

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21324dnsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Register	Symbol	After Reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
003Ch			
0000h			
003DN			
003Eh			
003Fh			
0040h			
0041h	Flash Memory Ready Interrupt Control Register	FMRDYIC	XXXXX000b
0042h			
0043h			
0044h			
0045h			
0045h			
004611		TROID	
0047h	Timer RC Interrupt Control Register	TRUIC	XXXXXUUUD
0048h			
0049h			
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Fh	A/D Conversion Interrupt Control Begister	ADIC	XXXXX000b
004Eb			
00506			
00500			XXXXXX000h
00510	UARTO Transmit Interrupt Control Register	50110	
0052h	UARIU Receive Interrupt Control Register	SURIC	XXXXXUU0b
0053h			
0054h			
0055h			
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch			
0050h	INTO Interrupt Control Pagistor	INTOIC	XX00X000b
005Dh	INTO Interrupt Control negister		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
005EN	OARTZ Bus Collision Delection Interrupt Control Register	UZDUNIC	~~~~~0000
005FN			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh		1	
006Ch			
00605			
006Fh			
0070h			
0071h			
0072h	Voltage Monitor 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0073h	Voltage Monitor 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0074h			
0075h			
0076h			
0077h			
0078h		1	
0079h			
007Ah			
007Rh			
00705			
00701			
007En			
UU/Fh			

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

5.1.4 Option Function Select Register 2 (OFS2)

Bit	Symbol	Bit Name	Function	R/W
b0 b1	WDTUFS0 WDTUFS1	Watchdog timer underflow period set bit	0 0: 03FFh 0 1: 0FFFh 1 0: 1FFFh 1 1: 3FFFh	R/W R/W
b2 b3	WDTRCS0 WDTRCS1	Watchdog timer refresh acknowledgement period set bit	b3 b2 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100%	R/W R/W
b4	—	Reserved bits	Set to 1.	R/W
b5	_			
b6	—			
b7	—			

Note:

1. The OFS2 register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS2 register. If the block including the OFS2 register is erased, the OFS2 register is set to FFh.

When blank products are shipped, the OFS2 register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS2 register is the value programmed by the user.

For a setting example of the OFS2 register, refer to **13.3.1 Setting Example of Option Function Select Area**.

Bits WDTRCS0 and WDTRCS1 (Watchdog Timer Refresh Acknowledgement Period Set Bit)

Assuming that the period from when the watchdog timer starts counting until it underflows is 100%, the refresh acknowledgement period for the watchdog timer can be selected. For details, refer to **14.3.1.1 Refresh Acknowledgment Period**.

Figure 5.4 Example of Hardware Reset Circuit and Operation

Figure 5.5 Example of Hardware Reset Circuit (Usage Example of External Supply Vo Detection Circuit) and Operation

9.2.10 High-Speed On-Chip Oscillator Control Register 4 (FRA4)

Ade	dress ()029h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol		—	—	—	—	—	—	—	
After Reset When shipping										
Bit	Function								R/W	
b7-b0	-b0 36.864 MHz frequency correction data is stored.								R	
	The frequency can be adjusted by transferring this value to the FRA1 register and by									
	transferring the correction value in the FRA5 register to the FRA3 register.									

9.2.11 High-Speed On-Chip Oscillator Control Register 5 (FRA5)

Address 002Ah										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Syr	nbol	_	—	—	—	—	—	_	—	
After Reset When shipping							-			
Bit	Function								R/W	
b7-b0	b0 36.864 MHz frequency correction data is stored.							R		
	The frequency can be adjusted by transferring this value to the FRA3 register and by									
i	transferring the correction value in the FRA4 register to the FRA1 register.									

9.2.12 High-Speed On-Chip Oscillator Control Register 6 (FRA6)

9.2.13 High-Speed On-Chip Oscillator Control Register 3 (FRA3)

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA3 register. Also, rewrite the FRA3 register when the FRA00 bit in the FRA0 register is set 0 (high-speed on-chip oscillator off).

