

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21322dnsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Register	Symbol	Page
0100h	Timer RA Control Register	TRACR	164
0101h	Timer RA I/O Control Register	TRAIOC	164, 167, 170,
			172, 174, 177
0102h	Timer RA Mode Register	TRAMR	165
0103h	Timer BA Prescaler Begister	TRAPRE	165
0104h	Timer BA Begister	TRA	166
01056		IIIA	100
01050		-	
0106h			
0107h			
0108h	Timer RB Control Register	TRBCR	181
0109h	Timer RB One-Shot Control Register	TRBOCR	181
010Ah	Timer RB I/O Control Register	TRBIOC	182, 185, 189,
	-		192, 196
010Bh	Timer RB Mode Register	TRBMR	182
010Ch	Timer RB Prescaler Register	TRBPRE	183
010Dh	Timer BB Secondary Register	TRBSC	183
010Eh	Timer BB Primary Begister	TRBPR	18/
010Eh	Timer fib f finally fregister	morn	104
UTUFI		-	
0110h			
0111h		1	
0112h			
0113h			
0114h		1	
0115h		1	
0116h		1	
01176			
01105	Timer DE General Data Daviatar	TDECEO	050
0118h	Timer RE Second Data Register	TRESEC	252
0119h	Timer RE Minute Data Register	TREMIN	252
011Ah	Timer RE Hour Data Register	TREHR	253
011Bh	Timer RE Day of Week Data Register	TREWK	253
011Ch	Timer RE Control Register 1	TRECR1	254
011Dh	Timer BE Control Register 2	TRECR2	255
011Eh	Timer BE Count Source Select Begister	TRECSR	256
011Eh		meoon	200
UTIFI	T DOM - D	TROMP	
0120h	Timer RC Mode Register	TRCMR	203
0121h	Timer RC Control Register 1	TRCCR1	204, 225, 234, 240
0122h	Timer RC Interrupt Enable Register	TRCIER	204
0123h	Timer RC Status Register	TRCSR	205
0124h	Timer BC I/O Control Begister 0	TRCIOR0	206, 220, 226
0125h	Timer BC I/O Control Begister 1	TRCIOR1	206 221 227
01251	Timer RC Counter	TROUTIN	200, 221, 227
012011		INC	207
012/h			
0128h	Timer RC General Register A	TRCGRA	207
0129h			
012Ah	Timer RC General Register B	TRCGRB	207
012Bh	-	1	
012Ch	Timer RC General Register C	TRCGRC	207
012Dh			
01256	Timer BC General Register D	TRCCPD	207
		INCORD	207
U12Fn	T	TROOT	
0130h	Limer RC Control Register 2	FRCCR2	208, 228, 234,
			241
0131h	Timer RC Digital Filter Function Select	TRCDF	208, 241
	Register		
0132h	Timer RC Output Master Enable Register	TRCOER	209
0133h	Timer RC Trigger Control Register	TRCADCR	209
0134h			
0135h		1	
0136h		1	
0137h		1	
01005			
01360		+	
0139h			
013Ah			
013Bh			
013Ch			
013Dh		1	
013Fh		1	
01255	<u> </u>	+	
UISFIL		1	

Address	Register	Symbol	Page
0140h	÷	,	
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			
0154h			
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
01501			
015D1			
015Eh			
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			ļ
0176h			
0170h			
0170h			
01746			
017Ph			
01706			
0170h			
017Eh			
017Eh			
VI/FII			1

Note: 1. The blank regions are reserved. Do not access locations in these regions.

R8C/32D Group RENESAS MCU

1. Overview

1.1 Features

The R8C/32D Group of single-chip MCUs incorporates the R8C CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs are designed to maximize EMI/EMS performance.

Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

However, only the following SFRs are connected with the 16-bit bus:

Interrupts: Each interrupt control register

Timer RC: Registers TRC, TRCGRA, TRCGRB, TRCGRC, and TRCGRD

UART2: Registers U2MR, U2BRG, U2TB, U2C0, U2C1, U2RB, U2SMR5, U2SMR4, U2SMR3, U2SMR2, and U2SMR

A/D converter: Registers AD0, AD1, AD2, AD3, AD4, AD5, AD6, AD7, ADMOD, ADINSEL, ADCON0, and ADCON1

Therefore, they are accessed once in 16-bit units. The bus operation is the same as "Area: SFR, Even address Byte Access" in Table 8.2 Access Units and Bus Operations, and 16-bit data is accessed at a time.

9.5 XCIN Clock

The XCIN clock is supplied by the XCIN clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The XCIN clock oscillation circuit is configured by connecting a resonator between the XCIN and XCOUT pins. The XCIN clock oscillation circuit includes an on-chip a feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed by the chip. The XCIN clock oscillation circuit may also be configured by feeding an externally generated clock to the XCIN pin.

Figure 9.5 shows Examples of XCIN Clock Connection Circuits.

During and after a reset, the XCIN clock stops.

After setting the CM04 bit in the CM0 register to 1 (XCIN-XCOUT pin), the XCIN clock starts oscillating when the CM03 bit in the CM0 register is set to 0 (XCIN clock oscillates). After the XCIN clock oscillation stabilizes, the XCIN clock is used as the CPU clock source when the CM07 bit in the CM0 register is set to 1 (XCIN clock). To input an externally generated clock to the XCIN pin, also set the CM04 bit in the CM0 register to 1 (XCIN-XCOUT pin). Leave the XCOUT pin open at this time.

This MCU has an on-chip feedback resistor, which can be disabled/enabled by the CM12 bit in the CM1 register. In stop mode, all clocks including the XCIN clock stop. Refer to **9.7 Power Control** for details.

Figure 9.6 shows the Time from Wait Mode to First Instruction Execution following Exit after CM30 Bit in CM3 Register is Set to 1 (MCU Enters Wait Mode).

To use a peripheral function interrupt to exit wait mode, set up the following before setting the CM30 bit to 1.

- (1) Set the I flag to 0 (maskable interrupt disabled).
- (2) Set the interrupt priority level in bits ILVL2 to ILVL0 in the interrupt control registers of the peripheral function interrupts to be used for exiting wait mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting wait mode to 000b (interrupt disabled).
- (3) Operate the peripheral function to be used for exiting wait mode.

When the MCU exits by a peripheral function interrupt, the time (number of cycles) between interrupt request generation and interrupt routine execution is determined by the settings of the FMSTP bit in the FMR0 register and the VCA20 bit in the VCA2 register, as shown in Figure 9.6.

The clock set by bits CM35, CM36, and CM37 in the CM3 register is used as the CPU clock when the MCU exits wait mode by a peripheral function interrupt. At this time, the CM06 bit in the CM0 register and bits CM16 and CM17 in the CM1 register automatically change.

Figure 9.6 Time from Wait Mode to First Instruction Execution following Exit after CM30 Bit in CM3 Register is Set to 1 (MCU Enters Wait Mode)

11.1.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes beginning from the starting address set in the INTB register. Table 11.2 lists the Relocatable Vector Tables.

