

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

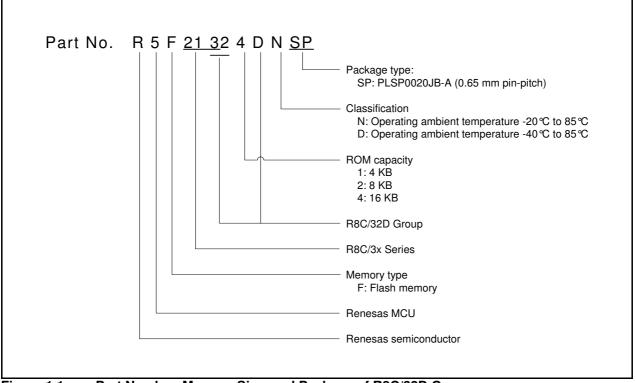
Details

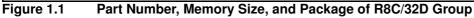
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21321ddsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Current of Feb. 2010


1.2 Product List


Table 1.3 lists Product List for R8C/32D Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/32D Group.

Part No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F21321DNSP	4 Kbytes	1 Kbyte	PLSP0020JB-A	N version
R5F21322DNSP	8 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21324DNSP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21321DDSP (D)	4 Kbytes	1 Kbyte	PLSP0020JB-A	D version
R5F21322DDSP (D)	8 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F21324DDSP (D)	16 Kbytes	1 Kbyte	PLSP0020JB-A	

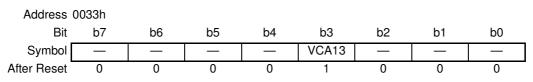
Table 1.3 Product List for R8C/32D Group

(D): Under development

R/W

R/W

6.2.2 Voltage Monitor Circuit Edge Select Register (VCAC)


Ado	dress 0	031h	h									
	Bit	Bit b7 b6		b5	b4	b3	3	b2	b1	b0		
Sy	mbol			_	—		-	VCAC2	VCAC1			
After F	Reset	0	0	0	0	0		0	0	0		
Bit	Symbo	ol		Bit Name					Functio	on		
b0		No	othing is assig	ned. If nec	essary, set	: to 0. \	Wher	n read, the	content is	0.		
b1	VCAC	C1 VC	Voltage monitor 1 circuit edge select bit (1) 0: One edge									
			1: Both edges									
b2	VCAC	2 Vo	Itage monitor 2 circuit edge select bit ⁽²⁾ 0: One edge									

b2	VCAC2	Voltage monitor 2 circuit edge select bit ⁽²⁾ 0: One edge 1: Both edges	R/W	
b3	—	Nothing is assigned. If necessary, set to 0. When read, the content is 0.	—	
b4	—			ĺ
b5	—			ĺ
b6	—			l
b7	—			l

Notes:

- 1. When the VCAC1 bit is set to 0 (one edge), the VW1C7 bit in the VW1C register is enabled. Set the VW1C7 bit after setting the VCAC1 bit to 0.
- 2. When the VCAC2 bit is set to 0 (one edge), the VW2C7 bit in the VW2C register is enabled. Set the VW2C7 bit after setting the VCAC2 bit to 0.

6.2.3 Voltage Detect Register 1 (VCA1)

Bit	Symbol	Bit Name	Function	R/W
b0	—	Reserved bits	Set to 0.	R/W
b1				
b2	—			
b3	VCA13	Voltage detection 2 signal monitor flag ⁽¹⁾	0: VCC < Vdet2 1: VCC ≥ Vdet2 or voltage detection 2 circuit disabled	R
b4	—	Reserved bits	Set to 0.	R/W
b5	—			
b6	—			
b7	_			

Note:

1. When the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled), the VCA13 bit is enabled.

When the VCA27 bit in the VCA2 register is set to 0 (voltage detection 2 circuit disabled), the VCA13 bit is set to 1 (VCC \geq Vdet2).

9.8.1 How to Use Oscillation Stop Detection Function

• The oscillation stop detection interrupt shares a vector with the voltage monitor 1 interrupt, the voltage monitor 2 interrupt, and the watchdog timer interrupt. To use the oscillation stop detection interrupt and watchdog timer interrupt, the interrupt source needs to be determined.

Table 9.6 lists the Determination of Interrupt Sources for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt. Figure 9.11 shows an Example of Determining Interrupt Sources for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt.