12.2 Functions

The ID code areas are used in standard serial I/O mode. Unless 3 bytes (addresses 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes stored in the ID code areas and the ID codes sent from the serial programmer or the on-chip debugging emulator are checked to see if they match. If the ID codes match, the commands sent from the serial programmer or the on-chip debugging emulator are acknowledged. If the ID codes do not match, the commands are not acknowledged. To use the serial programmer or the on-chip debugging emulator, first write predetermined ID codes to the ID code areas.

If 3 bytes (addresses 0FFFCh to 0FFFEh) of the reset vector are set to FFFFFFh, the ID codes are not checked and all commands are accepted.

The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

The character sequence of the ASCII codes "ALeRASE" is the reserved word used for the forced erase function. The character sequence of the ASCII codes "Protect" is the reserved word used for the standard serial I/O mode disabled function. Table 12.1 shows the ID Code Reserved Word. The reserved word is a set of reserved characters when all the addresses and data in the ID code storage addresses sequentially match Table 12.1. When the forced erase function or standard serial I/O mode disabled function is not used, use another character sequence of the ASCII codes.

ID Code Storage Address		ID Code Reserved Word (ASCII) $^{(1)}$			
ID Code Storage Address		ALeRASE	Protect		
0FFDFh	ID1	41h (upper-case "A")	50h (upper-case "P")		
0FFE3h	ID2	4Ch (upper-case "L")	72h (lower-case "r")		
0FFEBh	ID3	65h (lower-case "e")	6Fh (lower-case "o")		
0FFEFh	ID4	52h (upper-case "R")	74h (lower-case "t")		
0FFF3h	ID5	41h (upper-case "A")	65h (lower-case "e")		
0FFF7h	ID6	53h (upper-case "S")	63h (lower-case "c")		
0FFFBh	ID7	45h (upper-case "E")	74h (lower-case "t")		

Table 12.1 ID Code Reserved Word

Note:

1. Reserve word: A set of characters when all the addresses and data in the ID code storage addresses sequentially match Table 12.1.

12.3 Forced Erase Function

This function is used in standard serial I/O mode. When the ID codes sent from the serial programmer or the onchip debugging emulator are "ALeRASE" in ASCII code, the content of the user ROM area will be erased at once. However, if the contents of the ID code addresses are set to other than "ALERASE" (other than **Table 12.1 ID Code Reserved Word**) when the ROMCR bit in the OFS register is set to 1 and the ROMCP1 bit is set to 0 (ROM code protect enabled), forced erasure is not executed and the ID codes are checked with the ID code check function. Table 12.2 lists the Conditions and Operations of Forced Erase Function.

Also, when the contents of the ID code addresses are set to "ALeRASE" in ASCII code, if the ID codes sent from the serial programmer or the on-chip debugging emulator are "ALeRASE", the content of the user ROM area will be erased. If the ID codes sent from the serial programmer are other than "ALERASE", the ID codes do not match and no command is acknowledged, thus the user ROM area remains protected.

	Condition				
ID code from serial programmer or the on-chip debugging emulator	ID code in ID code storage address	Bits ROMCP1 and ROMCR in OFS register	Operation		
ALeRASE	ALeRASE	_	All erasure of user ROM		
	Other than ALeRASE (1)	Other than 01b	area (forced erase function)		
		(ROM code protect disabled)			
		01b	ID code check		
		(ROM code protect enabled)	(ID code check function)		
Other than ALeRASE	ALeRASE	_	ID code check		
			(ID code check function.		
			No ID code match.)		
	Other than ALeRASE (1)	-	ID code check		
			(ID code check function)		

Table 12.2	Conditions and O	perations of Forced	Erase Function
	Contaitions and C	perations of 1 01000	

Note:

1. For "Protect", refer to **12.4 Standard Serial I/O Mode Disabled Function**.

12.4 Standard Serial I/O Mode Disabled Function

This function is used in standard serial I/O mode. When the I/D codes in the ID code storage addresses are set to the reserved character sequence of the ASCII codes "Protect" (refer to **Table 12.1 ID Code Reserved Word**), communication with the serial programmer or the on-chip debugging emulator is not performed. This does not allow the flash memory to be read, rewritten, or erased using the serial programmer or the on-chip debugging emulator.

