

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 13x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51qm32vfm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

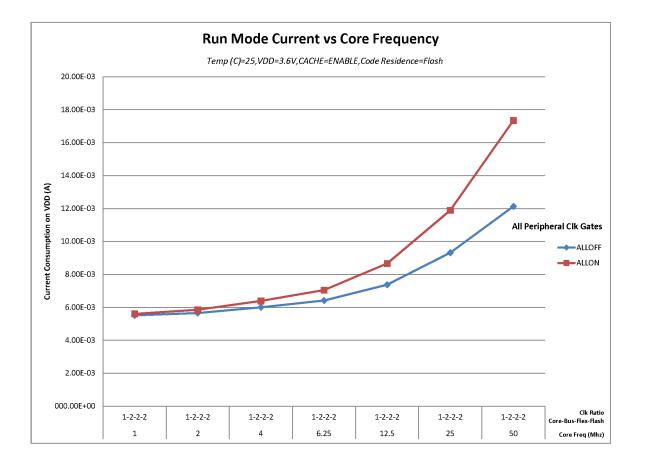
3.8.1 Example 1

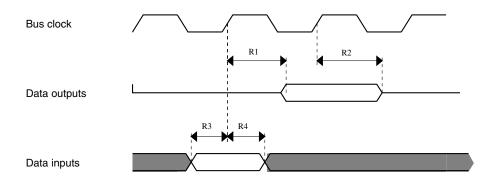
This is an example of an operating behavior that includes a typical value:

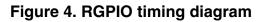
Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:




Figure 1. Run mode supply current vs. core frequency


Thermal specifications

The following general purpose specifications apply to all signals configured for RGPIO, FTM, and UART. The conditions are 25 pf load, $V_{DD} = 3.6$ V to 1.71 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified.

Symbol	Description	Min.	Max.	Unit
R1	CPUCLK from CLK_OUT pin high to GPIO output valid	—	16	ns
R2	CPUCLK from CLK_OUT pin high to GPIO output invalid (output hold)	1	—	ns
R3	GPIO input valid to bus clock high	17	—	ns
R4	CPUCLK from CLK_OUT pin high to GPIO input invalid	—	2	ns

Table 10. RGPIO General Control Timing

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	115	°C
T _A	Ambient temperature	-40	105	°C

6.3.2.2 Oscillator frequency specifications Table 16. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	1	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

6.4 Memories and memory interfaces

6.4.1 Flash (FTFL) electrical specifications

This section describes the electrical characteristics of the FTFL module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_FlexRAM = $\frac{\text{EEPROM} - 2 \times \text{EEESIZE}}{\text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycd}}$

where

- Writes_FlexRAM minimum number of writes to each FlexRAM location
- EEPROM allocated FlexNVM based on DEPART; entered with Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance

Num	Description	Min.	Max.	Unit
EP6	EZP_CK high to EZP_D input invalid (hold)	0.0	—	ns
EP7	EZP_CK low to EZP_Q output valid (setup)	—	25	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0.0	—	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

Table 21. EzPort switching specifications (continued)

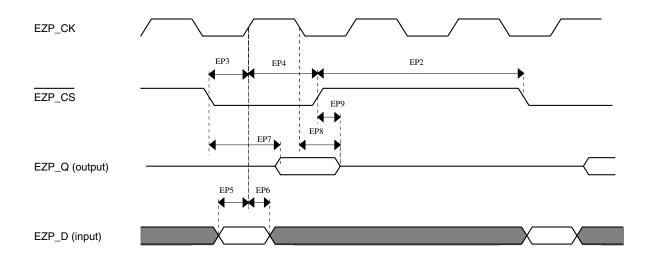


Figure 6. EzPort Timing Diagram

6.4.3 Mini-Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	—	25	MHz	
FB1	Clock period	40		ns	

Table 22. Flexb	us switching	specifications
-----------------	--------------	----------------

Table continues on the next page...