Interrupt Source	Vector Addresses ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Interrupt Control Register	Reference
BRK instruction ⁽²⁾	+0 to +3 (0000h to 0003h)	0	_	R8C/Tiny Series Software Manual
Flash memory ready	+4 to +7 (0004h to 0007h)	1	FMRDYIC	24. Flash Memory
(Reserved)		2 to 5	-	-
(Reserved)	+24 to +27 (0018h to 001Bh)	6	-	-
Timer RC	+28 to +31 (001Ch to 001Fh)	7	TRCIC	18. Timer RC
(Reserved)	+32 to +35 (0020h to 0023h)	8	—	-
(Reserved)	+36 to +39 (0024h to 0027h)	9	-	-
Timer RE	+40 to +43 (0028h to 002Bh)	10	TREIC	19. Timer RE
UART2 transmit/NACK2	+44 to +47 (002Ch to 002Fh)	11	S2TIC	21. Serial Interface
UART2 receive/ACK2	+48 to +51 (0030h to 0033h)	12	S2RIC	(UART2)
Key input	+52 to +55 (0034h to 0037h)	13	KUPIC	11.5 Key Input Interrupt
A/D conversion	+56 to +59 (0038h to 003Bh)	14	ADIC	22. A/D Converter
(Reserved)		15	-	-
(Reserved)		16	-	-
UART0 transmit	+68 to +71 (0044h to 0047h)	17	SOTIC	20. Serial Interface
UART0 receive	+72 to +75 (0048h to 004Bh)	18	SORIC	(UART0)
(Reserved)		19	_	-
(Reserved)		20	_	-
(Reserved)	+84 to +87 (0054h to 0057h)	21	_	-
Timer RA	+88 to +91 (0058h to 005Bh)	22	TRAIC	16. Timer RA
(Reserved)		23	-	-
Timer RB	+96 to +99 (0060h to 0063h)	24	TRBIC	17. Timer RB
INT1	+100 to +103 (0064h to 0067h)	25	INT1IC	11.4 INT Interrupt
INT3	+104 to +107 (0068h to 006Bh)	26	INT3IC	
(Reserved)		27	-	-
(Reserved)		28	-	-
ĪNT0	+116 to +119 (0074h to 0077h)	29	INT0IC	11.4 INT Interrupt
UART2 bus collision detection	+120 to +123 (0078h to 007Bh)	30	U2BCNIC	21. Serial Interface (UART2)
(Reserved)		31	-	-
Software ⁽²⁾	+128 to +131 (0080h to 0083h) to +164 to +167 (00A4h to 00A7h)	32 to 41	-	R8C/Tiny Series Software Manual
(Reserved)		42 to 49	-	-
Voltage monitor 1	+200 to +203 (00C8h to 00CBh)	50	VCMP1IC	6. Voltage Detection
Voltage monitor 2	+204 to +207 (00CCh to 00CFh)	51	VCMP2IC	Circuit
(Reserved)		52 to 55	-	-
Software ⁽²⁾	+224 to +227 (00E0h to 00E3h) to +252 to +255 (00FCh to 00FFh)	56 to 63	-	R8C/Tiny Series Software Manual

 Table 11.2
 Relocatable Vector Tables

Notes:

1. These addresses are relative to those in the INTB register.

2. These interrupts are not disabled by the I flag.

As with other maskable interrupts, the timer RC interrupt and flash memory interrupt are controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, since each interrupt source is generated by a combination of multiple interrupt request sources, the following differences from other maskable interrupts apply:

- When bits in the enable register are set to 1 and the corresponding bits in the status register are set to 1 (interrupt enabled), the IR bit in the interrupt control register is set to 1 (interrupt requested).
- When either bits in the status register or the corresponding bits in the enable register, or both are set to 0, the IR bit is set to 0 (no interrupt requested).

That is, even if the interrupt is not acknowledged after the IR bit is set to 1, the interrupt request will not be retained.

Also, the IR bit is not set to 0 even if 0 is written to this bit.

- Individual bits in the status register are not automatically set to 0 even if the interrupt is acknowledged. The IR bit is also not automatically set to 0 when the interrupt is acknowledged. Set individual bits in the status register to 0 in the interrupt routine. Refer to the status register figure for how to set individual bits in the status register to 0.
- When multiple bits in the enable register are set to 1 and other request sources are generated after the IR bit is set to 1, the IR bit remains 1.
- When multiple bits in the enable register are set to 1, use the status register to determine which request source causes an interrupt.

Refer to chapters of the individual peripheral functions (18. Timer RC and 24. Flash Memory) for the status register and enable register.

For the interrupt control register, refer to 11.3 Interrupt Control.

16.8 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse width measurement mode and pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer RA ⁽¹⁾ other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count).

The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0.

During this time, do not access registers associated with timer RA⁽¹⁾ other than the TCSTF bit.