Also, if the ID codes are also set to the reserved character sequence of the ASCII codes "Protect" when the ROMCR bit in the OFS register is set to 1 and the ROMCP1 bit is set to 0 (ROM code protect enabled), ROM code protection cannot be disabled using the serial programmer or the on-chip debugging emulator. This prevents the flash memory from being read, rewritten, or erased using the serial programmer, the on-chip debugging emulator, or parallel programmer.

13.2.2 Option Function Select Register 2 (OFS2)

Bit	Symbol	Bit Name	Function	R/W
b0 b1	WDTUFS0 WDTUFS1	Watchdog timer underflow period set bit	0 0: 03FFh 0 1: 0FFFh 1 0: 1FFFh 1 1: 3FFFh	R/W R/W
b2 b3	WDTRCS0 WDTRCS1	Watchdog timer refresh acknowledgement period set bit	b3 b2 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100%	R/W R/W
b4	_	Reserved bits	Set to 1.	R/W
b5	—			
b6				
b7				

Note:

1. The OFS2 register is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not write additions to the OFS2 register. If the block including the OFS2 register is erased, the OFS2 register is set to FFh.

When blank products are shipped, the OFS2 register is set to FFh. It is set to the written value after written by the user.

When factory-programming products are shipped, the value of the OFS2 register is the value programmed by the user.

For a setting example of the OFS2 register, refer to **13.3.1 Setting Example of Option Function Select Area**.

Bits WDTRCS0 and WDTRCS1 (Watchdog Timer Refresh Acknowledgement Period Set Bit)

Assuming that the period from when the watchdog timer starts counting until it underflows is 100%, the refresh acknowledgement period for the watchdog timer can be selected. For details, refer to **14.3.1.1 Refresh Acknowledgment Period**.

14.3.2 Count Source Protection Mode Disabled

The count source for the watchdog timer is the CPU clock when count source protection mode is disabled. Table 14.2 lists the Watchdog Timer Specifications (Count Source Protection Mode Disabled).

Table 14.2	Watchdog Timer Specifications (Count Source Protection Mode Dis	abled)
------------	---	--------

Item	Specification
Count source	CPU clock
Count operation	Decrement
Period	Division ratio of prescaler (n) \times count value of watchdog timer (m) ⁽¹⁾
	CPU clock
	n: 16 or 128 (selected by the WDTC7 bit in the WDTC register), or
	2 when selecting the low-speed clock (CM07 bit in CM0 register = 1)
	m: Value set by bits WDTUFS0 and WDTUFS1 in the OFS2 register
	Example:
	The period is approximately 13.1 ms when:
	- The CPU clock frequency is set to 20 MHz.
	- The prescaler is divided by 16.
	- Bits WDTUFS1 to WDTUFS0 are set to 11b (3FFFh).
Watchdog timer	• Reset
initialization conditions	 Write 00h and then FFh to the WDTR register. ⁽³⁾
	• Underflow
Count start conditions	The operation of the watchdog timer after a reset is selected by
	the WDTON bit ⁽²⁾ in the OFS register (address 0FFFFh).
	• When the WDTON bit is set to 1 (watchdog timer is stopped after reset).
	The watchdog timer and prescaler are stopped after a reset and
	start counting when the WDTS register is written to.
	• When the WDTON bit is set to 0 (watchdog timer starts automatically after
	resel). The watchdog times and proceeder start counting automatically after a resolt
Count stop condition	The watchoog timer and prescaler start counting automatically after a reset.
	Stop mode, wait mode (Count resumes from the retained value after exiting.)
Operations at underflow	• When the PMT2 bit in the PMT register is set to 0.
	When the PM12 bit in the PM1 register is set to 1
	When the Fivil 2 bit in the Fivil register is set to 1. Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)
	Watchady and reset (refer to 5.5 Watchady finite fiesel)

Notes:

- 1. The watchdog timer is initialized when 00h and then FFh is written to the WDTR register. The prescaler is initialized after a reset. This may cause some errors due to the prescaler during the watchdog timer period.
- 2. The WDTON bit cannot be changed by a program. To set this bit, write 0 to bit 0 of address 0FFFh with a flash programmer.
- 3. Write the WDTR register during the count operation of the watchdog timer.

