

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21321dnsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Register	Symbol	Page
0180h	Timer RA Pin Select Register	TRASR	63, 166
0181h	Timer RC Pin Select Register	TRBRCSR	63, 210
0182h	Timer RC Pin Select Register 0	TRCPSR0	64, 211
0183h	Timer BC Pin Select Begister 1	TRCPSR1	64, 211
0184h			• ., =
0185h			
01051			
010011			
018/11		11000	05 007
01880	UARTU PIN Select Register	UUSR	65, 267
0189h			
018Ah	UART2 Pin Select Register 0	U2SR0	65, 293
018Bh	UART2 Pin Select Register 1	U2SR1	66, 293
018Ch			
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	66, 132
018Fh	I/O Function Pin Select Register	PINSR	67
0190h		-	-
0191h			
0102h		1	
01005			
01930		1	
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh		1	
019Ch			
0100h			
01901			
UI9En			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
0147h			
01496			
01A90		1	
UIAAh			
01ABh		1	
01ACh			
01ADh			
01AEh			
01AFh			
01B0h		1	
01B1h		1	
01B2h	Flash Memory Status Begister	FST	364
01B3h		1.0.	
01246	Elash Momony Control Posistor 0	EMPO	266
01040	Flash Memory Control De sister d		000
01850	Flash Memory Control Register 1	FMRI	368
01B6h	Flash Memory Control Register 2	FMR2	369
01B7h			
01B8h			
01B9h			
01BAh		1	
01BBh		1	
01BCh			
01BDh			
VIBEN	1	1	

Address	Register	Symbol	Page
01C0h	Address Match Interrupt Begister 0	BMAD0	138
0101h	naarooo matan manapi nagistar a		
01010			
01C2h			
01C3h	Address Match Interrupt Enable Register	AIER	138
01C4h	Address Match Interrupt Register 1	RMAD1	138
0105h	· · · · · · · · · · · · · · · · · · ·		
010511			
01C6h			
01C7h			
01C8h			
0100h			
010911			
01CAh			
01CBh			
01CCh			
01CDb			
		-	
OICEN			
01CFh			
01D0h			
01D1h			
01D2n			
01D3h			
01D4h			
01D5h			
01Deh		+	├ ────┤
01D7h			
01D8h			
01D9h			
01DAb			
		-	
01DBh			
01DCh			
01DDh			
01DEh			
OIDEI			
01DFn			
01E0h	Pull-Up Control Register 0	PUR0	68
01E1h	Pull-Up Control Register 1	PUR1	68
01E2h			
01EEH			
01E3N			
01E4h			
01E5h			
01E6h			
01076			
UIE/II			
01E8h			
01E9h			
01EAh			
01EBb			
OTEDI		-	
OTECh			
01EDh			
01EEh			
01FFh			
01 E05	Port P1 Drive Capacity Control Posistor	PIDPP	60
0151	i on i i brive capacity control negistel		
U1⊢1h		I	
01F2h	Drive Capacity Control Register 0	DRR0	70
01F3h	Drive Capacity Control Register 1	DRR1	70
01F4h		1	<u>├</u> ────┤
01556	Input Throphold Control Deviator 0	VITO	71
01550		VLIU	71
01F6h	Input Threshold Control Register 1	VLT1	71
01F7h			
01F8h	Comparator B Control Register 0	INTCMP	354
01E0h	,	+	<u> </u>
015911			100.001
01FAh	External Input Enable Register 0	INTEN	133, 354
01FBh		1	
01FCh	INT Input Filter Select Register 0	INTF	133, 355
01EDb	,	1	,
			100
UIFEh	key input Enable Register 0	KIEN	136
01FFh			
FFDBh	Option Function Select Register 2	OES2	26 150 157
	Splich Function Coloci Hegister 2	51.02	_0, 100, 107
		-	
FFFFh	Option Function Select Register	OFS	25, 44, 149,
			156, 362

Note: 1. The blank regions are reserved. Do not access locations in these

7.4.11 I/O Function Pin Select Register (PINSR)

Bit	Symbol	Bit Name	Function	R/W
b0	_	Reserved bits	Set to 0.	R/W
b1	_			
b2	_	Nothing is assigned. If necessary,	set to 0. When read, the content is 0.	—
b3	IOINSEL	I/O port input function select bit	 0: The I/O port input function depends on the PDi (i = 1, 3, 4) register. When the PDi_j (j = 0 to 7) bit in the PDi register is set to 0 (input mode), the pin input level is read. When the PDi_j bit in the PDi register is set to 1 (output mode), the port latch is read. 1: The I/O port input function reads the pin input level regardless of the PDi register. 	R/W
b4		Reserved bits	Set to 0.	R/W
b5				
b6]		
b7	_			

