudat		250	_	100	_	ns	
$SDA \downarrow \uparrow \to SCL \uparrow$	COUDAI		200		100		115	
STOP condition setup time	tsusto		4 0	_	0.6	_	us	
$SCL \uparrow \rightarrow SDA \uparrow$.00010				0.0		μο	
Bus free time between								
Stop condition and	t BUF		4.7	-	1.3	-	μs	
Start condition								
		2 MHz ≤	2tcyce*4	-	2tcyce*4	-	ns ns	
		tcycp<40 MHz						
		40 MHz ≤	4t _{CYCP} *4	-	4t _{CYCP} *4	-		
		TCYCP<60 MHZ						
		60 MHZ ≤	6tcyce ^{*4}	-	6tcycp*4	-	ns	
		TCYCP<80 MHZ			8tcycp*4	-	ns	
		80 MHZ ≦	8t _{CYCP} *4	-				
Noise filter	tsp			-	10tcycp*4			*5
	_	100 IVI⊟Z ≦	10tcyce*4			-	ns	
		120 IVI⊟Z ≦ tavas <140 M⊟z	$12 \leq 12t_{CYCP}^{*4}$		12tcycp*4	-	ns	
					14t _{CYCP} *4	-	ns	
		140 IVI⊓∠ ≥ toyop∠160 M⊔-	14tcycp*4	-				
		160 MHz <						
		tcvcp<180 MHz	16tcycp*4	-	16tcycp*4	-	ns	

1: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. V_p indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

2: The maximum t_{HDDAT} must not extend beyond the low period (t_{LOW}) of the device's SCL signal.

3: Fast-mode I²C bus device can be used on a Standard-mode I²C bus system as long as the device satisfies the requirement of t_{SUDAT} ≥ 250 ns.

4: t_{CYCP} is the APB bus clock cycle time. For more information about the APB bus number to which the I²C is connected, see 1.S6E2H Series Block Diagram in this data sheet. When using Standard-mode, the peripheral bus clock must be set more than 2 MHz. When using Fast-mode, the peripheral bus clock must be set more than 8 MHz.

5: The noise filter time can be changed by register settings. Change the number of the noise filter steps according to the APB bus clock frequency.

Revision	ECN	Orig. of Change	Submission Date	Description of Change
۴E	5639294	NOSU	02/22/2017	Updated Circuit of "type N" in 7 I/O Circuit Type. Added the Baud rate spec in 13.4.11 CSIO Timing (Page 102, 104, 106, 108) Corrected MPNs as below to 14. Ordering Information. S6E2H14G0AGB30000 \rightarrow S6E2H14G0AGB3000A S6E2H16G0AGB30000 \rightarrow S6E2H16G0AGB3000A S6E2H44G0AGB30000 \rightarrow S6E2H44G0AGB3000A S6E2H44G0AGB30000 \rightarrow S6E2H44G0AGB3000A S6E2H44G0AGB30000 \rightarrow S6E2H46G0AGB3000A S6E2HE4G0AGB30000 \rightarrow S6E2HE4G0AGB3000A S6E2HE4G0AGB30000 \rightarrow S6E2HE4G0AGB3000A S6E2HE6F0AGV20000 \rightarrow S6E2HE6F0AGV2000A S6E2HE6G0AGB30000 \rightarrow S6E2HE6G0AGB3000A S6E2HE6G0AGB30000 \rightarrow S6E2HE6G0AGB3000A S6E2HG4G0AGB30000 \rightarrow S6E2HE6G0AGB3000A S6E2HG4G0AGB30000 \rightarrow S6E2HG6G0AGB3000A S6E2HG4G0AGB30000 \rightarrow S6E2HG6G0AGB3000A S6E2HG4G0AGB30000 \rightarrow S6E2HG6G0AGB3000A