Note:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

18.4 Timer Mode (Input Capture Function)

This function measures the width or period of an external signal. An external signal input to the TRCIOj (j = A, B, C, or D) pin acts as a trigger for transferring the contents of the TRC register (counter) to the TRCGRJ register (input capture). The input capture function, or any other mode or function, can be selected for each individual pin. The TRCGRA register can also select fOCO128 signal as input-capture trigger input.

Table 18.7 lists the Specifications of Input Capture Function, Figure 18.7 shows a Block Diagram of Input Capture Function, Table 18.8 lists the Functions of TRCGRj Register when Using Input Capture Function, and Figure 18.8 shows an Operating Example of Input Capture Function.

Item	Specification
Count source	f1, f2, f4, f8, f32, fOCO40M, fOCO-F, or external signal (rising edge)
	input to TRCCLK pin
Count operation	Increment
Count period	• The CCLR bit in the TRCCR1 register is set to 0 (free running operation):
	1/fk × 65,536
	tk: Count source frequency
	• The CCLR bit in the TRCCRT register is set to T (TRC register set to
	$1/fk \propto (n \pm 1)$
	n: TRCGRA register setting value
Count start condition	1 (count starts) is written to the TSTART bit in the TRCMR register.
Count stop condition	0 (count stops) is written to the TSTART bit in the TRCMR register.
·	The TRC register retains a value before count stops.
Interrupt request generation	Input capture (valid edge of TRCIOj input or fOCO128 signal edge)
timing	The TRC register overflows.
TRCIOA, TRCIOB, TRCIOC,	Programmable I/O port or input capture input (selectable individually for
and TRCIOD pin functions	each pin)
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read by reading TRC register.
Write to timer	The TRC register can be written to.
Select functions	Input capture input pin selection
	One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD
	Input capture input valid edge selection
	Rising edge, failing edge, or both rising and failing edges
	• Digital filter (Refer to 18.3.3 Digital Filter)
	• Timing for setting the TBC register to 0000h
	Overflow or input capture
	Input-capture trigger selected
	fOCO128 can be selected for input-capture trigger input of the
	TRCGRA register.

 Table 18.7
 Specifications of Input Capture Function

j = A, B, C, or D

Pin and TRCGRD Register is Used for Output Control of TRCIOB Pin

18.7.1 Timer RC Control Register 1 (TRCCR1) in PWM2 Mode

Address 0121h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	CCLR	TCK2	TCK1	TCK0	TOD	TOC	TOB	TOA
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	TOA	TRCIOA output level select bit ⁽¹⁾	Disabled in PWM2 mode	R/W
b1	ТОВ	TRCIOB output level select bit ^(1, 2)	0: Active level "H" (Initial output "L" "H" output by compare match in the TRCGRC register "L" output by compare match in the TRCGRB register 1: Active level "L" (Initial output "H" "L" output by compare match in the TRCGRC register "H" output by compare match in the TRCGRB register	R/W
b2	TOC	TRCIOC output level select bit ⁽¹⁾	Disabled in PWM2 mode	R/W
b3	TOD	TRCIOD output level select bit ⁽¹⁾		R/W
b4	TCK0	Count source select bit ⁽¹⁾	b6 b5 b4	R/W
b5	TCK1		0.0.1.f2	R/W
b6	TCK2		0 1 0: f4	R/W
			0 1 1: f8	
			1 0 0: f32	
			1 0 1: TRCCLK input rising edge	
h7		TPC counter clear coloct hit	1 I I. IOOO-F (*)	D/M/
07	UULK	The counter clear select bit	1: Clear by compare match in the TRCGRA register	n/ VV

Notes:

1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).

2. If the pin function is set for waveform output (refer to **7.5 Port Settings**), the initial output level is output when the TRCCR1 register is set.

3. To select fOCO-F, set it to the clock frequency higher than the CPU clock frequency.

21.5.5 SDA Input

When the IICM2 bit is set to 0, the 1st to 8th bits (D7 to D0) of received data are stored in bits b7 to b0 in the U2RB register. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit is set to 1, the 1st to 7th bits (D7 to D1) of received data are stored in bits b6 to b0 in the U2RB register and the 8th bit (D0) is stored in bit b8 in the U2RB register. Even when the IICM2 bit is set to 1, if the CKPH bit is 1, the same data as when the IICM2 bit is 0 can be read by reading the U2RB register after the rising edge of 9th bit of the clock.