Item		Timer RA	Timer RB	Timer RC	Timer RE
Configurat	ion	8-bit timer with 8-bit prescaler (with reload register)	8-bit timer with 8-bit prescaler (with reload register)	16-bit timer (with input capture and output compare)	4-bit counter 8-bit counter
Count		Decrement	Decrement	Increment	Increment
Count sources		• f1 • f2 • f8 • f0CO • fC32 • fC	• f1 • f2 • f8 • Timer RA underflow	• f1 • f2 • f4 • f8 • f32 • f0CO40M • f0CO-F • TRCCLK	• f4 • f8 • f32 • fC4
Function	Count of the internal count source	Timer mode	Timer mode	Timer mode (output compare function)	—
	Count of the external count source	Event counter mode	_	Timer mode (output compare function)	_
	External pulse width/ period measurement	Pulse width measurement mode, pulse period measurement mode	—	Timer mode (input capture function; 4 pins)	—
	PWM output	Pulse output mode ⁽¹⁾ , Event counter mode ⁽¹⁾	Programmable waveform generation mode	Timer mode (output compare function; 4 pins) ⁽¹⁾ , PWM mode (3 pins), PWM2 mode (1 pin)	_
	One-shot waveform output	—	Programmable one- shot generation mode, Programmable wait one-shot generation mode	PWM mode (3 pins)	
	Three-phase waveforms output	—	—	—	—
	Timer	Timer mode (only fC32 count)	—	—	Real-time clock mode
Input pin		TRAIO	INTO	INTO, TRCCLK, TRCTRG, TRCIOA, TRCIOB, TRCIOC, TRCIOD	—
Output pin		TRAO TRAIO	TRBO	TRCIOA, TRCIOB, TRCIOC, TRCIOD	_
Related in	terrupt	Timer RA interrupt	Timer RB interrupt, INT0 interrupt	Compare match/input capture A to D interrupt, <u>Overf</u> low interrupt, INT0 interrupt	Timer RE interrupt
Timer stop	1	Provided	Provided	Provided	Provided

Table 15.1	Functional	Comparison	of Timers
------------	------------	------------	-----------

Note:

1. Rectangular waves are output in these modes. Since the waves are inverted at each overflow, the "H" and "L" level widths of the pulses are the same.

17.3 Timer Mode

In timer mode, a count source which is internally generated or timer RA underflows are counted (refer to **Table 17.2 Timer Mode Specifications**). Registers TRBOCR and TRBSC are not used in timer mode.

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement When the timer underflows, it reloads the reload register contents before the count continues (when timer RB underflows, the contents of timer RB primary reload register is reloaded).
Divide ratio	1/(n+1)(m+1)
Count start condition	1 (count starts) is written to the TSTART bit in the TRBCR register
	(count stans) is written to the TSTART bit in the TRDCP register.
Count stop conditions	• 1 (count forcibly stop) is written to the TSTART bit in the TRBCR register.
Interrupt request	When timer RB underflows [timer RB interrupt].
generation timing	
TRBO pin function	Programmable I/O port
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.
Write to timer	 When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter. When registers TRBPRE and TRBPR are written to while count operation is in progress: If the TWRC bit in the TRBMR register is set to 0, the value is written to both the reload register and the counter. If the TWRC bit is set to 1, the value is written to the reload register only. (Refer to 17.3.2 Timer Write Control during Count Operation.)