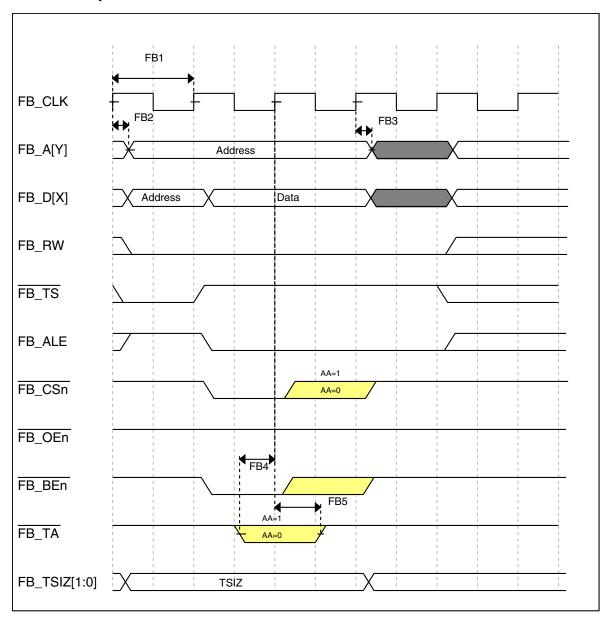


Figure 8. Mini-FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

Analog

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	≤ 13 bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16 bit modes					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

 Table 23.
 16-bit ADC operating conditions (continued)

 Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.

4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.

5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

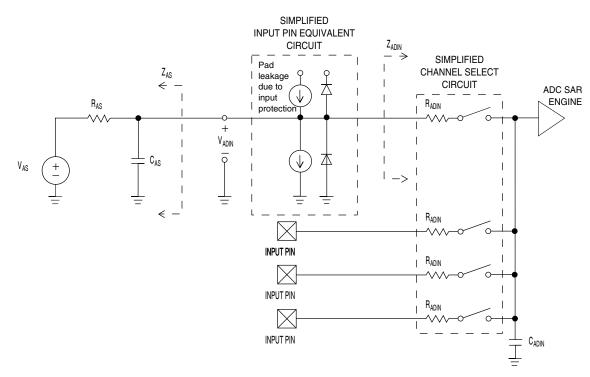
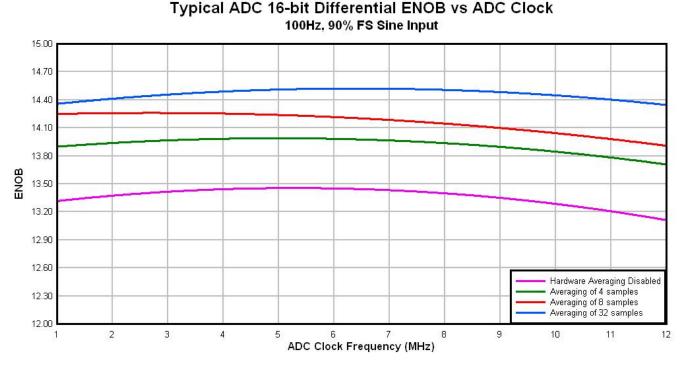
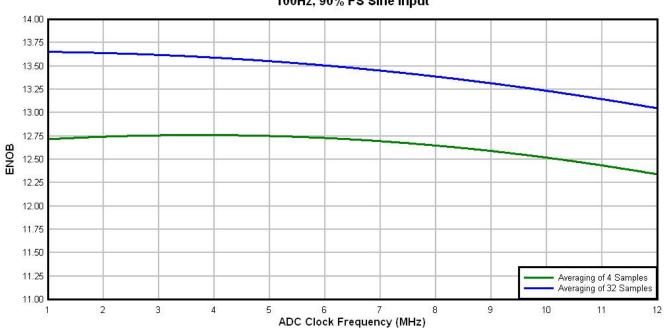