- When the XIN clock restarts after oscillation stop, switch the XIN clock to the clock source for the CPU clock and the peripheral functions by a program.
 Figure 9.10 shows the Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to XIN Clock.
- To enter wait mode while the oscillation stop detection function is used, set the CM02 bit to 0 (peripheral function clock does not stop in wait mode).
- Since the oscillation stop detection function is a function for cases where the XIN clock is stopped by an external cause, set bits OCD1 to OCD0 to 00b to stop or start the XIN clock by a program (select stop mode or change the CM05 bit).
- This function cannot be used when the XIN clock frequency is below 2 MHz. In this case, set bits OCD1 to OCD0 to 00b.
- To use the low-speed on-chip oscillator clock as the clock source for the CPU clock and the peripheral functions after detecting the oscillation stop, set the FRA01 bit in the FRA0 register to 0 (low-speed on-chip oscillator selected) and bits OCD1 to OCD0 to 11b.

To use the high-speed on-chip oscillator clock as the clock source for the CPU clock and the peripheral functions after detecting the oscillation stop, first set the FRA00 bit to 1 (high-speed on-chip oscillator oscillator) and the FRA01 bit to 1 (high-speed on-chip oscillator selected). Then set bits OCD1 to OCD0 to 11b.

11.2.2 Interrupt Control Register (FMRDYIC, TRCIC)

Address 0041h (FMRDYIC), 0047h (TRCIC)										
	Bit I	o7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol ·	_				IR	ILVL2	ILVL1	ILVL0	
After F	Reset	Х	Х	Х	Х	Х	0	0	0	
Bit b0 b1 b2	Symbol ILVL0 ILVL1 ILVL2	Interru	Bit pt priority	Name level sele	ect bit	^{b2 b1 b0} 0 0 0: Leve 0 0 1: Leve 0 1 0: Leve 0 1 1: Leve	I 0 (interrup I 1 I 2	Function t disabled)		R/W R/W R/W R/W
						1 0 1 1: Leve 1 0 0: Leve 1 0 1: Leve 1 1 0: Leve 1 1 1: Leve	4 5 6			
b3	IR	Interrupt request bit 0: No interrupt request bit 1: Interrupt request bit					• •	ed		R
b4	—		Nothing is assigned. If necessary, set to 0.							—
b5		When	read, the	content is	undefine	d.				
b6	—									
b7	—									

Rewrite the interrupt control register when an interrupt request corresponding to the register is not generated. Refer to **11.8.5 Rewriting Interrupt Control Register**.

11.5.1 Key Input Enable Register 0 (KIEN)

Address 01FEh											
	Bit I	o7	b6	b5	b4	b3	b2	b1	b0		
Sy	mbol Kl	3PL	KI3EN	KI2PL	KI2EN	KI1PL	KI1EN	KI0PL	KI0EN		
After F	Reset	0	0	0	0	0	0	0	0		
										DAA	
Bit	Symbol		BI	t Name				Function			R/W
b0	KI0EN	KI0 in	put enable	bit		0: Disab	led				R/W
						1: Enable	ed				
b1	KI0PL	KI0 in	put polarity	select bit		0: Falling	g edge				R/W
						1: Rising	edge				
b2	KI1EN	KI1 in	put enable	bit		0: Disab	led				R/W
						1: Enable	ed				
b3	KI1PL	KI1 in	put polarity	select bit		0: Falling	g edge				R/W
						1: Rising	edge				
b4	KI2EN	KI2 in	put enable	bit		0: Disab	led				R/W
			•			1: Enable	ed				
b5	KI2PL	KI2 in	put polarity	select bit		0: Falling	n edae				R/W
			parpolant	00.000.000		1: Rising					,
b6	KI3EN	KI3 in	put enable	hit		0: Disab					R/W
				on		1: Enable					10,00
h7	KIODI		nut poloriti	, a ala at hit							
b7	KI3PL	K13 In	put polarity	Select Dit		0: Falling					R/W
						1: Rising	l edge				

The IR bit in the KUPIC register may be set to 1 (interrupt requested) when the KIEN register is rewritten. Refer to **11.8.4 Changing Interrupt Sources**.