IOINSEL Bit (I/O port input function select bit)

The IOINSEL bit is used to select the pin level of an I/O port when the PDi_j (j = 0 to 7) bit in the PDi (i = 1, 3, 4) register is set to 1 (output mode). When this bit is set to 1, the I/O port input function reads the pin input level regardless of the PDi register.

Table 7.4 lists I/O Port Values Read by Using IOINSEL Bit. The IOINSEL bit can be used to change the input function of all I/O ports except P4_2.

Table 7.4 I/O Port Values Read by Using IOINSEL Bit

PDi_j bit in PDi register	0 (input	t mode)	1 (output mode)			
IOINSEL bit	0	1	0	1		
I/O port values read	Pin inp	ut level	Port latch value	Pin input level		

Register	PD1	U0SR	TRA	ASR	TRAIOC	Т	TRAMR		INTSR		INTEN	INTCMP		
Dit			TRAI	OSEL	TOPOD	TMOD			INT1SEL					Function
DIL	FD1_5	RADUSELU	1	0	IUFUN	2	1	0	2	1	0		INTIGEU	
	0	Х	Other th	nan 10b	Х	Х	Х	Х	Х	Х	Х	Х	Х	Input port (1)
	1	Х	Other th	nan 10b	Х	Х	Х	Х	Х	Х	Х	Х	Х	Output port (2)
	0	1	Other than 10b		Х	Х	Х	Х	Х	Х	Х	Х	Х	RXD0 input ⁽¹⁾
Setting	0	Х	1 0		0	Ot 000	her th 0b, 00	ian)1b	х	х	х	х	Х	TRAIO input ⁽¹⁾
Value	0	Х	Other than 10b		Х	Х	Х	Х	0	0	1	1	0	INT1 input ⁽¹⁾
	0	Х	1	0	0	Ot 000	her th 0b, 00	ian)1b	0	0	1	1	0	TRAIO/INT1 input ⁽¹⁾
	х	х	1	0	0	0	0	1	х	х	х	х	Х	TRAIO pulse output ⁽²⁾

Table 7.10 Port P1_5/RXD0/TRAIO/INT1

X: 0 or 1

Notes:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P1DRR5 bit in the P1DRR register to 1.

Table 7.11 Port P1_6/CLK0/IVREF1

Register	PD1	U0SR	U0MR				INTCMP	
Bit			SMD		SMD			Function
Dit	1 D1_0	OLINOSELO	2	1	0	ORDIN		
	0	0	Х	Х	Х	Х	Х	Input port ⁽¹⁾
Catting	1	0	Х	Х	Х	Х	Х	Output port ⁽²⁾
Value	0	1	Х	Х	Х	1	Х	CLK0 (external clock) input ⁽¹⁾
14.40	Х	1	0	0	1	0	Х	CLK0 (internal clock) output ⁽²⁾
	0	0	Х	Х	Х	Х	1	Comparator B1 reference voltage input (IVREF1)

X: 0 or 1 Notes:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

Output drive capacity high by setting the P1DRR6 bit in the P1DRR register to 1.

Table 7.12 Port P1_7/INT1/TRAIO/IVCMP1

Register	PD1	TRA	ASR	TRAIOC	Т	RAM	R	l	NTSF	3	INTEN	INTCMP	
Bit		TRAI	OSEL	TOPOR	-	TMOD			INT1SEL				Function
Dit	101_/	1	0	101.011	2	1	0	2	1	0			
	0	Other th	nan 01b	Х	Х	Х	Х	Х	Х	Х	Х	Х	Input port ⁽¹⁾
	1	Other th	nan 01b	Х	Х	Х	Х	Х	Х	Х	Х	Х	Output port ⁽²⁾
	0	0	1	0	Ot 000	her th 0b, 00	nan D1b	х	х	х	х	х	TRAIO input ⁽¹⁾
Setting Value	0	Other th	nan 01b	Х	х	Х	Х	0	0	0	1	0	INT1 input ⁽¹⁾
	0	0	1	0	Ot 000	her th 0b, 00	nan D1b	0	0	0	1	0	TRAIO/INT1 input (1)
	Х	0	1	0	0	0	1	Х	Х	Х	Х	Х	TRAIO pulse output (2)
	0	Other th	nan 01b	Х	Х	Х	Х	Х	Х	Х	1	1	Comparator B1 input (IVCMP1)

X: 0 or 1 Notes:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. Output drive capacity high by setting the P1DRR7 bit in the P1DRR register to 1.