Figure 9. ADC input impedance equivalency diagram

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

Analog

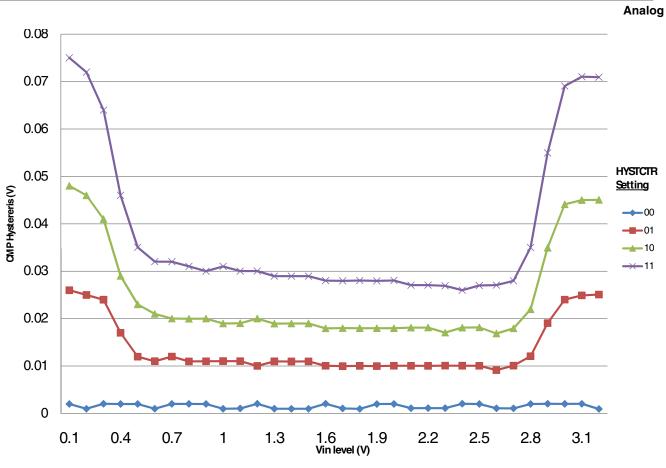


Figure 12. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

12-bit DAC electrical characteristics

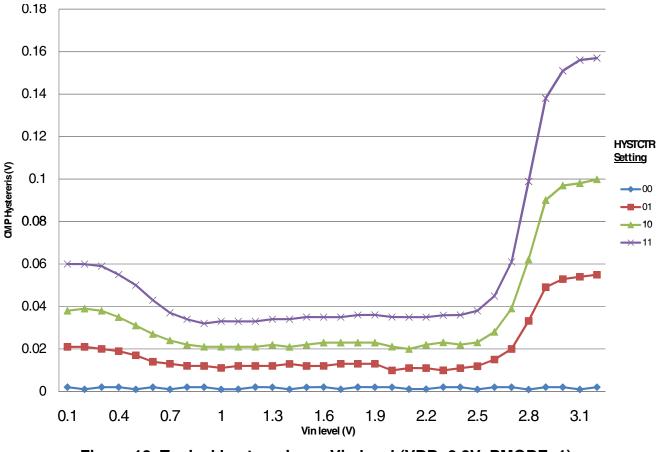


Figure 13. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

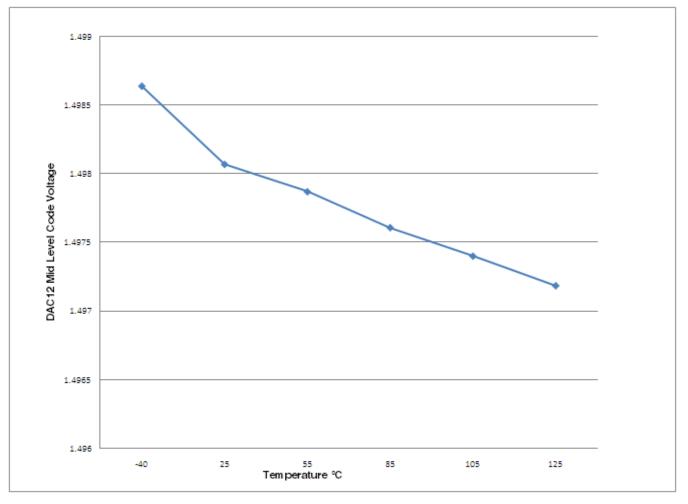
6.6.3 12-bit DAC electrical characteristics

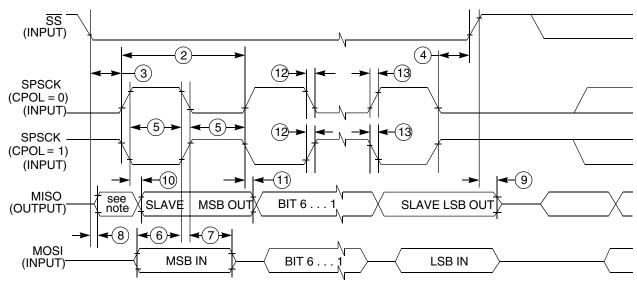
6.6.3.1 12-bit DAC operating requirements Table 26. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC




Figure 15. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	T _A Temperature		105	°C	
CL	Output load capacitance	100		nF	1

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

Human-machine interfaces (HMI)

NOTE: Not defined!

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 34. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	_	5.5	14	MHz	2
f _{ELEmax}	Electrode oscillator frequency	_	0.5	4.0	MHz	3
C _{REF}	Internal reference capacitor	0.5	1	1.2	pF	
V _{DELTA}	Oscillator delta voltage	100	600	760	mV	4
I _{REF}	Reference oscillator current source base current • 1uA setting (REFCHRG=0)	_	1.133	1.5	μA	3,5
	• 32uA setting (REFCHRG=31)	—	36	50		
I _{ELE}	Electrode oscillator current source base current • 1uA setting (EXTCHRG=0)	_	1.133	1.5	μA	3,6
	• 32uA setting (EXTCHRG=31)	—	36	50		
Pres5	Electrode capacitance measurement precision		8.3333	38400	%	7
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	%	8
Pres100	Electrode capacitance measurement precision	—	8.3333	38400	%	9
MaxSens	Maximum sensitivity	0.003	12.5	—	fF/count	10

Table continues on the next page ...