Option Function Select Register (OFS) 14.2.6

Address)FFFFh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	CSPROINI	LVDAS	VDSEL1	VDSEL0	ROMCP1	ROMCR	—	WDTON	
After Reset				Iser Settin	a Value (1)				

User Setting value

Bit	Symbol	Bit Name	Function	R/W
b0	WDTON	Watchdog timer start select bit	0: Watchdog timer automatically starts after reset.1: Watchdog timer is stopped after reset.	R/W
b1	—	Reserved bit	Set to 1.	R/W
b2	ROMCR	ROM code protect disable bit	0: ROM code protect disabled 1: ROMCP1 bit enabled	R/W
b3		ROM code protect bit	0: ROM code protect enabled 1: ROM code protect disabled	R/W
b4 b5	VDSEL0 VDSEL1	Voltage detection 0 level select bit ⁽²⁾	^{b5 b4} 0 0: 3.80 V selected (Vdet0_3) 0 1: 2.85 V selected (Vdet0_2) 1 0: 2.35 V selected (Vdet0_1) 1 1: 1.90 V selected (Vdet0_0)	R/W R/W
b6	LVDAS	Voltage detection 0 circuit start bit ⁽³⁾	0: Voltage monitor 0 reset enabled after reset 1: Voltage monitor 0 reset disabled after reset	R/W
b7	CSPROINI	Count source protection mode after reset select bit	0: Count source protect mode enabled after reset 1: Count source protect mode disabled after reset	R/W

Notes:

1. The OFS register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS register. If the block including the OFS register is erased, the OFS register is set to FFh.

When blank products are shipped, the OFS register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS register is the value programmed by the user.

2. The same level of the voltage detection 0 level selected by bits VDSEL0 and VDESL1 is set in both functions of voltage monitor 0 reset and power-on reset.

3. To use power-on reset and voltage monitor 0 reset, set the LVDAS bit to 0 (voltage monitor 0 reset enabled after reset).

For a setting example of the OFS register, refer to 13.3.1 Setting Example of Option Function Select Area.

LVDAS Bit (Voltage Detection 0 Circuit Start Bit)

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by bits VDSEL0 and VDSEL1.

R/W

Timer RA I/O Control Register (TRAIOC) in Event Counter Mode 16.5.1

	Ado	dress (0101h	1									
		Bit	b7	7	b6	b5	b4	b3	b2	b1	b0		
	Sy	mbol	TIOC	T1	TIOGT0	TIPF1	TIPF0	—	TOENA	TOPCR	TEDGSEL		
	After F	Reset	0		0	0	0	0	0	0	0		
г	D:+	0.00	hal	1	D:+	Marra	1						
	Bit	Sym			BIL	Name				Function		R/W t R/W	
	b0	TEDG	SEL	TRA	AIO polarity	switch bit		 0: Starts counting at rising edge of the TRAIO input and TRAO starts output at "L" 1: Starts counting at falling edge of the TRAIO input and TRAO starts output at "H" 					
t	b1	TOP	CR	TRA	AIO output	control bit		Set to 0 in event counter mode.					
t	b2	TOE	NA	TRA	AO output e	enable bit		0: TRAO output disabled					
								1: TRAO output					
Γ	b3		_	Res	erved bit			Set to 0.					
Γ	b4	TIP	'F0	TRA	AIO input fil	lter select b	oit (1)	^{b5 b4} 0 0: No filte				R/W	
	b5	TIP	'F1						vith f1 samp	lina		R/W	
									•	•			
							1 0: Filter with f8 sampling 1 1: Filter with f32 sampling						
t	b6	TIOC	GT0	TR/	AIO event in	nput contro	ol bit	b7 b6				R/W	
t	b7	TIO	GT1					0 0: Event input always enabled					

Note:

b7

TIOGT1

1. When the same value from the TRAIO pin is sampled three times continuously, the input is determined.

0 1: Do not set.

1 1: Do not set.

(timer RC output)

1 0: Event input enabled for "L" period of TRCIOD

18. Timer RC

Timer RC is a 16-bit timer with four I/O pins.

18.1 Overview

Timer RC uses either f1, fOCO40M or fOCO-F as its operation clock. Table 18.1 lists the Timer RC Operation Clock.

Table 18.1 Timer RC Operation Clock

Condition	Timer RC Operation Clock
Count source is f1, f2, f4, f8, f32, or TRCCLK input (bits TCK2 to TCK0 in	f1
TRCCR1 register are set to a value from 000b to 101b)	
Count source is fOCO40M (bits TCK2 to TCK0 in TRCCR1 register are set	fOCO40M
to 110b)	
Count source is fOCO-F (bits TCK2 to TCK0 in TRCCR1 register are set to	fOCO-F
111b)	

Table 18.2 lists the Pin Configuration of Timer RC, and Figure 18.1 shows a Timer RC Block Diagram. Timer RC has three modes.