Table 17.2 Timer Mode Specifications

17.3.1 Timer RB I/O Control Register (TRBIOC) in Timer Mode

Ado	dress 010)Ah									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Sy	/mbol	—	—	—	—	INOSEG	INOSTG	TOCNT	TOPL]	
After F	Reset	0	0	0	0	0	0	0	0	-	
Bit	Symbol		E	Bit Name				Function	1		R/W
b0	TOPL	Time	Timer RB output level select bit				in timer mo	ode.			R/W
b1	TOCNT	Time	er RB outpu	it switch bi	t						R/W
b2	INOSTO	d One	-shot trigge	er control bi	t						R/W
b3	INOSEC	a One	-shot trigge	er polarity s	elect bit						R/W
b4	—	Noth	ing is assię	gned. If neo	cessary, se	t to 0. Whe	en read, the	e content is	0.		—
b5	_										
b6	—										
b7	_										

18.4.2 Timer RC I/O Control Register 1 (TRCIOR1) for Input Capture Function

2011							
b7	b6	b5	b4	b3	b2	b1	b0
IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
1	0	0	0	1	0	0	0
	b7 IOD3	b7 b6 IOD3 IOD2 1 0	b7 b6 b5 IOD3 IOD2 IOD1 1 0 0	b7 b6 b5 b4 IOD3 IOD2 IOD1 IOD0 1 0 0 0	b7 b6 b5 b4 b3 IOD3 IOD2 IOD1 IOD0 IOC3 1 0 0 0 1	b7 b6 b5 b4 b3 b2 IOD3 IOD2 IOD1 IOD0 IOC3 IOC2 1 0 0 0 1 0	b7 b6 b5 b4 b3 b2 b1 IOD3 IOD2 IOD1 IOD0 IOC3 IOC2 IOC1 1 0 0 0 1 0 0

Bit	Symbol	Bit Name	Function	R/W
b0 b1	IOC0 IOC1	TRCGRC control bit	 b1 b0 0 0: Input capture to the TRCGRC register at the rising edge 0 1: Input capture to the TRCGRC register at the falling edge 1 0: Input capture to the TRCGRC register at both edges 1 1: Do not set. 	R/W R/W
b2	IOC2	TRCGRC mode select bit ⁽¹⁾	Set to 1 (input capture) in the input capture function.	R/W
b3	IOC3	TRCGRC register function select bit	Set to 1.	R/W
b4	IOD0	TRCGRD control bit	b5 b4	R/W
b5	IOD1		 0 0: Input capture to the TRCGRD register at the hsing edge 0 1: Input capture to the TRCGRD register at the falling edge 1 0: Input capture to the TRCGRD register at both edges 1 1: Do not set. 	R/W
b6	IOD2	TRCGRD mode select bit ⁽²⁾	Set to 1 (input capture) in the input capture function.	R/W
b7	IOD3	TRCGRD register function select bit	Set to 1.	R/W

Notes:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

Table 18.8	Functions of	TRCGRj Register w	when Using Input	Capture Function
------------	--------------	-------------------	------------------	-------------------------

Register	Setting	Register Function	Input Capture Input Pin
TRCGRA	-	General register. Can be used to read the TRC register value	TRCIOA
TRCGRB		at input capture.	TRCIOB
TRCGRC	BFC = 0	General register. Can be used to read the TRC register value	TRCIOC
TRCGRD	BFD = 0	at input capture.	TRCIOD
TRCGRC	BFC = 1	Buffer registers. Can be used to hold transferred value from	TRCIOA
TRCGRD	BFD = 1	the general register. (Refer to 18.3.2 Buffer Operation .)	TRCIOB

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

18.5.4 Timer RC Control Register 2 (TRCCR2) for Output Compare Function

Address	Address 0130h										
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	TCEG1	TCEG0	CSEL	—	—	POLD	POLC	POLB			
After Reset	0	0	0	1	1	0	0	0	•		

Bit	Symbol	Bit Name	Function	R/W
b0	POLB	PWM mode output level control	0: TRCIOB output level selected as "L" active	R/W
		bit B ⁽¹⁾	1: I RCIOB output level selected as "H" active	
b1	POLC	PWM mode output level control	0: TRCIOC output level selected as "L" active	R/W
		bit C ⁽¹⁾	1: TRCIOC output level selected as "H" active	
b2	POLD	PWM mode output level control	0: TRCIOD output level selected as "L" active	R/W
		bit D ⁽¹⁾	1: TRCIOD output level selected as "H" active	
b3		Nothing is assigned. If necessary, se	et to 0. When read, the content is 1.	—
b4				
b5	CSEL	TRC count operation select bit ⁽²⁾	0: Count continues at compare match with the	R/W
			TRCGRA register	
			1: Count stops at compare match with the TRCGRA	
			register	
b6	TCEG0	TRCTRG input edge select bit ⁽³⁾	b7 b6	R/W
b7	TCEG1		0.1. Pising edge cologied	R/W
			1 0: Falling edge selected	
			1 1: Both edges selected	

Notes:

1. Enabled when in PWM mode.

2. Enabled when in output compare function, PWM mode, or PWM2 mode. For notes on PWM2 mode, refer to **18.9.6 TRCMR Register in PWM2 Mode**.