MCF51QM128 Data Sheet, Rev. 6, 01/2012.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Res	Res Resolution		—	16	bits	
T _{Con20}	Response time @ 20 pF		15	25	μs	11
I _{TSI_RUN}	Current added in run mode	_	55	_	μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μA	12

Table 34. TSI electrical specifications (continued)

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.
- 3. CAPTRM=0, DELVOL=2, and fixed external capacitance of 20 pF.
- 4. CAPTRM=0, EXTCHRG=9, and fixed external capacitance of 20 pF.
- 5. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 6. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 7. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 8. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.

10. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: lext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, I_{ref} = 16 μA, REFCHRG = 15, C_{ref} = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: I_{ext} = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, I_{ref} = 32 μA, REFCHRG = 31, C_{ref} = 0.5 pF

- 11. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15.
- 12. CAPTRM=7, DELVOL=2, REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ARE10566D
44-pin Laminate QFN	98ASA00239D
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

8 Pinout

8.1 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Mux Control module is responsible for selecting which ALT functionality is available on each pin.

NOTE

• On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description.

64- pin	48- pin	44- pin	32- pin	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
1	-	-	-	VDD	VDD								
2	_	_	_	VSS	VSS								
3	_	_	_	Disabled	Disabled	PTC6	UART0_TX	I2C0_SCL	RGPIO6	SPI1_MOSI	FBa_AD11		
4	_	_	_	Disabled	Disabled	PTC7	UART0_RX	I2C0_SDA	RGPI07	SPI1_MISO	FBa_AD12		
5	1	_	_	Disabled	Disabled	PTD0	UART0_CT S_b	I2C1_SDA	RGPIO8	SPI1_SCLK	FBa_AD13		
6	2	—	_	Disabled	Disabled	PTD1	UART0_RT S_b	I2C1_SCL	RGPIO9	SPI1_SS	FBa_AD14		
7	3	1	1	Disabled	Disabled	PTA0		I2C2_SCL	FTM1_CH0	SPI0_SS	FBa_AD15		
8	4	2	2	Disabled	Disabled	PTA1		I2C2_SDA	FTM1_CH1		FBa_AD16		
9	5	3	3	Disabled	Disabled	PTA2	UART1_TX		FTM1_CH2	SPI1_SS			
10	6	4	4	Disabled	Disabled	PTA3	UART1_RX		FTM1_CH3	SPI1_SCLK			EZP_CLK
11	7	5	5	ADC0_DP1/ ADC0_SE2	ADC0_DP1/ ADC0_SE2	PTA4	UART1_CT S_b	I2C2_SCL	FTM1_CH4	SPI1_MISO			EZP_DI
12	8	6	6	ADC0_DM1/ ADC0_SE3	ADC0_DM1/ ADC0_SE3	PTA5	UART1_RT S_b	I2C2_SDA	FTM1_CH5	SPI1_MOSI	CLKOUT		EZP_DO
13	9	7	7	VDDA	VDDA								
14	10	8	—	VREFH	VREFH								
15	11	9	-	VREF_OUT	VREF_OUT								
16	12	10	-	VREFL	VREFL								
17	13	11	8	VSSA	VSSA								
18	14	12	9	DAC0_OUT	DAC0_OUT								
19	15	13	10	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0								
20	16	14	11	ADC0_DM0/ ADC0_SE1	ADC0_DM0/ ADC0_SE1								
21	17	15	12	VREGIN	VREGIN								
22	18	16	13	VOUT33	VOUT33								

• PTC1 is open drain.