• Timer mode

- Input capture function	The counter value is captured to a register, using an external signal as the trigger.
- Output compare function	Matches between the counter and register values are detected. (Pin output state
	changes when a match is detected.)

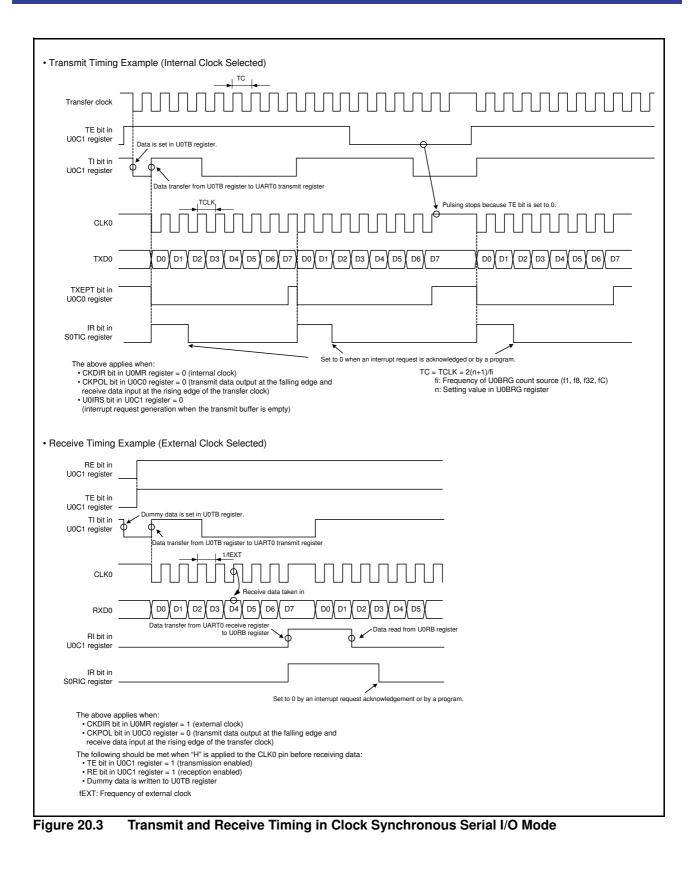
The following two modes use the output compare function.

- PWM mode Pulses of a given width are output continuously.
- PWM2 mode A one-shot waveform or PWM waveform is output following the trigger after the wait time has elapsed.

Input capture function, output compare function, and PWM mode settings may be specified independently for each pin.

In PWM2 mode waveforms are output based on a combination of the counter or the register.

18.4.1 Timer RC I/O Control Register 0 (TRCIOR0) for Input Capture Function

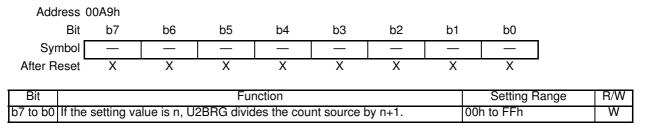

Ado	dress 0124	1h									
	Bit I	57	b6	b5	b4	b3	b2	b1	b0		
Sy	Symbol — IOB2 IOB1 IOB0			IOB0	IOA3	IOA2	IOA1	IOA0			
After F	Reset	1	0	0	0	1	0	0	0		
Bit	Symbol	1	Bit	Name		i		Function			R/W
b0	IOA0	TRCC	RA contro			b1 b0		i anotion			R/W
b1	IOA1		and Control			rising	edge		RA register at		R/W
							capture to t edge	the TRCG	RA register at	the	
						1 0: Input edges	•	the TRCG	RA register at	both	
						1 1: Do no					
b2	IOA2	TRCO	RA mode	select bit ([1]	Set to 1 (ir	put capture	e) in the in	out capture fui	nction.	R/W
b3	IOA3		aRA input o	capture inp	out switch	0: fOCO12					R/W
		bit ⁽³⁾				1: TRCIOA	A pin input				
b4	IOB0	TRCC	RB contro	l bit		b5 b4	oopturo to t		DP register at	the	R/W
b5	IOB1						edge		RB register at	lite	R/W
								the TRCG	RB register at	the	
							, edge		C		
							•	the TRCG	RB register at	both	
						edges 1 1: Do no					
b6	IOB2	TDCC		aalaat bit ((2)) in the in	out capture fu	notion	R/W
	-		RB mode				• •		•		
b7	—	INOTHI	ng is assigi	nea. It nec	essary, se	t to 0. Whe	n read, the	content is	1.		—

Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

3. The IOA3 bit is enabled when the IOA2 bit is set to 1 (input capture function).



21.2 Registers

21.2.1 UART2 Transmit/Receive Mode Register (U2MR)

Address 00A8h											
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol IOPOL PRYE PRY STPS		CKDIR	SMD2	SMD1	SMD0]					
After Re	eset	0	0	0	0	0	0	0	0	4	
Bit Symbol Bit Name							Function				R/W
b0	SMDC) Ser	ial I/O mod	le select bi	t	b2 b1 b0	0	(la al		R/W
b1	SMD1	SMD1					Serial inter		iea erial I/O mo	odo	R/W
b2	SMD2	2					l ² C mode	monous se		Jue	R/W
								le transfer	data 7 bits	lona	
						1 0 0: UART mode, transfer data 7 bits long 1 0 1: UART mode, transfer data 8 bits long			•		
						1 1 0: UART mode, transfer data 9 bits long					
						Other t	han above	: Do not se	et.	-	
b3	CKDIF	R Inte	rnal/extern	al clock se	elect bit	0: Inter	nal clock				R/W
						1: Exte	rnal clock				
b4	STPS	6 Sto	o bit length	select bit			stop bit				R/W
							stop bits				
b5	PRY	Ode	d/even pari	ty select b	it		d when PR	IYE = 1			R/W
						0: Odd parity					
						1: Ever					
b6	PRYE	E Par	ity enable l	oit			y disabled				R/W
							y enabled				
b7	IOPOI		D, RXD I/O	polarity sv	witch bit	001	inverted				R/W
						1: Inve	rted				

21.2.2 UART2 Bit Rate Register (U2BRG)

Write to the U2BRG register while transmission and reception stop. Use the MOV instruction to write to this register.

Set bits CLK1 to CLK0 in the U2C0 register before writing to the U2BRG register.

21.3.1 Measure for Dealing with Communication Errors

If communication is aborted or a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedures below:

- (1) Set the TE bit in the U2C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the U2MR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the U2MR register to 001b (clock synchronous serial I/O mode).
- (4) Set the TE bit in the U2C1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

21.3.2 CLK Polarity Select Function

Use the CKPOL bit in the U2C0 register to select the transfer clock polarity. Figure 21.4 shows the Transfer Clock Polarity.

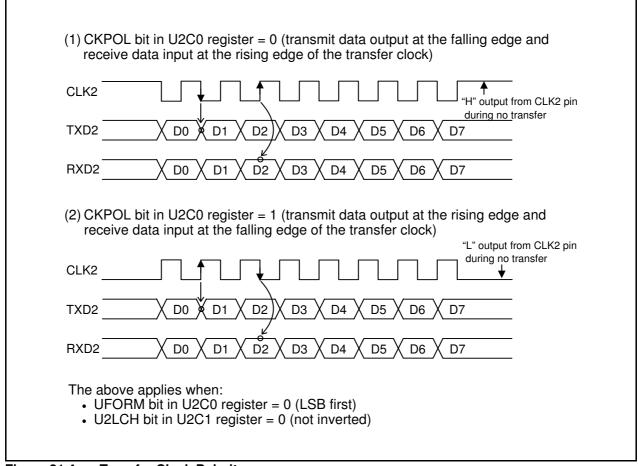


Figure 21.4 Transfer Clock Polarity

Register	Bit	Function						
negistei	DIL	Master	Slave					
U2SMR3	b0, b2, b4, and NODC	Set to 0.	Set to 0.					
	СКРН	Refer to Table 21.12 I ² C Mode Functions.	Refer to Table 21.12 I ² C Mode Functions.					
	DL2 to DL0	Set the amount of SDA2 digital delay.	Set the amount of SDA2 digital delay.					
U2SMR4	STAREQ	Set to 1 to generate a start condition.	Set to 0.					
	RSTAREQ	Set to 1 to generate a restart condition.	Set to 0.					
	STPREQ	Set to 1 to generate a stop condition.	Set to 0.					
	STSPSEL	Set to 1 to output each condition.	Set to 0.					
	ACKD	Select ACK or NACK.	Select ACK or NACK.					
	ACKC	Set to 1 to output ACK data.	Set to 1 to output ACK data.					
	SCLHI	Set to 1 to stop SCL2 output when a stop condition is detected.	Set to 0.					
	SWC9	Set to 0.	Set to 1 to hold SCL2 low at the falling edge of the 9th bit of clock.					
URXDF	DF2EN	Set to 0.	Set to 0.					
U2SMR5	MP	Set to 0.	Set to 0.					