3. Enabled when in PWM2 mode.

Figure 18.19 Operating Example of PWM2 Mode (Duty 0% and Duty 100%)

19.3.3 Time Reading Procedure of Real-Time Clock Mode

In real-time clock mode, read registers TRESEC, TREMIN, TREHR, and TREWK when time data is updated and read the PM bit in the TRECR1 register when the BSY bit is set to 0 (not while data is updated). Also, when reading several registers, an incorrect time will be read if data is updated before another register is read after reading any register.

In order to prevent this, use the reading procedure shown below.

• Using an interrupt

Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register in the timer RE interrupt routine.

• Monitoring with a program 1

Monitor the IR bit in the TREIC register with a program and read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register after the IR bit in the TREIC register is set to 1 (timer RE interrupt request generated).

• Monitoring with a program 2

- (1) Monitor the BSY bit.
- (2) Monitor until the BSY bit is set to 0 after the BSY bit is set to 1 (approximately 62.5 ms while the BSY bit is set to 1).
- (3) Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register after the BSY bit is set to 0.

• Using read results if they are the same value twice

- (1) Read necessary contents of registers TRESEC, TREMIN, TREHR, and TREWK and the PM bit in the TRECR1 register.
- (2) Read the same register as (1) and compare the contents.
- (3) Recognize as the correct value if the contents match. If the contents do not match, repeat until the read contents match with the previous contents.

Also, when reading several registers, read them as continuously as possible.

23.2 Registers

23.2.1 Comparator B Control Register (INTCMP)

Address	01F8h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	INT3COUT			INT3CP0	INT1COUT		_	INT1CP0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	INT1CP0	Comparator B1 operation enable bit	0: Comparator B1 operation disabled 1: Comparator B1 operation enabled	R/W
b1	_	Reserved bits	Set to 0.	R/W
b2	—			
b3	INT1COUT	Comparator B1 monitor flag	0: IVCMP1 < IVREF1 or comparator B1 operation disabled 1: IVCMP1 > IVREF1	R
b4	INT3CP0	Comparator B3 operation enable bit	0: Comparator B3 operation disabled 1: Comparator B3 operation enabled	R/W
b5		Reserved bits	Set to 0.	R/W
b6				
b7	INT3COUT	Comparator B3 monitor flag	0: IVCMP3 < IVREF3 or comparator B3 operation disabled 1: IVCMP3 > IVREF3	R

23.2.2 External Input Enable Register 0 (INTEN)

Bit	Symbol	Bit Name	Function	R/W
b0	INT0EN	INT0 input enable bit	0: Disabled 1: Enabled	R/W
b1	INTOPL	INTO input polarity select bit (1, 2)	0: One edge 1: Both edges	R/W
b2	INT1EN	INT1 input enable bit	0: Disabled 1: Enabled	R/W
b3	INT1PL	INT1 input polarity select bit (1, 2)	0: One edge 1: Both edges	R/W
b4		Reserved bits	Set to 0.	R/W
b5	—			
b6	INT3EN	INT3 input enable bit	0: Disabled 1: Enabled	R/W
b7	INT3PL	INT3 input polarity select bit ^(1, 2)	0: One edge 1: Both edges	R/W

Notes:

1. To set the INTiPL bit (i = 0, 1, 3) to 1 (both edges), set the POL bit in the INTiIC register to 0 (falling edge selected).

2. The IR bit in the INTIIC register may be set to 1 (interrupt requested) if the INTEN register is rewritten. Refer to **11.8.4 Changing Interrupt Sources**.