21.5.6 ACK and NACK

If the STSPSEL bit in the U2SMR4 register is set to 0 (start and stop conditions not output) and the ACKC bit in the U2SMR4 register is set to 1 (ACK data output), the value of the ACKD bit in the U2SMR4 register is output from the SDA2 pin.

If the IICM2 bit is set to 0, a NACK interrupt request is generated if the SDA2 pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDA2 pin is low at the rising edge of the 9th bit of the transmit clock.

21.5.7 Initialization of Transmission/Reception

If a start condition is detected while the STAC bit is set to 1 (UART2 initialization enabled), the serial interface operates as described below.

- The transmit shift register is initialized, and the contents of the U2TB register are transferred to the transmit shift register. In this way, the serial interface starts sending data when the next clock pulse is applied. However, the UART2 output value does not change state and remains the same as when a start condition was detected until the first bit of data is output in synchronization with the input clock.
- The receive shift register is initialized, and the serial interface starts receiving data when the next clock pulse is applied.
- The SWC bit is set to 1 (SCL wait output enabled). Consequently, the SCL2 pin is pulled low at the falling edge of the 9th clock pulse.

Note that when UART2 transmission/reception is started using this function, the TI bit does not change state. Select the external clock as the transfer clock to start UART2 transmission/reception with this setting.

23.2.3 INT Input Filter Select Register 0 (INTF)

Add	dress 01	FCh								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	mbol I	NT3F1	INT3F0	—	—	INT1F1	INT1F0	INT0F1	INT0F0	
After F	Reset	0	0	0	0	0	0	0	0	
Rit	Symbo		B	it Namo				Function		L R/M
Dit	Symbo	·	Ь	it Name				T UNCLION		
b0) INTO	input filter	select bit			filtor			R/W
b1	INT0F1		·			0 1: Filte 1 0: Filte 1 1: Filte	er with f1 sa er with f8 sa er with f82 s	ampling ampling sampling		R/W
b2	INT1F0) INT1	input filter	select bit		b3 b2	C 11			R/W
b3	INT1F1					0 0: No 0 1: Filte 1 0: Filte 1 1: Filte	filter er with f1 sa er with f8 sa er with f32 s	ampling ampling sampling		R/W
b4	_	Rese	erved bits			Set to 0.				R/W
b5	_									
b6	INT3F0) INT3	input filter	select bit		b7 b6	(:)			R/W
b7	INT3F1		,			0 1: Filte 1 0: Filte 1 1: Filte	er with f1 sa er with f8 sa er with f8 sa	ampling ampling sampling		R/W

24.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a ROM programmer. Execute the software command only to blocks in the user ROM area.

The flash module has an erase-suspend function which halts the erase operation temporarily during an erase operation in CPU rewrite mode. During erase-suspend, the flash memory can be read or programmed.

Erase-write 0 mode (EW0 mode) and erase-write 1 mode (EW1 mode) are available in CPU rewrite mode. Table 24.3 lists the Differences between EW0 Mode and EW1 Mode.

Item	EW0 Mode	EW1 Mode
Operating mode	Single-chip mode	Single-chip mode
Rewrite control program allocatable area	User ROM	User ROM
Rewrite control program executable areas	RAM (The rewrite control program must be transferred before being executed.)	User ROM or RAM
Rewritable area	User ROM	User ROM However, blocks which contain the rewrite control program are excluded.
Software command restrictions	—	Program and block erase commands Cannot be executed to any block which contains the rewrite control program.
Mode after programming or block erasure or after entering erase-suspend	Read array mode	Read array mode
CPU state during programming and block erasure	The CPU operates.	The CPU is put in a hold state while the program ROM area is being programmed or block erased. (I/O ports retain the state before the command execution).
Flash memory status detection	Read bits FST7, FMT5, and FMT4 in the FST register by a program.	Read bits FST7, FMT5, and FMT4 in the FST register by a program.
Conditions for entering erase-suspend	 Set bits FMR20 and FMR21 in the FMR2 register to 1 by a program. Set bits FMR20 and FMR22 in the FMR2 register to 1 and the enabled maskable interrupt is generated. 	Set bits FMR20 and FMR22 in the FMR2 register to 1 and the enabled maskable interrupt is generated.
CPU clock	Max. 20 MHz	Max. 20 MHz