Table 21.11 R	Registers Used	and Settings in	n I ² C Mode (2)
---------------	----------------	-----------------	-----------------------------

21.5.2 Output of Start and Stop Conditions

Table 21.13 STSPSEL Bit Functions

A start condition is generated by setting the STAREQ bit in the U2SMR4 register to 1 (start). A restart condition is generated by setting the RSTAREQ bit in the U2SMR4 register to 1 (start). A stop condition is generated by setting the STPREQ bit in the U2SMR4 register to 1 (start). The output procedure is as follows:

(1) Set the STAREQ bit, RSTAREQ bit or STPREQ bit to 1 (start).

(2) Set the STSPSEL bit in the U2SMR4 register to 1 (output).

Table 21.13 lists the STSPSEL Bit Functions. Figure 21.16 shows the STSPSEL Bit Functions.

Function	STSPSEL = 0	STSPSEL = 1
Output of pins SCL2 and SDA2	Output of transfer clock and data Output of start/stop conditions is accomplished by a program using ports (not automatically generated in hardware)	Output of start/stop conditions according to bits STAREQ, RSTAREQ, and STPREQ
Start/stop condition interrupt request generation timing	Detection of start/stop conditions	Completion of start/stop condition generation

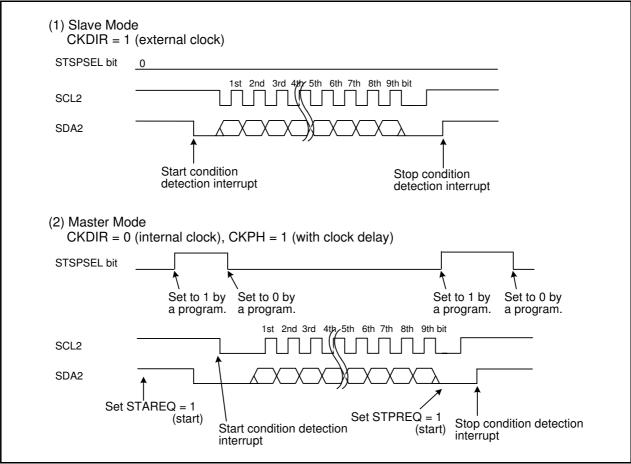


Figure 21.16 STSPSEL Bit Functions

21.6.3 RXD2 Digital Filter Select Function

When the DF2EN bit in the URXDF register is set to 1 (RXD2 digital filer enabled), the RXD2 input signal is loaded internally via the digital filter circuit for noise reduction. The noise canceller consists of three cascaded latch circuits and a match detection circuit. The RXD2 input signal is sampled on the internal basic clock with a frequency 16 times the bit rate. It is recognized as a signal and the level is passed forward to the next circuit when three latch outputs match. When the outputs do not match, the previous value is retained.

In other words, when the level is changed within three clocks, the change is recognized as not a signal but noise. Figure 21.22 shows a Block Diagram of RXD2 Digital Filter Circuit.

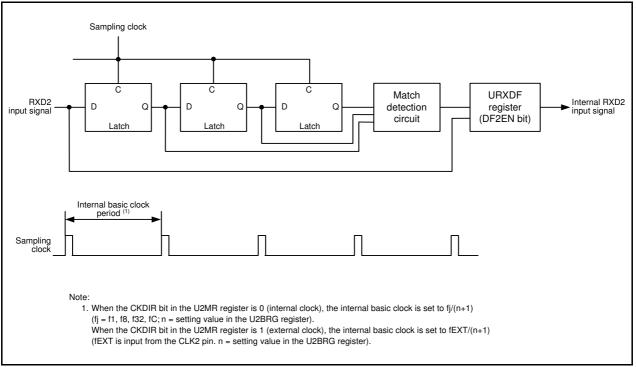
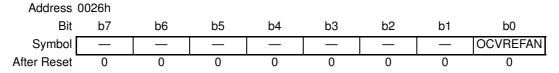



Figure 21.22 Block Diagram of RXD2 Digital Filter Circuit

22.2 Registers

22.2.1 On-Chip Reference Voltage Control Register (OCVREFCR)

Bit	Symbol	Bit Name	Function	R/W
b0		On-chip reference voltage to analog input connect bit ⁽¹⁾	 On-chip reference voltage and analog input are cut off On-chip reference voltage and analog input are connected 	R/W
b1	—	Reserved bits	Set to 0.	R/W
b2				
b3				
b4	—			
b5				
b6	—			
b7	—			

Note:

1. When on-chip reference voltage is used as analog input, first set the ADEX0 bit in the ADCON1 register to 1 (onchip reference voltage selected) and then set the OCVREFAN bit to 1 (on-chip reference voltage and analog input are connected).