11.2 Registers

11.2.1 Interrupt Control Register (TREIC, S2TIC, S2RIC, KUPIC, ADIC, S0TIC, S0RIC, TRAIC, TRBIC, U2BCNIC, VCMP1IC, VCMP2IC)

Address 004Ah (TREIC), 004Bh (S2TIC), 004Ch (S2RIC), 004Dh (KUPIC), 004Eh (ADIC), 0051h (S0TIC), 0052h (S0RIC), 0056h (TRAIC), 0058h (TRBIC), 005Eh (U2BCNIC), 0072h (VCMP1IC), 0073h (VCMP2IC),

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol		—		—	IR	ILVL2	ILVL1	ILVL0	
After Reset	Х	Х	Х	Х	Х	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0	Interrupt priority level select bit	b2 b1 b0	R/W
b1	ILVL1			R/W
b2	ILVL2		0 1 0: Level 2	R/W
			0 1 1: Level 3	
			1 0 0: Level 4	
			1 0 1: Level 5	
			1 1 0: Level 6	
			1 1 1: Level 7	
b3	IR	Interrupt request bit	0: No interrupt requested	R/W
			1: Interrupt requested	(1)
b4	—	Nothing is assigned. If necessary, set	to 0.	—
b5	—	When read, the content is undefined.		
b6				
b7				

Note:

1. Only 0 can be written to the IR bit. Do not write 1 to this bit.

Rewrite the interrupt control register when an interrupt request corresponding to the register is not generated. Refer to **11.8.5 Rewriting Interrupt Control Register**.

11.3.10 Interrupt Priority Level Selection Circuit

The interrupt priority level selection circuit is used to select the highest priority interrupt. Figure 11.8 shows the Interrupt Priority Level Selection Circuit.

REJ09B0528-0100 Rev.1.00 Feb 15, 2010 REVESAS

14. Watchdog Timer

The watchdog timer is a function that detects when a program is out of control. Use of the watchdog timer is recommended to improve the reliability of the system.

14.1 Overview

The watchdog timer contains a 14-bit counter and allows selection of count source protection mode enable or disable.

Table 14.1 lists the Watchdog Timer Specifications.

Refer to 5.5 Watchdog Timer Reset for details of the watchdog timer reset.

Figure 14.1 shows a Watchdog Timer Block Diagram.

ltom	Count Source Protection Mode Count Source Protection Mode				
item	Disabled	Enabled			
Count source	CPU clock	Low-speed on-chip oscillator clock			
		for the watchdog timer			
Count operation	Decrement				
Count start condition	Either of the following can be selected:				
	 After a reset, count starts automatical Count starts by writing to the WDTS r 	ly. egister.			
Count stop condition	Stop mode, wait mode	None			
Watchdog timer initialization conditions	 Reset Write 00h and then FFh to the WDTR setting). ⁽¹⁾ Underflow 	register (with acknowledgement period			
Operations at underflow	Watchdog timer interrupt or watchdog timer reset	Watchdog timer reset			
Selectable functions	 Division ratio of the prescaler Selected by the WDTC7 bit in the WD the CM0 register. Count source protection mode Whether count source protection mode can be selected by the CSPROINI bit If count source protection mode is dis disabled by the CSPRO bit in the CSI Start or stop of the watchdog timer aff Selected by the WDTON bit in the OF Initial value of the watchdog timer Selectable by bits WDTUFS0 and WD Refresh acknowledgement period for Selectable by bits WDTRCS0 and WD 	OTC register or the CM07 bit in de is enabled or disabled after a reset in the OFS register (flash memory). abled after a reset, it can be enabled or PR register (program). ter a reset FS register (flash memory). OTUFS1 in the OFS2 register. the watchdog timer DTRCS1 in the OFS2 register.			

Table 14.1 Watchdog Timer Specifications

Note:

1. Write the WDTR register during the count operation of the watchdog timer.

16. Timer RA

16. Timer RA

Timer RA is an 8-bit timer with an 8-bit prescaler.