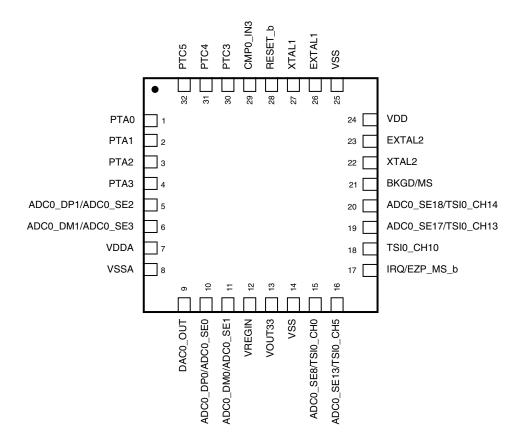


Figure 23. 32-pin QFN

8.3 Module-by-module signals

NOTE

- On PTB0, EZP_MS_b is active only during reset. Refer to the detailed boot description.
- PTC1 is open drain.

Table 35. Module signals by GPIO port and pin

64-pin	48-pin	44-pin 32-pin Port		Module signal(s)				
	Power and ground							
1					VDD			
24	20	18			VDD			

Table continues on the next page ...

MCF51QM128 Data Sheet, Rev. 6, 01/2012.

Table 35. Module signals by GPIO port and pin (continued)

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
48	35	31	24		VDD
2					VSS
23	19	17	14		VSS
49	36	32	25		VSS
	1 1	Sys	stem	1	
45	32	28	21	PTB4	BKGD/MS
12	8	6	6	PTA5	CLKOUT
62	46	42	30	PTC3	CLKOUT
10	6	4	4	PTA3	EZP_CLK
11	7	5	5	PTA4	EZP_DI
12	8	6	6	PTA5	EZP_DO
35	25	23	17	PTB0	IRQ/EZP_MS_b, EZP_CS_b
52	39	35	28	PTC1	RESET_b
		0	SC		
50	37	33	26	PTB7	EXTAL1
47	34	30	23	PTB6	EXTAL2
51	38	34	27	PTC0	XTAL1
46	33	29	22	PTB5	XTAL2
		LL	.wu	1	
4				PTC7	LLWU_P0
6	2			PTD1	LLWU_P1
12	8	6	6	PTA5	LLWU_P2
30	23	21	16	PTA7	LLWU_P3
32				PTD7	LLWU_P4
35	25	23	17	PTB0	LLWU_P5
36	26	24	18	PTB1	LLWU_P6
39	27	25	19	PTB2	LLWU_P7
44	31	27		PTE7	LLWU_P8
45	32	28	21	PTB4	LLWU_P9
55				PTF2	LLWU_P10
56	40	36		PTF3	LLWU_P11
57	41	37	29	PTC2	LLWU_P12
59	43	39		PTF5	LLWU_P13
62	46	42	30	PTC3	LLWU_P14

Table continues on the next page...

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
11	7	5	5	PTA4	PTA4
12	8	6	6	PTA5	PTA5
25	21	19	15	PTA6	PTA6
30	23	21	16	PTA7	PTA7
	ł	F	νтв	4	1
35	25	23	17	PTB0	PTB0
36	26	24	18	PTB1	PTB1
39	27	25	19	PTB2	PTB2
40	28	26	20	PTB3	PTB3
45	32	28	21	PTB4	PTB4
46	33	29	22	PTB5	PTB5
47	34	30	23	PTB6	PTB6
50	37	33	26	PTB7	PTB7
	1	F	νтс	1	
51	38	34	27	PTC0	PTC0
52	39	35	28	PTC1	PTC1
57	41	37	29	PTC2	PTC2
62	46	42	30	PTC3	PTC3
63	47	43	31	PTC4	PTC4
64	48	44	32	PTC5	PTC5
3				PTC6	PTC6
4				PTC7	PTC7
		F	PTD	1	
5	1			PTD0	PTD0
6	2			PTD1	PTD1
26				PTD2	PTD2
27	22	20		PTD3	PTD3
28				PTD4	PTD4
29				PTD5	PTD5
31	24	22		PTD6	PTD6
32				PTD7	PTD7
	1	l F	PTE	1	I
33				PTE0	PTE0
34				PTE1	PTE1
38				PTE3	PTE2

Table 35. Module signals by GPIO port and pin (continued)

Table continues on the next page ...

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2010–2012 Freescale Semiconductor, Inc.

Document Number: MCF51QM128 Rev. 6, 01/2012