When on-chip reference voltage is not used as analog input, first set the OCVREFAN bit to 0 (on-chip reference voltage and analog input are cut off) and then set the ADEX0 bit to 0 (extended analog input pin not selected).

Set the PRC3 bit in the PRCR register to 1 (write enabled) before rewriting the OCVREFCR register. If the contents of the OCVREFCR register are rewritten during A/D conversion, the conversion result is undefined.

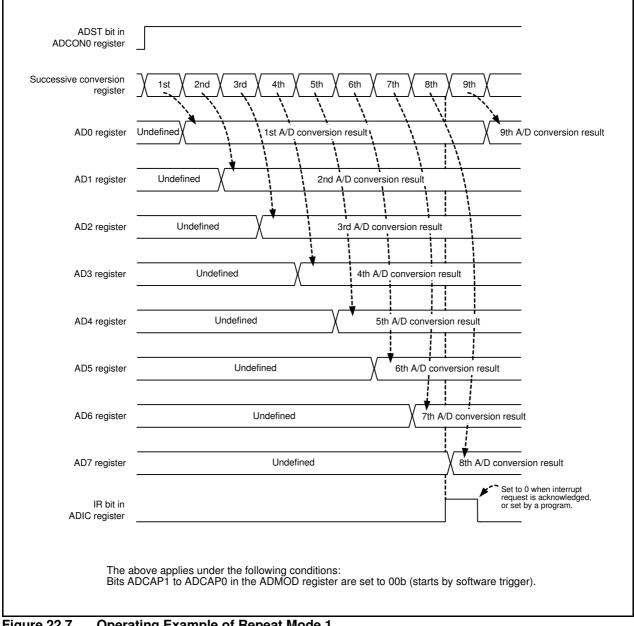


Figure 22.7 **Operating Example of Repeat Mode 1**

24.4.8 How to Set and Exit Each Mode

Figure 24.4 shows How to Set and Exit EW0 Mode and Figure 24.5 shows How to Set and Exit EW1 Mode.

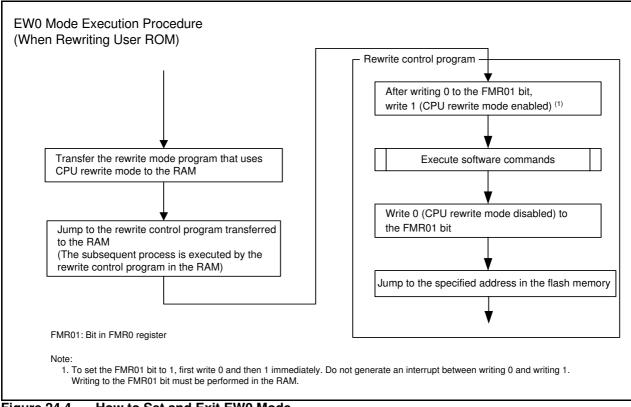
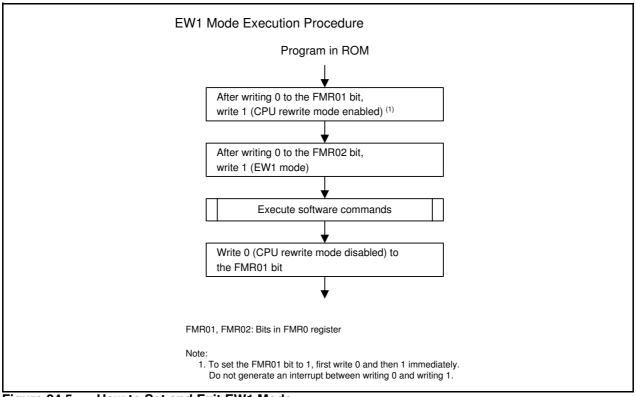