Table 24.3 Differences between EW0 Mode and EW1 Mode

Mode	Erase/ Write Target	Status	Watchdog Timer Oscillation Stop Detection Voltage Monitor 2 Voltage Monitor 1 NMI (Note 1)	Undefined Instruction INTO Instruction BRK Instruction Single Step Address Match Address Break (Note 1)
EW0	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto-programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase-suspend function.	Not usable during auto-erasure or auto-programming.
EW1	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto-programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase-suspend function.	Not usable during auto-erasure or auto-programming.

Table 24.10	CPU Rewrite Mode Interrupts ((2)
-------------	-------------------------------	-----

FMR21, FMR22: Bits in FMR2 register

Note:

1. Do not use a non-maskable interrupt while block 0 is being auto-erased because the fixed vector is allocated in block 0.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 26.15 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
			Max.	Offic	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 26.4 External Clock Input Timing Diagram when Vcc = 5 V

Table 26.16 TRAIO Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	Ι	ns

	tc(traio)	Vcc = 5 V
TRAIO input		

Figure 26.5 TRAIO Input Timing Diagram when Vcc = 5 V

27.10.2 Special Mode 1 (I²C Mode)

When generating start, stop, and restart conditions, set the STSPSEL bit in the U2SMR4 register to 0 and wait for more than half cycle of the transfer clock before changing each condition generation bit (STAREQ, RSTAREQ, and STPREQ) from 0 to 1.

27.12.1.3 How to Access

To set one of the following bits to 1, first write 0 and then 1 immediately. Do not generate an interrupt between writing 0 and writing 1.

- The FMR01 bit or FMR02 bit in the FMR0 register
- The FMR13 bit in the FMR1 register
- The FMR20 bit, FMR22 bit, or FMR 27 bit in the FMR2 register

To set one of the following bits to 0, first write 1 and then 0 immediately. Do not generate an interrupt between writing 1 and writing 0.

• The FMR14 bit, FMR15 bit, FMR16 bit, or FMR17 bit in the FMR1 register

27.12.1.4 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

27.12.1.5 Programming

Do not write additions to the already programmed address.

27.12.1.6 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

If the FST7 in the FST register is set to 0 (busy (during programming or erasure execution), do not enter to stop mode or wait mode.

Do not enter stop mode or wait mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).

27.12.1.7 Programming and Erasure Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

27.12.1.8 Block Blank Check

Do not execute the block blank check command during erase-suspend.

27.12.1.9 Low-Current-Consumption Read Mode

In low-speed clock mode and low-speed on-chip oscillator mode, the current consumption when reading the flash memory can be reduced by setting the FMR27 bit in the FMR2 register to 1 (low-current-consumption read mode enabled).

Low-current-consumption read mode can be used when the CPU clock is set to either of the following:

• The CPU clock is set to the low-speed on-chip oscillator clock divided by 4, 8, or 16.

• The CPU clock is set to the XCIN clock divided by 1 (no division), 2, 4, or 8.

However, do not use low-current-consumption read mode when the frequency of the selected CPU clock is 3 kHz or below. After setting the divide ratio of the CPU clock, set the FMR27 bit to 1 (low-current-consumption read mode enabled).

To reduce the power consumption, refer to 25. Reducing Power Consumption.

Enter wait mode or stop mode after setting the FMR27 bit to 0 (low-current-consumption read mode disabled). Do not enter wait mode or stop mode while the FMR27 bit is 1 (low-current-consumption read mode enabled).