16.1 Overview

The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address, and can be accessed when accessing registers TRAPRE and TRA (refer to **Tables 16.2 to 16.6 the Specification of Each Modes**).

The count source for timer RA is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 16.1 shows a Timer RA Block Diagram. Table 16.1 lists Pin Configuration of Timer RA.

Timer RA contains the following five operating modes:

• Timer mode:

The timer counts the internal count source.

• Pulse output mode:

The timer counts the internal count source and outputs pulses which invert

the polarity by underflow of the timer.

• Event counter mode:

The timer counts external pulses.

Pulse width measurement mode:Pulse period measurement mode:

The timer measures the pulse width of an external pulse. The timer measures the pulse period of an external pulse.

Figure 16.1 Timer RA Block Diagram

Pin Name	Assigned Pin	I/O	Function
TRAIO	P1_5 or P1_7	I/O	Function differs according to the mode.
TRAO	P3_7	Output	for details

16.4 Pulse Output Mode

In pulse output mode, the internally generated count source is counted, and a pulse with inverted polarity is output from the TRAIO pin each time the timer underflows (refer to **Table 16.3 Pulse Output Mode Specifications**).

ltem	Specification	
Count sources	f1, f2, f8, fOCO, fC32, fC	
Count operations	 Decrement When the timer underflows, the contents in the reload register is reloaded and the count is continued. 	
Divide ratio	1/(n+1)(m+1) n: Value set in TRAPRE register, m: Value set in TRA register	
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.	
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register. 	
Interrupt request generation timing	When timer RA underflows [timer RA interrupt].	
TRAIO pin function	Pulse output, programmable output port	
TRAO pin function	Programmable I/O port or inverted output of TRAIO	
Read from timer	The count value can be read by reading registers TRA and TRAPRE.	
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 16.3.2 Timer Write Control during Count Operation). 	
Selectable functions	 TRAIO signal polarity switch function The level when the pulse output starts is selected by the TEDGSEL bit in the TRAIOC register. ⁽¹⁾ TRAO output function Pulses inverted from the TRAIO output polarity can be output from the TRAO pin (selectable by the TOENA bit in the TRAIOC register). Pulse output stop function Output from the TRAIO pin is stopped by the TOPCR bit in the TRAIOC register. TRAIO pin select function P1_5 or P1_7 is selected by bits TRAIOSEL0 to TRAIOSEL1 in the TRASR register. 	

Table 16.3 Pulse Output Mode Specifications

Note:

1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.

18.3.2 Buffer Operation

Bits BFC and BFD in the TRCMR register are used to select the TRCGRC or TRCGRD register as the buffer register for the TRCGRA or TRCGRB register.

- Buffer register for TRCGRA register: TRCGRC register
- Buffer register for TRCGRB register: TRCGRD register
- Buffer operation differs depending on the mode.

Table 18.6 lists the Buffer Operation in Each Mode, Figure 18.3 shows the Buffer Operation for Input Capture Function, and Figure 18.4 shows the Buffer Operation for Output Compare Function.

Function, Mode	Transfer Timing	Transfer Destination Register
Input capture function	Input capture signal input	Contents of TRCGRA (TRCGRB)
		register are transferred to buffer
		register
Output compare function	Compare match between TRC	Contents of buffer register are
DW/M mode	register and TRCGRA (TRCGRB)	transferred to TRCGRA (TRCGRB)
	register	register
PWM2 mode	Compare match between TRC	Contents of buffer register (TRCGRD)
	register and TRCGRA register	are transferred to TRCGRB register
	TRCTRG pin trigger input	

Table 18.6 Buffer Operation in Each Mode

Figure 18.3 Buffer Operation for Input Capture Function

18.5.6 Changing Output Pins in Registers TRCGRC and TRCGRD

The TRCGRC register can be used for output control of the TRCIOA pin, and the TRCGRD register can be used for output control of the TRCIOB pin. Therefore, each pin output can be controlled as follows:

- TRCIOA output is controlled by the values in registers TRCGRA and TRCGRC.
- TRCIOB output is controlled by the values in registers TRCGRB and TRCGRD.