Figure 24.4 How to Set and Exit EW0 Mode

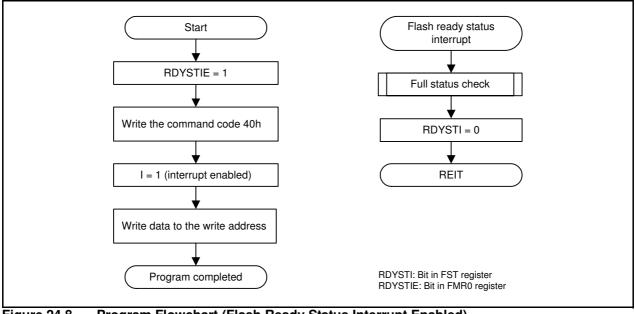


Figure 24.8 Program Flowchart (Flash Ready Status Interrupt Enabled)

Symbol	Pa		ameter		Conditions	Standard			Unit
Symbol		Par	ameter		Conditions	Min.	Тур.	Max.	
Vcc/AVcc	Supply voltage					1.8	-	5.5	V
Vss/AVss	Supply voltage					-	0	-	V
Vih	Input "H" voltage	Other than	n CMOS inp	ut		0.8 Vcc	-	Vcc	V
		CMOS		Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0.55 Vcc	-	Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0.65 Vcc	-	Vcc	V
			(I/O port)	Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0.65 Vcc	-	Vcc	V
				: 0.5 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0.7 Vcc	-	Vcc	V
					$1.8~V \leq V \text{CC} < 2.7~V$	0.8 Vcc	-	Vcc	V
				Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0.85 Vcc	-	Vcc	V
				: 0.7 Vcc	$2.7 \text{ V} \le \text{Vcc} < 4.0 \text{ V}$	0.85 Vcc	-	Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc	-	Vcc	V
		External c	lock input (X	OUT)		1.2	_	Vcc	V
VIL	Input "L" voltage	Other than	n CMOS inp	ut		0	_	0.2 Vcc	V
		CMOS	Input level	Input level selection	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	0.2 Vcc	V
		input	switching	: 0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0	_	0.2 Vcc	V
			function (I/O port)		1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
				Input level selection : 0.5 Vcc	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	0.4 Vcc	V
					2.7 V ≤ Vcc < 4.0 V	0	-	0.3 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
				Input level selection : 0.7 Vcc	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.55 Vcc	V
					$2.7 \text{ V} \le \text{Vcc} < 4.0 \text{ V}$	0	_	0.45 Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0	_	0.35 Vcc	V
		External c	lock input (X			0	-	0.4	V
IOH(sum)	Peak sum output "			pins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output			pins IOH(avg)		_	_	-80	mA
IOH(peak)	Peak output "H" ci		Drive capa			_	_	-10	mA
- (i [,] - · · ·)			Drive capa	-		_	_	-40	mA
IOH(avg)	Average output "H	l" current	Drive capa			_	_	-5	mA
			Drive capa			_	_	-20	mA
IOL(sum)	Peak sum output '	L" current	-	pins IOL(peak)		_	_	160	mA
IOL(sum)	Average sum output			pins IOL(avg)		_	_	80	mA
IOL(peak)	Peak output "L" cu		Drive capa			_	_	10	mA
102(pourt)			Drive capa	-		_	_	40	mA
IOL(avg)	Average output "L	" current	Drive capa			_	_	5	mA
ioc(aig)		ourront	Drive capa	-		_	_	20	mA
f(XIN)	XIN clock input os	cillation free			2.7 V ≤ Vcc ≤ 5.5 V			20	MHz
			1.0.109		$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	_		5	MHz
f(XCIN)	XCIN clock input of	scillation fr	equency		$1.8 V \le VCC \le 2.7 V$ $1.8 V \le VCC \le 5.5 V$	_	32.768	50	kHz
fOCO40M		XCIN clock input oscillation frequency When used as the count source for timer RC ⁽³⁾				32		40	MHz
fOCO-F	fOCO-F frequency			<u>\-</u> /	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$ $2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$			20	MHz
1000-F		1			$1.8 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$	-		20 5	MHz
_	System clock from				$1.8 V \le VCC < 2.7 V$ $2.7 V \le VCC \le 5.5 V$	-	_	5 20	
-	System clock freq	uency			$2.7 V \le VCC \le 5.5 V$ 1.8 V $\le VCC < 2.7 V$	-	_	20 5	MHz
frontin	CPU clock freque	201			$1.8 V \le VCC < 2.7 V$ 2.7 V $\le Vcc \le 5.5 V$	-	_		MHz
f(BCLK)		icy				-	-	20 5	MHz
					$1.8~V \leq V \text{CC} < 2.7~V$	-	-	5	MHz

Table 26.2	Recommended	Operating	Conditions
------------	-------------	-----------	------------

Notes:

1. Vcc = 1.8 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5V.