26. Electrical Characteristics

Table 20.1 Absolute Maximum Ratings	Table 26.1	Absolute	Maximum	Ratings
-------------------------------------	------------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^\circ C \leq T_{opr} \leq 85^\circ C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) /	°C
			-40 to 85 (D version)	
Tstg	Storage temperature		-65 to 150	°C

Symbol	Parameter	ameter Conditions	Standard			Lloit
Symbol	Falameter		Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μS
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5 + CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	_	-	μS
-	Time from suspend until erase restart		-	-	30 + CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly stopped until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	_	year

Table 26.5 Flash Memory (Program ROM) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit

the number of erase operations to a certain number.
If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Mode	Erase/ Write Target	Status	Watchdog Timer Oscillation Stop Detection Voltage Monitor 2 Voltage Monitor 1 NMI (Note 1)	Undefined Instruction INTO Instruction BRK Instruction Single Step Address Match Address Break (Note 1)
EW0	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto-programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase-suspend function.	Not usable during auto-erasure or auto-programming.
EW1	Program ROM	During auto-erasure (suspend enabled) During auto-erasure (suspend disabled or FMR22 = 0) During auto-programming	When an interrupt request is acknowledged, auto-erasure or auto-programming is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts when the flash memory restarts after the fixed period. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. After the flash memory restarts, execute auto-erasure again and ensure it completes normally. The watchdog timer does not stop during the command operation, so interrupt requests may be generated. Initialize the watchdog timer regularly using the erase-suspend function.	Not usable during auto-erasure or auto-programming.

Table 27.2	CPU Rewrite Mode Interrupts (2	2)
------------	--------------------------------	----

FMR21, FMR22: Bits in FMR2 register

Note:

1. Do not use a non-maskable interrupt while block 0 is being auto-erased because the fixed vector is allocated in block 0.

Index

[A]	
ADCON0	334
ADCON1	335
ADi (i = 0 to 7)	331
ADIC	122
ADINSEL	333
ADMOD	332
AIER	138

[C]

СМ0	
CM1	
СМЗ	
CMPA	
CPSRF	
CSPR	155

[F]	
FMR0	
FMR1	
FMR2	
FMRDYIC	
FRA0	
FRA1	
FRA2	
FRA3	
FRA4	
FRA5	
FRA6	
FRA7	
FST	

[1]

INTCMP		354
INTEN 1	33, 3	354
INTF 1	33, 3	355
INTiIC (i = 0, 1, 3)		124
INTSR	66,	132

[K]	
KIEN	136
KUPIC	122

[M] MSTCR		203
[0]		

OCD	
OCVREFCR	
OFS	
OFS2	

[P]	
P1DRR	69
PDi (i = 1, 3, 4)	61
Pi (i = 1, 3, 4)	62

PINSR 67 PM0 24 PM1 154 PRCR 116 PUR0 68 PUR1 68

[R]

RMADi	(i = 0 or 1)	 	 138
RSTFR			 	 24

[S]

SORIC	 22
S0TIC	 22
S2RIC	 22
S2TIC	 22

[T]

TRA				166
TRACR				164
TRAIC				122
TRAIOC	170,	172,	174,	177
TRAMR				165
TRAPRE				165
TRASR			63,	166
TRBCR				181
TRBIC				122
TRBIOC	, 185,	189,	192,	196
TRBMR				182
TRBOCR				181
TRBPR				184
TRBPRE				183
TRBRCSR			63,	210
TRBSC				183
TRC				207
TRCADCR				209
TRCCR1	. 204,	225,	234,	240
TRCCR2	. 208,	228,	234,	241
TRCDF			208,	241
TRCGRA				207
TRCGRB				207
TRCGRC				207
TRCGRD				207
TRCIC				123
TRCIER				204
TRCIOR0		206,	220,	226
TRCIOR1		206,	221,	227
TRCMR				203
TRCOER				209
TRCPSR0			64,	211
TRCPSR1			64,	211
TRCSR				205
TRECR1				254
TRECR2				255
TRECSR				256
TREHR				253
TREIC				122
TREMIN				252
TRESEC				252
TREWK				253

[U]	
U0BRG	