Change output pins in registers TRCGRC and TRCGRD as follows:

- Set the IOC3 bit in the TRCIOR1 register to 0 (TRCIOA output register) and set the IOD3 bit to 0 (TRCIOB output register).
- Set bits BFC and BFD in the TRCMR register to 0 (general register).
- Set different values in registers TRCGRC and TRCGRA. Also, set different values in registers TRCGRD and TRCGRB.

Figure 18.12 shows an Operating Example When TRCGRC Register is Used for Output Control of TRCIOA Pin and TRCGRD Register is Used for Output Control of TRCIOB Pin.

20.3.2 Polarity Select Function

Figure 20.4 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the transfer clock polarity.

Figure 20.4 Transfer Clock Polarity

20.3.3 LSB First/MSB First Select Function

Figure 20.5 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the transfer format.

Figure 20.5 Transfer Format

20.3.4 Continuous Receive Mode

Continuous receive mode is selected by setting the U0RRM bit in the U0C1 register to 1 (continuous receive mode enabled). In this mode, reading the U0RB register sets the TI bit in the U0C1 register to 0 (data present in the U0TB register). If the U0RRM bit is set to 1, do not write dummy data to the U0TB register by a program.

Table 21.4 lists the Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transfer Clock Output Pin Function Not Selected).

Note that for a period from when UART2 operating mode is selected to when transfer starts, the TXD2 pin outputs a "H" level. (When N-channel open-drain output is selected, this pin is in the high-impedance state.) Figure 21.3 shows the Transmit and Receive Timing in Clock Synchronous Serial I/O Mode.

Table 21.4 Pin Functions in Clock Synchronous Serial I/O Mode (Multiple Transfer Clock Output Pin Function Not Selected)

Pin Name	Function	Selection Method
TXD2 (P3_4 or P3_7)	Serial data output	 TXD2 (P3_4) Bits TXD2SEL1 to TXD2SEL0 in U2SR0 register = 10b (P3_4) TXD2 (P3_7) Bits TXD2SEL1 to TXD2SEL0 in U2SR0 register = 01b (P3_7) For reception only: P3_4 and P3_7 can be used as ports by setting TXD2SEL1 to TXD2SEL0 to 00b.
RXD2 (P3_4, P3_7, or P4_5)	Serial data input	 RXD2 (P3_4) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 01b (P3_4) PD3_4 bit in PD3 register = 0 RXD2 (P3_7) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 10b (P3_7) PD3_7 bit in PD3 register = 0 RXD2 (P4_5) Bits RXD2SEL1 to RXD2SEL0 in U2SR0 register = 11b (P4_5) PD4_5 bit in PD4 register = 0 For transmission only: P3_4, P3_7, and P4_5 can be used as ports by setting RXD2SEL1 to RXD2SEL0 to 00b.
CLK2 (P3_5) Transfer clock output CLK2SEL0 bit CKDIR bit in U		CLK2SEL0 bit in U2SR1 register = 1 CKDIR bit in U2MR register = 0
	Transfer clock input	CLK2SEL0 bit in U2SR1 register = 1 CKDIR bit in U2MR register = 1 PD3_5 bit in PD3 register = 0
CTS2/RTS2 (P3_3)	CTS input	CTS2SEL0 bit in U2SR1 register = 1 CRD bit in U2C0 register = 0 CRS bit in U2C0 register = 0 PD3_3 bit in PD3 register = 0
	RTS output	CTS2SEL0 bit in U2SR1 register = 1 CRD bit in U2C0 register = 0 CRS bit in U2C0 register = 1
	I/O port	CTS2SEL0 bit in U2SR1 register = 0

21.4.6 CTS/RTS Function

The $\overline{\text{CTS}}$ function is used to start transmit operation when "L" is applied to the $\overline{\text{CTS2}/\text{RTS2}}$ pin. Transmit operation begins when the $\overline{\text{CTS2}/\text{RTS2}}$ pin is held low. If the "L" signal is switched to "H" during transmit operation, the operation stops after the ongoing transmit/receive operation is completed.

When the $\overline{\text{RTS}}$ function is used, the $\overline{\text{CTS2}/\text{RTS2}}$ pin outputs "L" when the MCU is ready for a receive operation. The output level goes high at the first falling edge of the CLK2 pin.

- The <u>CRD bit in the U2C0 register = 1 ($\overline{CTS}/\overline{RTS}$ function disabled)</u>
- The CTS2/RTS2 pin operates as the programmable I/O function.
- The CRD bit = 0, CRS bit = 0 ($\overline{\text{CTS}}$ function selected)
- The $\overline{\text{CTS2}}/\overline{\text{RTS2}}$ pin operates as the $\overline{\text{CTS}}$ function.
- The CRD bit = 0, CRS bit = 1 ($\overline{\text{RTS}}$ function selected) The $\overline{\text{CTS2}}/\overline{\text{RTS2}}$ pin operates as the $\overline{\text{RTS}}$ function.

21.4.7 RXD2 Digital Filter Select Function

When the DF2EN bit in the URXDF register is set to 1 (RXD2 digital filer enabled), the RXD2 input signal is loaded internally via the digital filter circuit for noise reduction. The noise canceller consists of three cascaded latch circuits and a match detection circuit. The RXD2 input signal is sampled on the internal basic clock with a frequency 16 times the bit rate. It is recognized as a signal and the level is passed forward to the next circuit when three latch outputs match. When the outputs do not match, the previous value is retained.

In other words, when the level is changed within three clocks, the change is recognized as not a signal but noise. Figure 21.12 shows a Block Diagram of RXD2 Digital Filter Circuit.

Figure 21.12 Block Diagram of RXD2 Digital Filter Circuit

Figure 21.13 I²C Mode Block Diagram

24.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a ROM programmer. Execute the software command only to blocks in the user ROM area.

The flash module has an erase-suspend function which halts the erase operation temporarily during an erase operation in CPU rewrite mode. During erase-suspend, the flash memory can be read or programmed.

Erase-write 0 mode (EW0 mode) and erase-write 1 mode (EW1 mode) are available in CPU rewrite mode. Table 24.3 lists the Differences between EW0 Mode and EW1 Mode.

Item	EW0 Mode	EW1 Mode
Operating mode	Single-chip mode	Single-chip mode
Rewrite control program allocatable area	User ROM	User ROM
Rewrite control program executable areas	RAM (The rewrite control program must be transferred before being executed.)	User ROM or RAM
Rewritable area	User ROM	User ROM However, blocks which contain the rewrite control program are excluded.
Software command restrictions	—	Program and block erase commands Cannot be executed to any block which contains the rewrite control program.
Mode after programming or block erasure or after entering erase-suspend	Read array mode	Read array mode
CPU state during programming and block erasure	The CPU operates.	The CPU is put in a hold state while the program ROM area is being programmed or block erased. (I/O ports retain the state before the command execution).
Flash memory status detection	Read bits FST7, FMT5, and FMT4 in the FST register by a program.	Read bits FST7, FMT5, and FMT4 in the FST register by a program.
Conditions for entering erase-suspend	 Set bits FMR20 and FMR21 in the FMR2 register to 1 by a program. Set bits FMR20 and FMR22 in the FMR2 register to 1 and the enabled maskable interrupt is generated. 	Set bits FMR20 and FMR22 in the FMR2 register to 1 and the enabled maskable interrupt is generated.
CPU clock	Max. 20 MHz	Max. 20 MHz

Table 24.3 Differences between EW0 Mode and EW1 Mode

FMR22 Bit (Interrupt Request Suspend-Request Enable Bit)

When the FMR 22 bit is set to 1 (erase-suspend request enabled by interrupt request), the FMR21 bit is automatically set to 1 (erase-suspend request) at the time an interrupt request is generated during auto-erasure. Set the FMR22 bit to 1 when using erase-suspend while rewriting the user ROM area in EW1 mode.

FMR27 Bit (Low-Current-Consumption Read Mode Enable Bit)

When the FMR 27 bit is set to 1 (low-current-consumption read mode enabled) in low-speed clock mode (XIN clock stopped) or low-speed on-chip oscillator mode (XIN clock stopped), power consumption when reading the flash memory can be reduced. Refer to **25.2.10 Low-Current-Consumption Read Mode** for details. Low-current-consumption read mode can be used when the CPU clock is set to either of the following:

• The CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16.

• The CPU clock is set to the XCIN clock divided by 1 (no division), 2, 4, or 8.

However, do not use low-current-consumption read mode when the frequency of the selected CPU clock is 3 kHz or below. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1.

Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled). When the FMR27 bit is set to 1 (low-current-consumption read mode enabled), do not execute the program, block erase, or lock bit program command. To change the FMSTP bit from 1 (flash memory stops) to 0 (flash memory operates), make the setting when the FMR27 bit is set to 0 (low-current-consumption read mode disabled).